Constructions on domains

ACS L16, lecture 10

Lifting and unlifting
Lift of a cpo D is the domain
D, 2DuU{Ll}

where _L is some element not in D and the partially
orderon Dy is Cp U{(L,x) |x€ D, }.
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Lifting and unlifting
Lift of a cpo D is the domain
D, 2DuU{Ll}

where _L is some element not in D and the partially
orderon Dy is Cp U{(L,x) |x€ D, }.

Unlift of a domain D is the cpo
D, =2{deD|d# 1}

with partial order as for D.
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Discrete cpos and flat domains

The discrete cpo on a set S is given by the partial order

xCsx 2 x=4x  (allx,x’ €5)

Flat domains S| are the lifts of discrete cpos.

O 1 2 73

ACS L16, lecture 10




Products

The product of two cpos (D1, =1) and (Dy, ) has
underlying set

Dy X Dy = {(dy,dy) | d1 € D1 & d, € Dy}
and partial order [_ defined by
(di,d2) C (dy, dy) = di Cady & dy B d

Lubs of chains are calculated componentwise:

| | (din do) = (| ] dvis | | d2)

n>0 i>0  j>0
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Products

The product of two cpos (D1, =1) and (D,, ) has
underlying set

D; X Dy = {(d1,dy) | d1 € D1 & d; € Dy}
and partial order [_ defined by
(di,d2) E (dy, dy) = di Cady & dy B d

Lubs of chains are calculated componentwise:

|| (d1,n,don) = (| ] duis | ] d2)
>0 i>0  j>0
If (D1, 1) and (D,, ;) are domains so is
(D1 X Dy,E) and Lp,xp, = (Lp, Lb,).
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Smash product and coalesced sum
Smash product of domains D and E:

D®E = (Dy X E}).

Stk conbinuaus /F\Avxu(lném; Dot — F
e b’\jéd/i@(\ sitia
Conkinunons fanchons £: Dx E — F
s e ik in endh variabl S—bpnm/ah(}\)
-F(-L)Q): L 7C(0Q)—L) = 1
(ol ¢eE, deD)
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Smash product and coalesced sum
Smash product of domains D and E:
D®RE = (D, XE}).
Coalesced sum of domains D and E:

D®E = (D,WE)),
(is H OOPYDO(.M& L U\A‘%U‘% Gfﬁ omains &Shid cfe )Cv\s>

(Disjoint union of two sets X and Y:

XwY = {(0,x) |xe X}Uu{(1,y)|yeY}

is the coproduct of X and Y in the category of sets and functions.)
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Function cpos and domains

Given cpos (D,Cp) and (E,Cg), the function cpo
(D — E,LC) has underlying set

D—E = {f| f:D — Eis a continuous function }

and partial order: f C f/ = Vd € D.f(d) Cg f'(d).

Lubs of chains are calculated ‘argumentwise’ (using lubs in E):

(L f)(d) = || fu(d)

n>0 n>0
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Function cpos and domains

Given cpos (D, Cp) and (E,CE), the function cpo
(D — E,LC) has underlying set

D—E = {f| f:D — Eis a continuous function }

and partial order: f C f/ £ Vd € D.f(d) Cg f'(d).

Lubs of chains are calculated ‘argumentwise’ (using lubs in E):

(L f)(d) = || fu(d)

n>0 n>0

If E is a domain, thensois D — E: L p_,g is the
constant function mapping each d € D to L.
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Domain of strict functions

Given domains D and E we get a domain
D—E2 {f&(D—E)|f(Llp)=Le}

with partial order, lubs of chains and least element as for
D — E.
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Domain equations

where @ (X) is a formal expression built up from the variable X and

constants ranging over domains, using the domain constructions
(=)L ()X (=), (5)®(=). (m)&(—). (=) = (-)
and (—) — (—).

A
Eg @(X) = (X—b X )¢

o @—:(x) - (ZL——O X)-% <ZL®<Z[@X)3
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Domain equations

where @ (X) is a formal expression built up from the variable X and

constants ranging over domains, using the domain constructions
(=)L ()X (=), (5)®(=). (m)&(—). (=) = (-)
and (—) — (—).

Aim to show that every domain equation has a solution
D= ®(D)

that is minimal is a sense to be explained.
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Domain equations

where @ (X) is a formal expression built up from the variable X and

constants ranging over domains, using the domain constructions
(=)L ()X (=), (5)®(=). (m)&(—). (=) = (-)
and (—) — (—).

Aim to show that every domain equation has a solution
~Y 'H“Lbowmw\
D= @ ﬂo\m\m@ 177
that is minimal is a sensé to be explained. %"
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Example
ID%V\M‘\W\O& S'GW\UW\\’\LS c@ c,od\ )oy, nome ')\"Coxlchbﬂ.s

XTenns ee \ = (5c€V )

by
Coun
Ax.e ,"y;;‘ ul7

\mee, awduahon reladkion (€= ¢
bdwewdbz;& g e,c s mdud'vdg

e>Ax.e elzfz)=>c
AX.© D Ax.e e, = C

Swl:as')‘l'lu]-aby\

domain D
Swpvse ”‘M{\samwphsswx »:(D>D); &~ D

US\V‘? v, defie condinusus funchiony
'Fun -'(D"‘>D)-—§ D
f — i(p)

: DxD —D . :
Ty gi‘(d)d’ £ 1)L

L E )=l
Nisle, Hak
app( fon(@).d)= V(@) = £(d)




domain D
Swpvse ”‘M{\samwphsswx »: (D>D); &~ D

Using 1, defiine continusus funchions

fun :(D-D)—> D
£ +— 1 (f)

o»vp : D xD —D - -1
(dd) s gi‘(d)d’ i )2 L
L # )=
'De[)-\'v\m o dowin sP OAVIYONVantS

v € 'B/ (cowbalde ?wo!».d' GP D)

Denotation of N Terms

ll:%f\\@ e D

Neterm ec \ AVivonrmend (06 Dv
dekined by recwsion on i shudure R e

o [x0p = plx)
o [)\-x_e,]]e :Qm(déDH[e:D(f[de]))
* Leelp = app(ledp, Ledp)




Denotation a‘@ - 1erms

ll:%]\@ e D

Neterm e /\ NVironmaend pé DV
dedined by recwsion on i shudure R e

o [x0p = plx)

updaled environmaund Maps >¢ Yo d A
0 Wi ads like p

% Ly = fin(dro DA(eBad)

= fin (idpy)
ond. so

L 2y (oa)yDp

= fun(d > D0y Diplyr>d)))
= fun (A > app(fan(id,) ,d))
= Swn(idy)

= Xtaf.} ]F




