
MPhil ACS, module L16

Semantics of HOT Languages

Andrew Pitts

Computer Laboratory

Lent Term 2010

ACS L16, lecture 1 1/17





Introduction:
Programming Language Semantics

ACS L16, lecture 1 2/17



Theoretical Computer Science

I Foundations
Mathematical theory of computation

I Algorithms and complexity
What can be computed in practice?

I Semantics
What is the structure of computation?

ACS L16, lecture 1 3/17



Programming Language Semantics

What’s it for?

What is it?

What’s there to do?

ACS L16, lecture 1 4/17



Programming Language Semantics

What’s it for?

What is it?

What’s there to do?

ACS L16, lecture 1 4/17







Software verification

Software failures range from

frequent-and-annoying:

to life-threatening-and-catastrophic:

ACS L16, lecture 1 6/17



Software verification

Software failures range from

frequent-and-annoying:

to life-threatening-and-catastrophic:

I Software is at the core of the world’s infrastructure.
I No software without programming languages.
I Programming language semantics is crucial for

rigorous/systematic software correctness.
ACS L16, lecture 1 6/17



Semantics: what’s it for?
I Program verification.

I Implementation of existing programming languages.
e.g. semantics-preserving compiler optimizations
“Higher-order languages, such as Haskell, encourage the
programmer to build abstractions by composing
functions. A good compiler must inline many of these
calls to recover an efficiently executable program. In
principle, inlining is dead simple: just replace the call of
a function by an instance of its body. But any
compiler-writer will tell you that inlining is a black art,
full of delicate compromises that work together to give
good performance without unnecessary code bloat.”

Simon Peyton Jones

ACS L16, lecture 1 7/17



Semantics: what’s it for?
I Program verification.
I Implementation of existing programming languages.
I Design of new progamming languages.

e.g. web programming
“A typical, modern web program involves many “tiers”:
part of the program runs in the web browser, part runs
on a web server, and part runs in back-end systems such
as a relational database. To create such a program, the
programmer must master a myriad of languages: the
logic is written in a mixture of Java, Python, and Perl;
the presentation in HTML; the GUI behavior in
Javascript; and the queries are written in SQL or XQuery.
There is no easy way to link these, for example, to be
sure that an HTML form or an SQL query produces the
type of data that the Java code expects. This problem is
called the impedance mismatch problem.”

Phil Wadler

ACS L16, lecture 1 7/17



Semantics: what’s it for?
I Program verification.
I Implementation of existing programming languages.
I Design of new progamming languages.

“Why is it so hard to design a good programming
language? Naively, one might expect that a
straightforward extension of the conventional notation of
science and mathematics should provide a completely
adequate programming language. But the history of
language design has distroyed this illlusion.
“The truth of the matter is that putting languages
together is a very tricky business. When one attempts to
combine language concepts, unexpected and
counterintuitive interactions arise. At this point, even the
most experienced designer’s intuition must be butressed
by a rigorous definition of what the language means.
“Of course, this is what programming language
semantics is all about.”

John Reynolds, 1990

ACS L16, lecture 1 7/17



Programming Language Semantics

What’s it for?

What is it?

What’s there to do?

ACS L16, lecture 1 8/17



Styles of semantics

I Program logics

I Denotational semantics

I Operational semantics

ACS L16, lecture 1 9/17



Program logic

It’s all about proofs of program properties.

ACS L16, lecture 1 10/17



Program logic

It’s all about proofs of program properties.

E.g. Floyd-Hoare logic for partial correctness

` {P} C {Q}

Intended meaning:

“whenever C is executed in a state satisfying
pre-condition P and if the execution of C
terminates, then the state in which C’s
execution terminates satisfies post-condition
Q”

ACS L16, lecture 1 10/17



Program logic

It’s all about proofs of program properties.

E.g. Floyd-Hoare logic for partial correctness

` {P} C {Q}

The collection of valid partial correctness assertions is
inductively defined by axioms and rules, such as

` {P&B} C {P}

` {P} while(B) C {P&¬B}

ACS L16, lecture 1 10/17



Program logic

It’s all about proofs of program properties.

E.g. Floyd-Hoare-Jones logic for partial correctness

R, G ` {P} C {Q}

The collection of valid partial correctness assertions is
inductively defined by axioms and rules, such as

R1, G1 ` {P1} C1 {Q1} G1 ⊆ R2

R2, G2 ` {P2} C2 {Q2} G2 ⊆ R1

R1&R2, G1 ∨ G2 ` {P1&P2} C1 ‖ C2 {Q1&Q2}

ACS L16, lecture 1 10/17



Program logic

It’s all about proofs of program properties.

E.g. Floyd-Hoare-Jones logic for partial correctness

R, G ` {P} C {Q}

The collection of valid partial correctness assertions is
inductively defined by axioms and rules, such as

R1, G1 ` {P1} C1 {Q1} G1 ⊆ R2

R2, G2 ` {P2} C2 {Q2} G2 ⊆ R1

R1&R2, G1 ∨ G2 ` {P1&P2} C1 ‖ C2 {Q1&Q2}

Where do such “programming laws” come from?
ACS L16, lecture 1 10/17



Styles of semantics

I Program logics

I Denotational semantics

I Operational semantics

ACS L16, lecture 1 11/17



Denotational semantics
I Each program phrase P is given a denotation

JPK—a mathematical object representing the
contribution of P to the meaning of any complete
program in which it occurs.

I The denotation of a phrase is a function of the
denotations of its subphrases—one says that the
semantics is compositional.

ACS L16, lecture 1 12/17



Denotational semantics

E.g. if

JstatementK ∈ State ⇀ State

Jboolean expressionK ∈ State ⇀ {true, false}

then

ACS L16, lecture 1 12/17



Denotational semantics

E.g. if

JstatementK ∈ State ⇀ State

Jboolean expressionK ∈ State ⇀ {true, false}

then

Jif(B)C else C′K(s) ≡

cond(JBK(s), JCK(s), JC′K(s))

where

cond(b, s, s′) =

{

s if b = true

s′ if b = false

ACS L16, lecture 1 12/17



Denotational semantics

E.g. if

JstatementK ∈ State ⇀ State

Jboolean expressionK ∈ State ⇀ {true, false}

then
Jwhile(B) CK = lfp(ΦJBK,JCK)

where

ΦJBK,JCK ∈ (State ⇀ State) → (State ⇀ State)

is

f 7→ (s 7→ cond(JBK(s), f (JCK(s)), s))

ACS L16, lecture 1 12/17



Denotational semantics

E.g. if

JstatementK ∈ State ⇀ State

Jboolean expressionK ∈ State ⇀ {true, false}

then
Jwhile(B) CK = lfp(ΦJBK,JCK)

ACS L16, lecture 1 12/17



Domain equations

For example:

E = S ⇀ (N × S)

S = N ⇀ E

ACS L16, lecture 1 13/17



Domain equations

For example:

E = S ⇀ (N × S)

S = N ⇀ E

ACS L16, lecture 1 13/17



Domain equations

For example:

E = S ⇀ (N × S)

S = N ⇀ E

So E has to satisfy

E = (N ⇀ E) ⇀ (N × (N ⇀ E))

ACS L16, lecture 1 13/17



Domain equations

For example:

E = S ⇀ (N × S)

S = N ⇀ E

So E has to satisfy

E = (N ⇀ E) ⇀ (N × (N ⇀ E))

Cantor: there are no such sets E.

ACS L16, lecture 1 13/17



Domain equations

For example:

E = S ⇀ (N × S)

S = N ⇀ E

So E has to satisfy

E = (N ⇀ E) ⇀ (N × (N ⇀ E))

Cantor: there are no such sets E.

So we have to solve such equations in categories of
mathematical structure other than sets.

ACS L16, lecture 1 13/17



Theoretical Computer Science

I Foundations
Mathematical theory of computation

I Algorithms and complexity
What can be computed in practice?

I Semantics
What is the structure of computation?

ACS L16, lecture 1 14/17



Styles of semantics

I Program logics

I Denotational semantics

I Operational semantics

ACS L16, lecture 1 15/17



Operational semantics

E.g. transition relation between abstract machine
configurations

〈s , C〉 → 〈s′ , C′〉

ACS L16, lecture 1 16/17



Operational semantics

E.g. transition relation between abstract machine
configurations

〈s , C〉 → 〈s′ , C′〉

ACS L16, lecture 1 16/17



Operational semantics

E.g. transition relation between abstract machine
configurations

〈s , C〉 → 〈s′ , C′〉

The collection of valid transitions is inductively defined
by axioms and rules, such as

〈s , while(B) C〉 → 〈s , if(B) {C ; while(B) C}〉

and
〈s , B〉 → 〈s′ , B′〉

〈s , if(B) C〉 → 〈s′ , if(B′
) C〉

ACS L16, lecture 1 16/17



Styles of semantics

1. Program logics

2. Denotational semantics

3. Operational semantics

This course: mainly 3, some 2, no 1.

ACS L16, lecture 1 17/17




