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1. Page 11 of Handout 7 contains an illustration of a construction to show
that acyclicity of graphs is not definable in first-order logic. Write out a
proof of this result.

Prove that acyclicity is not definable in Mon.Σ1
1. Is it definable in Mon.Π1

1?

2. Prove (using Hanf’s theorem or otherwise) that 3-colourbility of graphs
is not definable in first-order logic.

Graph 3-colourability (and, indeed, 2-colourability) are definable in Mon.Σ1
1.

Can you show they are not definable in Mon.Π1
1? Are they definable in

universal second-order logic?

3. Prove the lemma on page 14 of Handout 8. That is, show that any formula
that is positive in the relation symbol R defines a monotone operator.

4. Prove that the formula of LFP given on page 8 of Handout 9 does, indeed,
define the greatest fixed point of the operator defined by φ.

5. In Handout 9, we say how definitions by simultaneous induction can be
replaced by a single application of the lfp operator. In this exercise, you
are asked to show the same for nested applications of the lfp operator.

Suppose φ(x,y, S, T ) is a formula in which the relational variables S (of
arity s) and T (of arity t) only appear positively, and x and y are tuples
of variables of length s and t respectively. Show that (for any t-tuple of
terms t) the predicate expression

[lfpS,x([lfpT,yφ](t))]

is equivalent to an expression with just one application of lfp.

6. On page 18 of Handout 11, the correspondence between k-pebble games
and the equivalence ≡k is stated. This exercise asks you to prove the
easy direction of that equivalence. That is, show that if Duplicator has a
winning strategy in the k-pebble game for q moves starting from position
(A,a) and (B,b), then (A,a) ≡k

q (B,b).

7. We say that a graph G = (V,E) contains a perfect matching if there is a
set M ⊆ E of edges such that for every vertex v ∈ V there is exactly one
edge in M that includes v. Prove that the property of having a perfect
matching is not definable in LFP (or PFP).

8. Restricted to ordered structures, every query definable in second-order
logic (SO) is also definable in PFP. We know this because PFP can ex-
press all queries on ordered structures that are in PSPACE while queries

1



expressible in SO are in the polynomial hierarchy. But, we can prove the
inclusion SO ⊆ PFP on ordered structures directly, without bringing in
complexity theory. So, suppose φ(R) is a formula of first-order logic, with
a second-order variable R. Prove that there is a formula of PFP that is
equivalent (on ordered structures) to the formula ∃Rφ. Use this to prove
that any formula of SO can be translated to an equivalent (on ordered
structures) formula of PFP.

9. Pages 8–9 of Handout 12 describes a method for defining a pre-order that
orders the k-variable types. Write down the formula ψ of IFP that defines
this order.

10. We showed (page 11 of Handout 10 and page 11 of Handout 11) that on
the class of structures in the empty vocabulary, LFP and PFP are no more
expressive than first-order logic. The aim of this exercise is to generalise
that result.

(a) Let E be the class of pure sets, i.e. structures in an empty vocabulary.
Prove that for every k, there is a p such that for all A ∈ E , Ik(A) has
at most p elements.

(b) Prove that if C is any class of structures such that for every k, there
is a p such that for all A ∈ C, Ik(A) has at most p elements, then any
formula of PFP is equivalent, on C, to a formula of first-order logic.

(c) Let F be the class of equivalence relations. That is, it consists of
all structures A = (A,R) where R is a binary relation on A that is
reflexive, symmetric and transitive. Prove that for every k, there is
a p such that for all A ∈ F , Ik(A) has at most p elements.

11. Prove the characterisation on page 18 of Handout 12. That is, show that
a query Q is definable in LFP if, and only if, there is a k such that Q is
invariant under ≡k and the query Q′ which takes input Ik(A) and returns
{[a] | a ∈ Q(A)} is computable in polynomial time.

12. A second-order Horn sentence (SO-Horn sentence, for short) is one of the
form

Q1R1 . . . QpRp(∀x
∧
i

Ci)

where, each Qi is either ∃ or ∀, each Ri is a relational variable and each
Ci is a Horn clause, which is defined for our purposes as a disjunction
of atomic and negated atomic formulae such that it contains at most one
positive occurrence of any relational variable (i.e. any of R1, . . . , Rp. A
sentence is said to be ESO-Horn if it is as above, and all Qi are ∃.

(a) Show that any ESO-Horn sentence in a relational signature defines a
class of structures decidable in polynomial time.

(b) Show that, if K is an isomorphism-closed class of structures in a rela-
tional signature including <, such that each structure inK interprets
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< as a linear order and

{[A]< | A ∈ K}

is decidable in polynomial time, then there is a ESO-Horn sentence
that defines K.

(c) Show that any SO-Horn sentence is equivalent to a ESO-Horn sen-
tence.
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