Hom functors

An arrow $f:A\to B$ in (locally small) ${\bf C}$ induces a function:

$$f \circ - : \text{hom}(X, A) \to \text{hom}(X, B)$$

for any object X.

- This gives a covariant hom-functor $\operatorname{Hom}(X,-): \mathbf{C} \to \mathbf{Sets}$:

$$\operatorname{Hom}(X, A) = \operatorname{hom}_{\mathbf{C}}(X, A) \quad \operatorname{Hom}(X, f) = f \circ -$$

Such functors are called representable.

- Also contravariant hom-functors $\operatorname{Hom}(-,X)=\mathbf{C}^{\operatorname{op}}\to\mathbf{Sets}$: $\operatorname{Hom}(A,X)=\operatorname{hom}_{\mathbf{C}}(A,X)$ $\operatorname{Hom}(f,X)=-\circ f$
- Finally, the mixed-variant hom-functor:

$$\operatorname{Hom}(-,-) = \mathbf{C}^{\operatorname{op}} \times \mathbf{C} \to \mathbf{Sets}$$

1

Embeddings

Defn: A functor $F: \mathbf{C} \to \mathbf{D}$ is an embedding if it is:

- faithful,
- injective on objects.

Examples:

- if ${f C}$ is a subcategory of ${f D}$, then the inclusion is an embedding.
- the slice category ${f C}/A$ embeds into the arrow category ${f C}^{
 ightharpoonup}$.
- Sets embeds into Pos

Defn: A full embedding is an embedding that is full.

Preservation by functors

Defn. $F: \mathbf{C} \to \mathbf{D}$ preserves monos (epis, isos etc.) if for any $f: A \to B$ in \mathbf{C} , if f is mono (epi, iso etc.) then so is F(f).

Fact. All functors preserve isos, sections and retractions. (But not all preserve monos or epis!)

Defn. $F: \mathbf{C} \to \mathbf{D}$ preserves limits if it maps limiting cones to limiting cones.

(Similarly, F can preserve products, finite limits, colimits, etc.)

Theorem: Representable functors preserve limits.

Exercise: Show that the forgetful functor $U:\mathbf{Pos} \to \mathbf{Sets}$ is representable.

Functor composition

For $F: {f C} o {f D}$ and $G: {f D} o {f E}$, the composition:

$$G \circ F : \mathbf{C} \to \mathbf{E}$$

is defined by:
$$(G \circ F)(A) = G(F(A))$$
 $(G \circ F)(f) = G(F(f))$

Categories form a category!

Cat - the category of all small categories and functors. (also CAT - the "superlarge category" of all categories)

Facts. The empty category is initial in Cat, the trivial one-object category is final, product of categories is categorical product in Cat.

Exercise: What are isomorphisms in Cat?