Topics in Logic and Complexity
Handout 3

Anuj Dawar

MPhil Advanced Computer Science, Lent 2010

P-complete Problems

Game

Input: A directed graph G = (V, E) with a partition

V = V1 UV, of the vertices and two distinguished vertices
s,teV.

Decide: whether Player 1 can force a token from s to t in
the game where when the token is on v € Vi, Player 1
moves it along an edge leaving v and when it is on v € Vb,

Player 2 moves it along an edge leaving v.

Circuit Value Problem

A Circuit is a directed acyclic graph G = (V, E) where each node
has in-degree 0,1 or 2 and there is exactly one vertex ¢ with no

outgoing edges, along with a labelling which assigns:
e to each node of indegree 0 a value of 0 or 1
e to each node of indegree 1 a label —
e to each node of indegree 2 a label A or V

The problem CVP is, given a circuit, decide if the target node ¢
evaluates to 1.

NP-complete Problems

SAT

Input: A Boolean formula ¢

Decide: if there is an assignment of truth values to the

variables of ¢ that makes ¢ true.

Hamaltonicity

Input: A graph G = (V, E)
Decide: if there is a cycle in G that visits every vertex
exactly once.

co-NP-complete Problems

VAL

Input: A Boolean formula ¢

Decide: if every assignment of truth values to the variables
of ¢ makes ¢ true.

Non-3-colourability

Input: A graph G = (V, E)
Decide: if there is no function x : V' — {1,2, 3} such that
the two endpoints of every edge are differently coloured.

PSPACE-complete Problems

Geography is very much like Game but now players are not allowed

to visit a vertex that has been previously visitied.

HEX is a game played by two players on a graph G = (V, E) with a

source and target s,t € V.

The two players take turns selecting vertices from V-—neither
player can choose a vertex that has been previously selected.
Player 1 wins if, at any point, the vertices she has selected include
a path from s to ¢t. Player 2 wins if all vertices have been selected

and no such path is formed.

The problem is to decide which player has a winning strategy.

Descriptive Complexity

Descriptive Complexity provides an alternative perspective on
Computational Complexity.

Computational Complexity

e Measure use of resources (space, time, etc.) on a machine
model of computation;

e Complexity of a language—i.e. a set of strings.
Descriptive Complexity
e Complexity of a class of structures—e.g. a collection of graphs.

e Measure the complexity of describing the collection in a formal
logic, using resources such as variables, quantifiers,
higher-order operators, etc.

There is a fascinating interplay between the views.

Signature and Structure

In general a signature (or vocabulary) o is a finite sequence of

relation, function and constant symbols:

J:(Rh"'7R’rn7f1a'"7f’rLacla"'acp)

where, associated with each relation and function symbol is an
arity.

9 10
Structure First-order Logic
A structure A over the signature o is a tuple: Formulas of first-order logic are formed from the signature o and
A A e A A A an infinite collection X of variables as follows.
A= (AR}, ...,Ro 1, ., [l e,
terms — ¢, x, f(t1,...,tq)
where,
e A is a non-empty set, the universe of the strucure A, Formulas are defined by induction:
e cach R? is a relation over A of the appropriate arity. e atomic formulas — R(ty, ... ta), t1 =t
e cach f# is a function over A of the appropriate arity. e Boolean operations — ¢ N, ¢V 1, =@
A .
e each ¢j is an element of A. e first-order quantifiers — 3x¢, Vxo
11 12
Queries Graphs
A formula ¢ with free variables among x1, ..., z, defines a map @

from structures to relations:

Q(A) ={a| Ak ¢a]}.

Any such map @ which associates to every structure A a (n-ary)
relation on A, and is isomorphism invariant, is called a (n-ary)
query.

Q is isomorphism invariant if, whenever f : A — B is an
isomorphism between A and B, it is also an isomorphism between

(4, Q(A)) and (B, Q(B)).

If n = 0, we can regard the query as a map from structures to
{0, 1}—a Boolean query.

For example, take the signature (E), where E is a binary relation
symbol.

Finite structures (V, F) of this signature are directed graphs.

Moreover, the class of such finite structures satisfying the sentence
Ve-Exzx ANVaVy(Exy — Eyz)

can be identified with the class of (loop-free, undirected) graphs.

13 14
Complexity Representing Structures as Strings
For a first-order sentence ¢, we ask what is the computational We use an alphabet ¥ = {0,1, #, —}.
complezity of the problem: For a structure A = (A, Ry,..., Ry, f1,..., f1), fix a linear order <
Input: a structure A on A={ay,...,a,}.
Decide: if A |= ¢ R; (of arity k) is encoded by a string [R;]< of 0Os and 1s of length
k
n”.
In other words, how complex can the collection of finite models of ¢
be? fi is encoded by a string [fi]< of 0s, 1s and —s of length n* log n.
In order to talk of the complexity of a class of finite structures, we [Alc = L LF[Ri]<# - #[Rin] < #[1] <# - #[fi)<
need to fix some way of representing finite structures as strings. n
The exact string obtained depends on the choice of order.
15 16

Naive Algorithm

The straightforward algorithm proceeds recursively on the
structure of ¢:

e Atomic formulas by direct lookup.
e Boolean connectives are easy.
o If ¢ = Jx 1) then for each a € A check whether
(A, c—a) |= Yle/a],
where ¢ is a new constant symbol.

This runs n time O(In™) and O(mlogn) space, where m is the
nesting depth of quantifiers in ¢.

Mod(¢) = {A [A= ¢}

is in logarithmic space and polynomial time.

Reading List for this Handout

1. Papadimitriou. Chapters 8
2. Libkin Chapter 2.

3. Grédel et al. Sections 2.1-2.4 (Kolaitis).

