
1

Topics in Logic and Complexity

Handout 3

Anuj Dawar

MPhil Advanced Computer Science, Lent 2010

2

P-complete Problems

Game

Input: A directed graph G = (V,E) with a partition

V = V1 ∪ V2 of the vertices and two distinguished vertices

s, t ∈ V .

Decide: whether Player 1 can force a token from s to t in

the game where when the token is on v ∈ V1, Player 1

moves it along an edge leaving v and when it is on v ∈ V2,

Player 2 moves it along an edge leaving v.

3

Circuit Value Problem

A Circuit is a directed acyclic graph G = (V,E) where each node

has in-degree 0, 1 or 2 and there is exactly one vertex t with no

outgoing edges, along with a labelling which assigns:

• to each node of indegree 0 a value of 0 or 1

• to each node of indegree 1 a label ¬

• to each node of indegree 2 a label ∧ or ∨

The problem CVP is, given a circuit, decide if the target node t

evaluates to 1.

4

NP-complete Problems

SAT

Input: A Boolean formula φ

Decide: if there is an assignment of truth values to the

variables of φ that makes φ true.

Hamiltonicity

Input: A graph G = (V,E)

Decide: if there is a cycle in G that visits every vertex

exactly once.



5

co-NP-complete Problems

VAL

Input: A Boolean formula φ

Decide: if every assignment of truth values to the variables

of φ makes φ true.

Non-3-colourability

Input: A graph G = (V,E)

Decide: if there is no function χ : V → {1, 2, 3} such that

the two endpoints of every edge are differently coloured.

6

PSPACE-complete Problems

Geography is very much like Game but now players are not allowed

to visit a vertex that has been previously visitied.

HEX is a game played by two players on a graph G = (V,E) with a

source and target s, t ∈ V .

The two players take turns selecting vertices from V—neither

player can choose a vertex that has been previously selected.

Player 1 wins if, at any point, the vertices she has selected include

a path from s to t. Player 2 wins if all vertices have been selected

and no such path is formed.

The problem is to decide which player has a winning strategy.

7

Descriptive Complexity

Descriptive Complexity provides an alternative perspective on

Computational Complexity.

Computational Complexity

• Measure use of resources (space, time, etc.) on a machine

model of computation;

• Complexity of a language—i.e. a set of strings.

Descriptive Complexity

• Complexity of a class of structures—e.g. a collection of graphs.

• Measure the complexity of describing the collection in a formal

logic, using resources such as variables, quantifiers,

higher-order operators, etc.

There is a fascinating interplay between the views.

8

Signature and Structure

In general a signature (or vocabulary) σ is a finite sequence of

relation, function and constant symbols:

σ = (R1, . . . , Rm, f1, . . . , fn, c1, . . . , cp)

where, associated with each relation and function symbol is an

arity.



9

Structure

A structure A over the signature σ is a tuple:

A = (A,RA

1
, . . . , RA

m, f
A

1
, . . . , fA

n , c
A

1
, . . . , cA

n),

where,

• A is a non-empty set, the universe of the strucure A,

• each RA

i is a relation over A of the appropriate arity.

• each fA

i is a function over A of the appropriate arity.

• each cA

i is an element of A.

10

First-order Logic

Formulas of first-order logic are formed from the signature σ and

an infinite collection X of variables as follows.

terms – c, x, f(t1, . . . , ta)

Formulas are defined by induction:

• atomic formulas – R(t1, . . . , ta), t1 = t2

• Boolean operations – φ ∧ ψ, φ ∨ ψ, ¬φ

• first-order quantifiers – ∃xφ, ∀xφ

11

Queries

A formula φ with free variables among x1, . . . , xn defines a map Q

from structures to relations:

Q(A) = {a | A |= φ[a]}.

Any such map Q which associates to every structure A a (n-ary)

relation on A, and is isomorphism invariant, is called a (n-ary)

query.

Q is isomorphism invariant if, whenever f : A→ B is an

isomorphism between A and B, it is also an isomorphism between

(A,Q(A)) and (B,Q(B)).

If n = 0, we can regard the query as a map from structures to

{0, 1}—a Boolean query.

12

Graphs

For example, take the signature (E), where E is a binary relation

symbol.

Finite structures (V,E) of this signature are directed graphs.

Moreover, the class of such finite structures satisfying the sentence

∀x¬Exx ∧ ∀x∀y(Exy → Eyx)

can be identified with the class of (loop-free, undirected) graphs.



13

Complexity

For a first-order sentence φ, we ask what is the computational

complexity of the problem:

Input: a structure A

Decide: if A |= φ

In other words, how complex can the collection of finite models of φ

be?

In order to talk of the complexity of a class of finite structures, we

need to fix some way of representing finite structures as strings.

14

Representing Structures as Strings

We use an alphabet Σ = {0, 1,#,−}.

For a structure A = (A,R1, . . . , Rm, f1, . . . , fl), fix a linear order <

on A = {a1, . . . , an}.

Ri (of arity k) is encoded by a string [Ri]< of 0s and 1s of length

nk.

fi is encoded by a string [fi]< of 0s, 1s and −s of length nk logn.

[A]< = 1 · · · 1
︸ ︷︷ ︸

n

#[R1]<# · · ·#[Rm]<#[f1]<# · · ·#[fl]<

The exact string obtained depends on the choice of order.

15

Näıve Algorithm

The straightforward algorithm proceeds recursively on the

structure of φ:

• Atomic formulas by direct lookup.

• Boolean connectives are easy.

• If φ ≡ ∃xψ then for each a ∈ A check whether

(A, c 7→ a) |= ψ[c/x],

where c is a new constant symbol.

This runs n time O(lnm) and O(m logn) space, where m is the

nesting depth of quantifiers in φ.

Mod(φ) = {A | A |= φ}

is in logarithmic space and polynomial time.

16

Reading List for this Handout

1. Papadimitriou. Chapters 8

2. Libkin Chapter 2.

3. Grädel et al. Sections 2.1–2.4 (Kolaitis).


