
1

Topics in Logic and Complexity

Handout 1

Anuj Dawar

MPhil Advanced Computer Science, Lent 2010

2

What is This Course About?

Complexity Theory is the study of what makes some algorithmic

problems inherently difficult to solve.

Difficult in the sense that there is no efficient algorithm.

Mathematical Logic is the study of formal mathematical reasoning.

It gives a mathematical account of meta-mathematical

notions such as structure, language and proof.

In this course we will see how logic can be used to study complexity

theory. In particular, we will look at how complexity relates to

definability.

3

Computational Complexity

Complexity is usually defined in terms of running time or space

asymptotically required by an algorithm. E.g.

• Merge Sort runs in time O(n log n).

• Any sorting algorithm that can sort an arbitrary list of n

numbers requires time Ω(n log n).

Complexity theory is concerned with the hardness of problems

rather than specific algorithms.

We will mostly be concerned with broad classification of

complexity: logarithmic vs. polynomial vs. exponential.

4

Graph Properties

For simplicity, we often focus on decision problems.

As an example, consider the following three decision problems on

graphs.

1. Given a graph G = (V, E) does it contain a triangle?

2. Given a directed graph G = (V, E) and two of its vertices

s, t ∈ V , does G contain a path from s to t?

3. Given a graph G = (V, E) is it 3-colourable? That is,

is there a function χ : V → {1, 2, 3} so that whenever

(u, v) ∈ E, χ(u) 6= χ(v).



5

Graph Properties

1. Checking if G contains a triangle can be solved in polynomial

time and logarithmic space.

2. Checking if G contains a path from s to t can be done in

polynomial time.

Can it be done in logarithmic space?

Unlikely. It is NL-complete.

3. Checking if G is 3-colourable can be done in in exponential time

and polynomial space.

Can it be done in polynomial time?

Unlikely. It is NP-complete.

6

Logical Definability

In what kind of formal language can these decision problems be

specified or defined?

The graph G = (V, E) contains a triangle.

∃x ∈ V ∃y ∈ V ∃z ∈ V (x 6= y∧y 6= z∧x 6= z∧E(x, y)∧E(x, z)∧E(y, z))

The other two properties are provably not definable with only

first-order quantification over vertices.

7

Second-Order Quantifiers

3-Colourability and s-t-path can be defined with quantification over

sets of vertices.

∃R ⊆ V ∃B ⊆ V ∃G ⊆ V

∀x(Rx ∨ Bx ∨ Gx)∧

∀x(¬(Rx ∧ Bx) ∧ ¬(Bx ∧ Gx) ∧ ¬(Rx ∧ Gx))∧

∀x∀y(Exy → (¬(Rx ∧ Ry)∧

¬(Bx ∧ By)∧

¬(Gx ∧ Gy)))

∀S ⊆ V (s ∈ S ∧ ∀x∀y((x ∈ S ∧ E(x, y)) → y ∈ S) → t ∈ S)

8

Course Outline

This course is concerned with the questions of (1) how definability

relates to computational complexity and (2) how to analyse

definability.

1. Complexity Theory—a review of the major complexity classes

and their interrelationships (3L).

2. First-order and second-order logic—their expressive power and

computational complexity (3L).

3. Lower bounds on expressive power—the use of games and

locality (3L).

4. Fixed-point logics and descriptive complexity (3L)

5. Finite-variable logics; Random structures; (4L)



9

Useful Information

Some useful books:

• C.H. Papadimitriou. Computational Complexity.

Addison-Wesley. 1994.

• H.-D. Ebbinghaus and J. Flum. Finite Model Theory (2nd ed.)

1999.

• N. Immerman. Descriptive Complexity. Springer. 1999.

• L. Libkin. Elements of Finite Model Theory. Springer. 2004.

• E. Grädel et al. Finite Model Theory and its Applications.

Springer. 2007.

Course website: http://www.cl.cam.ac.uk/teaching/0910/L15/

10

Decision Problems and Algorithms

Formally, a decision problem is a set of strings L ⊆ Σ∗ over a finite

alphabet Σ.

The problem is decidable if there is an algorithm which given any

input x ∈ Σ∗ will determine whether x ∈ L or not.

The notion of an algorithm is formally defined by a machine model:

A Turing Machine; Random Access Machine or even a Java

program.

The choice of machine model doesn’t affect what is or is not

decidable.

Similarly, we say a function f : Σ∗ → ∆∗ is computable if there is

an algorithm which takes input x ∈ Σ∗ and gives output f(x).

11

Turing Machines

For our purposes, a Turing Machine consists of:

• K — a finite set of states;

• Σ — a finite set of symbols, including ⊔.

• s ∈ K — an initial state;

• δ : (K × Σ) → (K ∪ {a, r}) × Σ × {L, R, S}

A transition function that specifies, for each state and symbol a

next state (or accept acc or reject rej), a symbol to overwrite

the current symbol, and a direction for the tape head to move

(L – left, R – right, or S - stationary)

12

Configurations

A complete description of the configuration of a machine can be

given if we know what state it is in, what are the contents of its

tape, and what is the position of its head. This can be summed up

in a simple triple:

Definition

A configuration is a triple (q, w, u), where q ∈ K and w, u ∈ Σ⋆

The intuition is that (q, w, u) represents a machine in state q with

the string wu on its tape, and the head pointing at the last symbol

in w.

The configuration of a machine completely determines the future

behaviour of the machine.



13

Computations

Given a machine M = (K, Σ, s, δ) we say that a configuration

(q, w, u) yields in one step (q′, w′, u′), written

(q, w, u) →M (q′, w′, u′)

if

• w = va ;

• δ(q, a) = (q′, b, D); and

• either D = L and w′ = v u′ = bu

or D = S and w′ = vb and u′ = u

or D = R and w′ = vbc and u′ = x, where u = cx. If u is

empty, then w′ = vb⊔ and u′ is empty.

14

Computations

The relation →⋆

M
is the reflexive and transitive closure of →M .

A sequence of configurations c1, . . . , cn, where for each i,

ci →M ci+1, is called a computation of M .

The language L(M) ⊆ Σ⋆ accepted by the machine M is the set of

strings

{x | (s, ⊲, x) →⋆

M
(acc, w, u) for some w and u}

A machine M is said to halt on input x if for some w and u, either

(s, ⊲, x) →⋆

M
(acc, w, u) or (s, ⊲, x) →⋆

M
(rej, w, u)

15

Complexity

For any function f : IN → IN, we say that a language L is in

TIME(f(n)) if there is a machine M = (K, Σ, s, δ), such that:

• L = L(M); and

• The running time of M is O(f(n)).

Similarly, we define SPACE(f(n)) to be the languages accepted by a

machine which uses O(f(n)) tape cells on inputs of length n.

In defining space complexity, we assume a machine M , which has a

read-only input tape, and a separate work tape. We only count

cells on the work tape towards the complexity.

16

Nondeterminism

If, in the definition of a Turing machine, we relax the condition on

δ being a function and instead allow an arbitrary relation, we

obtain a nondeterministic Turing machine.

δ ⊆ (K × Σ) × (K ∪ {a, r} × Σ × {R, L, S}).

The yields relation →M is also no longer functional.

We still define the language accepted by M by:

L(M) = {x | (s, ⊲, x) →⋆

M
(acc, w, u) for some w and u}

though, for some x, there may be computations leading to

accepting as well as rejecting states.



17

Nondeterministic Complexity

For any function f : IN → IN, we say that a language L is in

NTIME(f(n)) if there is a nondeterministic machine

M = (K, Σ, s, δ), such that:

• L = L(M); and

• The running time of M is O(f(n)).

The last statement means that for each x ∈ L(M), there is a

computation of M that accepts x and whose length is bounded by

O(f(|x|)).

Similarly, we define NSPACE(f(n)) to be the languages accepted by

a nondeterminstic machine which uses O(f(n)) tape cells on inputs

of length n.

As before, in reckoning space complexity, we only count work space.

18

Computation Trees

With a nondeterministic machine, each configuration gives rise to a

tree of successive configurations.

(s, ⊲, x)

(q0, u0, w0)(q1, u1, w1)(q2, u2, w2)

(q00, u00, w00)

(q11, u11, w11)
.
.
.

.

.

.

(rej, u2, w2)

(acc, . . .)

(q10, u10, w10)

19

Complexity Classes

A complexity class is a collection of languages determined by three

things:

• A model of computation (such as a deterministic Turing

machine, or a nondeterministic TM, or a parallel Random

Access Machine).

• A resource (such as time, space or number of processors).

• A set of bounds. This is a set of functions that are used to

bound the amount of resource we can use.

20

Polynomial Bounds

By making the bounds broad enough, we can make our definitions

fairly independent of the model of computation.

The collection of languages recognised in polynomial time is

the same whether we consider Turing machines, register

machines, or any other deterministic model of computation.

The collection of languages recognised in linear time, on

the other hand, is different on a one-tape and a two-tape

Turing machine.

We can say that being recognisable in polynomial time is a

property of the language, while being recognisable in linear time is

sensitive to the model of computation.



21

Reading List for this Handout

1. Papadimitriou. Chapters 1 and 2.

2. Grädel et al. Chapter 1 (Weinstein).


