

5	6
Equivalence of Definitions	Equivalence of Definitions
If $L = \{x \mid \exists y \ R(x, y)\}$ we can define a nondeterministic machine M that accepts L .	For y a string over the alphabet $\{1, \ldots, k\}$, we define the relation $R(x, y)$ by:
The machine first uses nondeterministic branching to $guess$ a value	• $ y \le p(x)$; and
for y , and then checks whether $R(x, y)$ holds.	• the computation of M on input x which, at step i takes the " $y[i]$ th transition" is an accepting computation.
In the other direction, suppose we are given a nondeterministic machine M which runs in time $p(n)$.	
Suppose that for each $(q, \sigma) \in K \times \Sigma$ (i.e. each state, symbol pair) there are at most k elements in $\delta(q, \sigma)$.	Then, $L(M) = \{x \mid \exists y \ R(x, y)\}$
7	8
Space Complexity Classes	Inclusions between Classes
$L = SPACE(\log n)$	We have the following inclusions:
The class of languages decidable in logarithmic space.	
$NI - NSPACE(\log n)$	$L\subseteqNL\subseteqP\subseteqNP\subseteqPSPACE\subseteqNPSPACE\subseteqEXP$
$NL = NSPACE(\log n)$ The class of languages decidable by a nondeterministic machine in	$L\subseteqNL\subseteqP\subseteqNP\subseteqPSPACE\subseteqNPSPACE\subseteqEXP$
The class of languages decidable by a nondeterministic machine in logarithmic space.	$L \subseteq NL \subseteq P \subseteq NP \subseteq PSPACE \subseteq NPSPACE \subseteq EXP$ where $EXP = \bigcup_{k=1}^{\infty} TIME(2^{n^k})$
The class of languages decidable by a nondeterministic machine in	
The class of languages decidable by a nondeterministic machine in logarithmic space. $PSPACE = \bigcup_{k=1}^{\infty} SPACE(n^k)$	where $EXP = \bigcup_{k=1}^{\infty} TIME(2^{n^k})$ Of these, the following are direct from the definitions:
The class of languages decidable by a nondeterministic machine in logarithmic space. $PSPACE = \bigcup_{k=1}^{\infty} SPACE(n^k)$ The class of languages decidable in polynomial space.	where $EXP = \bigcup_{k=1}^{\infty} TIME(2^{n^k})$
The class of languages decidable by a nondeterministic machine in logarithmic space. $PSPACE = \bigcup_{k=1}^{\infty} SPACE(n^k)$ The class of languages decidable in polynomial space.	where $EXP = \bigcup_{k=1}^{\infty} TIME(2^{n^k})$ Of these, the following are direct from the definitions: $L \subseteq NL$

9

$NP \subseteq PSPACE$

To simulate a nondeterministic machine M running in time t(n) by a deterministic one, it suffices to carry out a *depth-first* search of the computation tree.

We keep a counter to cut off branches that exceed t(n) steps.

The space required is:

- a *counter* to count up to t(n); and
- a *stack* of configurations, each of size at most O(t(n)).

The depth of the stack is at most t(n).

Thus, if t is a polynomial, the total space required is polynomial.

$\mathsf{NL} \subseteq \mathsf{P}$

Given a nondeterministic machine M that works with *work space* bounded by s(n) and an input x of length n, there is some constant c such that

the total number of possible configurations of M within space bounds s(n) is bounded by $n \cdot c^{s(n)}$.

Define the *configuration graph* of M, x to be the graph whose nodes are the possible configurations, and there is an edge from i to j if, and only if, $i \to_M j$.

11

Reachability in the Configuration Graph

M accepts x if, and only if, some accepting configuration is reachable from the starting configuration in the configuration graph of M, x.

Using the $O(n^2)$ algorithm for Reachability, we get that M can be simulated by a deterministic machine operating in time

 $c'(nc^{s(n)})^2 \sim c'c^{2(\log n + s(n))} \sim d^{(\log n + s(n))}$

for some constant d.

When $s(n) = O(\log n)$, this is polynomial and so $\mathsf{NL} \subseteq \mathsf{P}$. When s(n) is polynomial this is exponential in n and so $\mathsf{NPSPACE} \subset \mathsf{EXP}$.

Nondeterministic Space Classes

If *Reachability* were solvable by a *deterministic* machine with logarithmic space, then

L = NL.

In fact, *Reachability* is solvable by a deterministic machine with space $O((\log n)^2)$.

This implies

 $\mathsf{NSPACE}(s(n)) \subseteq \mathsf{SPACE}((s(n)^2)).$

In particular PSPACE = NPSPACE.

12

13

15

Reachability in $O((\log n)^2)$

 $O((\log n)^2)$ space Reachability algorithm:

$\operatorname{Path}(a, b, i)$

if i = 1 and (a, b) is not an edge reject else if (a, b) is an edge or a = b accept else, for each node x, check:

- 1. is there a path a x of length i/2; and
- 2. is there a path x b of length i/2?

if such an x is found, then accept, else reject.

The maximum depth of recursion is $\log n$, and the number of bits of information kept at each stage is $3 \log n$.

Complement Classes

If we interchange accepting and rejecting states in a deterministic machine that accepts the language L, we get one that accepts \overline{L} .

If a language $L \in \mathsf{P}$, then also $\overline{L} \in \mathsf{P}$.

Complexity classes defined in terms of nondeterministic machine models are not necessarily closed under complementation of languages.

Define,

co-NP – the languages whose complements are in NP.

co-NL – the languages whose complements are in NL.

Inclusions between Classes

This leaves us with the following:

 $\mathsf{L}\subseteq\mathsf{N}\mathsf{L}\subseteq\mathsf{P}\subseteq\mathsf{N}\mathsf{P}\subseteq\mathsf{P}\mathsf{S}\mathsf{P}\mathsf{A}\mathsf{C}\mathsf{E}\subseteq\mathsf{E}\mathsf{X}\mathsf{P}$

Hierarchy Theorems proved by *diagonalization* can show that:

 $L \neq PSPACE$ $NL \neq NPSPACE$ $P \neq EXP$

For other inclusions above, it remains an open question whether they are strict.

Relationships

 $P \subseteq NP \cap co-NP$ and any of the situations is consistent with our present state of knowledge:

- P = NP = co-NP
- $P = NP \cap co-NP \neq NP \neq co-NP$
- $P \neq NP \cap co-NP = NP = co-NP$
- $P \neq NP \cap co-NP \neq NP \neq co-NP$

It follows from the fact that PSPACE = NPSPACE that NPSPACE is closed under complementation.

Also, Immerman and Szelepcsényi showed that NL = co-NL.

16

Reductions

17

19

Given two languages $L_1 \subseteq \Sigma_1^{\star}$, and $L_2 \subseteq \Sigma_2^{\star}$,

A *reduction* of L_1 to L_2 is a *computable* function

 $f: \Sigma_1^\star \to \Sigma_2^\star$

such that for every string $x \in \Sigma_1^{\star}$,

 $f(x) \in L_2$ if, and only if, $x \in L_1$

Reductions 2

If $L_1 \leq L_2$ we understand that L_1 is no more difficult to solve than L_2 .

That is to say, for any of the complexity classes \mathcal{C} we consider,

If $L_1 \leq L_2$ and $L_2 \in \mathcal{C}$, then $L_1 \in \mathcal{C}$

We can get an algorithm to decide L_1 by first computing f, and then using the C-algorithm for L_2 .

Provided that C is *closed* under such reductions.

20

Resource Bounded Reductions

If f is computable by a polynomial time algorithm, we say that L_1 is *polynomial time reducible* to L_2 .

 $L_1 \leq_P L_2$

If f is also computable in $SPACE(\log n)$, we write

 $L_1 \leq_L L_2$

Completeness

The usefulness of reductions is that they allow us to establish the *relative* complexity of problems, even when we cannot prove absolute lower bounds.

Cook (1972) first showed that there are problems in NP that are maximally difficult.

For any complexity class C, a language L is said to be C-hard if for every language $A \in C$, $A \leq L$.

A language L is C-complete if it is in C and it is C-hard.

21	22
Complete Problems	Reading List for this Handout
Examples of complete problems for various complexity classes.	1. Papadimitriou. Chapters 7, 8 and 16.
NL Reachability	2. Immerman Chapter 2.
P Game, Circuit Value Problem	
NP Satisfiability of Boolean Formulas, Graph 3-Colourability, Hamiltonian Cycle	
co-NP Validity of Boolean Formulas, Non 3-colourability	
PSPACE Geography, The game of HEX	