
ML programs are typed

Programs of type ty : Progty � { e | ∅ � e : ty }

where

Type assignment relation

Γ � e : ty

⎧⎪⎨
⎪⎩

Γ = typing context

e = expression to be typed

ty = type

is inductively generated by axioms and rules following the structure of e,
for example:

Γ � e1 : ty1 Γ[x �→ ty1] � e2 : ty2 x /∈ dom(Γ)

Γ � (let x = e1 in e2) : ty2

Theorem (Type Soundness). If e, s ⇒ v, s′ and e ∈ Progty ,

then v ∈ Progty .

9

ML programs are typed

Programs of type ty : Progty � { e | ∅ � e : ty }

where

Type assignment relation

Γ � e : ty

⎧⎪⎨
⎪⎩

Γ = typing context

e = expression to be typed

ty = type

is inductively generated by axioms and rules following the structure of e,
for example:

Γ � e1 : ty1 Γ[x �→ ty1] � e2 : ty2 x /∈ dom(Γ)

Γ � (let x = e1 in e2) : ty2

Theorem (Type Soundness). If e, s ⇒ v, s′ and e ∈ Progty ,

then v ∈ Progty .

9

ML programs are typed

Programs of type ty : Progty � { e | ∅ � e : ty }

where

Type assignment relation

Γ � e : ty

⎧⎪⎨
⎪⎩

Γ = typing context

e = expression to be typed

ty = type

is inductively generated by axioms and rules following the structure of e,
for example:

Γ � e1 : ty1 Γ[x �→ ty1] � e2 : ty2 x /∈ dom(Γ)

Γ � (let x = e1 in e2) : ty2

Theorem (Type Soundness). If e, s ⇒ v, s′ and e ∈ Progty ,

then v ∈ Progty .

9

ML transition relation (s , e) → (s′ , e′)

is inductively generated by rules following the structure of e—e.g.

a simplification step
(s , e1) → (s′ , e′

1
)

(s , let x = e1 in e2) → (s′ , let x = e′
1
in e2)

a basic reduction
v a canonical form

(s , let x = v in e) → (s , e[v/x])

(see Sect. A.5 for the full definition).

Theorem. s, e ⇒ v, s′ iff (s , e) →∗ (s′ , v).

(→∗ is the reflexive-transitive closure of →.)

12

Are these OCaml expressions contextually equivalent?

F �

let a = ref()in

let b = ref()in

fun x →
if x == a then b
else a

G �

let c = ref()in

let d = ref()in

fun y →
if y == d then d
else c

No!

For T � fun f → let x = ref()in f (f x) == f x,

T F has value false, whereas T G has value true,

so F �∼=ctx G.

ACS L16, lecture 2 9/10

ML programs are typed

Programs of type ty : Progty � { e | ∅ � e : ty }

where

Type assignment relation

Γ � e : ty

⎧⎪⎨
⎪⎩

Γ = typing context

e = expression to be typed

ty = type

is inductively generated by axioms and rules following the structure of e,
for example:

Γ � e1 : ty1 Γ[x �→ ty1] � e2 : ty2 x /∈ dom(Γ)

Γ � (let x = e1 in e2) : ty2

Theorem (Type Soundness). If e, s ⇒ v, s′ and e ∈ Progty ,

then v ∈ Progty .

9

