
1

Topics in Logic and Complexity

Handout 2

Anuj Dawar

MPhil Advanced Computer Science, Lent 2010

2

Polynomial Time Computation

P =
∞⋃

k=1

TIME(nk)

The class of languages decidable in polynomial time.

The complexity class P plays an important role in complexity

theory.

• It is robust, as explained.

• It serves as our formal definition of what is feasibly computable

3

Nondeterministic Polynomial Time

NP =
∞⋃

k=1

NTIME(nk)

That is, NP is the class of languages accepted by a

nondeterministic machine running in polynomial time.

Since a deterministic machine is just a nondeterministic machine in

which the transition relation is functional, P ⊆ NP.

4

Succinct Certificates

The complexity class NP can be characterised as the collection of

languages of the form:

L = {x | ∃yR(x, y)}

Where R is a relation on strings satisfying two key conditions

1. R is decidable in polynomial time.

2. R is polynomially balanced. That is, there is a polynomial p

such that if R(x, y) and the length of x is n, then the length of

y is no more than p(n).

5

Equivalence of Definitions

If L = {x | ∃y R(x, y)} we can define a nondeterministic machine

M that accepts L.

The machine first uses nondeterministic branching to guess a value

for y, and then checks whether R(x, y) holds.

In the other direction, suppose we are given a nondeterministic

machine M which runs in time p(n).

Suppose that for each (q, σ) ∈ K × Σ (i.e. each state, symbol pair)

there are at most k elements in δ(q, σ).

6

Equivalence of Definitions

For y a string over the alphabet {1, . . . , k}, we define the relation

R(x, y) by:

• |y| ≤ p(|x|); and

• the computation of M on input x which, at step i takes the

“y[i]th transition” is an accepting computation.

Then, L(M) = {x | ∃y R(x, y)}

7

Space Complexity Classes

L = SPACE(log n)

The class of languages decidable in logarithmic space.

NL = NSPACE(log n)

The class of languages decidable by a nondeterministic machine in

logarithmic space.

PSPACE =
⋃

∞

k=1 SPACE(nk)

The class of languages decidable in polynomial space.

NPSPACE =
⋃

∞

k=1 NSPACE(nk)

8

Inclusions between Classes

We have the following inclusions:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ NPSPACE ⊆ EXP

where EXP =
⋃

∞

k=1 TIME(2n
k

)

Of these, the following are direct from the definitions:

L ⊆ NL

P ⊆ NP

PSPACE ⊆ NPSPACE

9

NP ⊆ PSPACE

To simulate a nondeterministic machine M running in time t(n) by

a deterministic one, it suffices to carry out a depth-first search of

the computation tree.

We keep a counter to cut off branches that exceed t(n) steps.

The space required is:

• a counter to count up to t(n); and

• a stack of configurations, each of size at most O(t(n)).

The depth of the stack is at most t(n).

Thus, if t is a polynomial, the total space required is polynomial.

10

NL ⊆ P

Given a nondeterministic machine M that works with work space

bounded by s(n) and an input x of length n, there is some constant

c such that

the total number of possible configurations of M within

space bounds s(n) is bounded by n · cs(n).

Define the configuration graph of M, x to be the graph whose nodes

are the possible configurations, and there is an edge from i to j if,

and only if, i →M j.

11

Reachability in the Configuration Graph

M accepts x if, and only if, some accepting configuration is

reachable from the starting configuration in the configuration graph

of M, x.

Using the O(n2) algorithm for Reachability, we get that M can be

simulated by a deterministic machine operating in time

c′(ncs(n))2 ∼ c′c2(log n+s(n)) ∼ d(log n+s(n))

for some constant d.

When s(n) = O(log n), this is polynomial and so NL ⊆ P.

When s(n) is polynomial this is exponential in n and so

NPSPACE ⊆ EXP.

12

Nondeterministic Space Classes

If Reachability were solvable by a deterministic machine with

logarithmic space, then

L = NL.

In fact, Reachability is solvable by a deterministic machine with

space O((log n)2).

This implies

NSPACE(s(n)) ⊆ SPACE((s(n)2)).

In particular PSPACE = NPSPACE.

13

Reachability in O((log n)2)

O((log n)2) space Reachability algorithm:

Path(a, b, i)

if i = 1 and (a, b) is not an edge reject

else if (a, b) is an edge or a = b accept

else, for each node x, check:

1. is there a path a − x of length i/2; and

2. is there a path x − b of length i/2?

if such an x is found, then accept, else reject.

The maximum depth of recursion is log n, and the number of bits

of information kept at each stage is 3 log n.

14

Inclusions between Classes

This leaves us with the following:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP

Hierarchy Theorems proved by diagonalization can show that:

L 6= PSPACE NL 6= NPSPACE P 6= EXP

For other inclusions above, it remains an open question whether

they are strict.

15

Complement Classes

If we interchange accepting and rejecting states in a deterministic

machine that accepts the language L, we get one that accepts L.

If a language L ∈ P, then also L ∈ P.

Complexity classes defined in terms of nondeterministic machine

models are not necessarily closed under complementation of

languages.

Define,

co-NP – the languages whose complements are in NP.

co-NL – the languages whose complements are in NL.

16

Relationships

P ⊆ NP ∩ co-NP and any of the situations is consistent with our

present state of knowledge:

• P = NP = co-NP

• P = NP ∩ co-NP 6= NP 6= co-NP

• P 6= NP ∩ co-NP = NP = co-NP

• P 6= NP ∩ co-NP 6= NP 6= co-NP

It follows from the fact that PSPACE = NPSPACE that NPSPACE is

closed under complementation.

Also, Immerman and Szelepcsényi showed that NL = co-NL.

17

Reductions

Given two languages L1 ⊆ Σ⋆
1, and L2 ⊆ Σ⋆

2,

A reduction of L1 to L2 is a computable function

f : Σ⋆

1 → Σ⋆

2

such that for every string x ∈ Σ⋆
1,

f(x) ∈ L2 if, and only if, x ∈ L1

18

Resource Bounded Reductions

If f is computable by a polynomial time algorithm, we say that L1

is polynomial time reducible to L2.

L1 ≤P L2

If f is also computable in SPACE(log n), we write

L1 ≤L L2

19

Reductions 2

If L1 ≤ L2 we understand that L1 is no more difficult to solve than

L2.

That is to say, for any of the complexity classes C we consider,

If L1 ≤ L2 and L2 ∈ C, then L1 ∈ C

We can get an algorithm to decide L1 by first computing f , and

then using the C-algorithm for L2.

Provided that C is closed under such reductions.

20

Completeness

The usefulness of reductions is that they allow us to establish the

relative complexity of problems, even when we cannot prove

absolute lower bounds.

Cook (1972) first showed that there are problems in NP that are

maximally difficult.

For any complexity class C, a language L is said to be C-hard if for

every language A ∈ C, A ≤ L.

A language L is C-complete if it is in C and it is C-hard.

21

Complete Problems

Examples of complete problems for various complexity classes.

NL

Reachability

P

Game, Circuit Value Problem

NP Satisfiability of Boolean Formulas, Graph 3-Colourability,

Hamiltonian Cycle

co-NP

Validity of Boolean Formulas, Non 3-colourability

PSPACE

Geography, The game of HEX

22

Reading List for this Handout

1. Papadimitriou. Chapters 7, 8 and 16.

2. Immerman Chapter 2.

