
UNIVERSITY OF CAMBRIDGE COMPUTER LABORATORY

First-Year Computer Science

ML Exercise Sheets

Here are the exercises for the ML Practical Classes. These Classes complement the
Foundations of Computer Science Lectures given by L.C. Paulson.

Exercises 1, 2, 3, 4 and 5 are compulsory for all candidates and each of them is worth
one tick. Exercise 6 is compulsory for CST candidates but not for candidates who borrow
Paper 1. Exercises 2*, 3*, 4* (yes, it’s there!) and 5* are optional. Satisfactory solutions
to starred exercises will be recorded on the Tick List but will not count as extra ticks. Each
exercise is assessed on the basis of printouts of sessions and programs which are submitted
to a demonstrator who will comment on them.

In addition to learning about the ML language and its implementation, it will be
necessary to learn how to use the current generation of workstations. All these skills
and full details of the assessment procedure will be explained at the first two Thursday-
afternoon classes.

Another point which will be explained is the style to which the submitted printouts
must conform. Thus, each printout should carry the name of the person who submitted
it, the time it took to complete the exercise, any functions which an exercise requires to
be written, and examples of such functions being tested.

No exercise requires elaborate written answers. Questions like ‘What is the purpose
of . . .?’ require a one- or two-line ML comment. Before awarding a tick, the demonstrator
will go over the printout of the session with you, to see whether you can explain ML’s
responses, and understand what is going on.

On the basis of past experience, roughly the same number of people will find the
exercises too easy as find them too hard. Likewise, roughly the same number of people are
likely to find that the exercises take a very short time as find they take too much time.
The average time spent on each weekly exercise is approximately three hours but times
wildly different from this average may be expected!

Other (non-assessable) problems will be presented in the Lectures and these should be
attempted, especially by those who find the exercises in this document too easy. Those who
find they have time on their hands may also usefully study details of the local computing
facilities. The Computing Service have a good deal of documentation available and also
run classes, both introductory and more advanced, on many topics.

L.C. Paulson — Course Lecturer

F.H. King — Part IA Coordinator

October 2009

Exercise 1 — Introduction to ML

Full details of what constitutes a solution to this exercise will be explained at the
first Thursday-afternoon class. There will be an associated handout which gives an exact
specification of what is required. The purpose of the exercise is to learn how to log in to
a workstation, invoke the ML application, print out a trivial example, and exit again.

Remember to type each line exactly as given and press the ENTER key at the end of
the line.

After logging in, enter Windows and then enter ML.
ML will print various messages, then signal that it is ready by printing a line containing

just a hyphen (called the prompt character):

- type ML text here . . .

Now type each of the following lines, one at a time. Be very careful not to omit any
quotation marks! Use small letters as shown — ML considers b to be different from B. Also,
(") is a single character, not a repeated ('). For aesthetic reasons and as explained in the
associated handout, it is a requirement that the ENTER key should also be pressed before

each line to ensure that the typed lines and responses appear in vertically-separated pairs.

val a = "very ";

a ^ "red";

val b = a^a;

b ^ "rich";

val c = b^b;

c ^ "ridiculous";

ML should respond to each line with, e.g., > val a = "very " : string. It should
print a prompt character on the next line to say it is ready for a new command. If you
make a typing error, ML will probably print an error message and then a prompt character.
However, certain errors will cause ML to expect another line of input. ML signals this by
printing an equals sign instead of a hyphen:

- val a = "very ; A quotation mark was omitted . . .
= . . . so ML continues to read the string

If you get stuck like this, it may be possible to recover by typing the missing character.

Exercise 2 — Recursion vs Iteration

Before working any questions, try using ML as a desk calculator. The integer operators
include

+ - * div mod

The real operators include

+ - * /

Relations (for both integers and reals) include

= <> < > <= >=

Note also the function real which converts an integer to a real number. The function
floor converts a real number x to the largest integer i such that i 6 x.

1. Write an ML function facr(n) which determines n! by recursion.

2. Write an ML function faci(n) which determines n! by iteration (in the sense described
in Lecture 2).

Exercise 2* — Recursion vs Iteration Continued

Note that although the following Week 2 problems will not count towards a ‘tick’ it is a

very good idea to attempt them before Week 3.

1. Write two versions, the first recursive and the second iterative, of an ML function
sumt(n) to sum the n terms

1 +
1

2
+

1

4
+ · · · +

1

2n−1

where n may be 1, 2, 3, etc. When n = 2 the sum is 1

20 + 1

21 , namely 1.5.

Observe that each term can be cheaply computed from its predecessor. A fancy
treatment of this is to consider the slightly more general function

f(x, n) = x +
x

2
+

x

4
+ · · · +

x

2n−1

This function satisfies the recurrence (for n = 0, 1, 2, . . .)

f(x, n + 1) = x + f(x/2, n)

2. Write an ML function eapprox(n) to sum the n terms in the approximation

e ≈ 1 +
1

1!
+

1

2!
+ · · · +

1

(n − 1)!

Again, each term can be cheaply computed. Is your function recursive or iterative?

3. Write an ML function exp(z,n) to compute exponentials:

ez
≈ 1 +

z

1!
+

z2

2!
+ · · · +

zn−1

(n − 1)!

Exercise 3 — Structured Data: Pairs and Lists

Before working the questions, you are advised to try some simple experiments with
structured data. Enter ML and define the following selector functions:

fun fst (x,y) = x;

fun snd (x,y) = y;

To experiment with them, type declarations like

val p = ("red",3);

val q = (p, "blue");

val r = (q, p);

val s = ((23,"grey"), r);

and then type things like

fst (fst q); fst (fst p); fst(snd s);

Structures can contain functions. Try some examples like these:

val u = (fst,snd);

fst(u)(1,2);

Note: Triples are not pairs! Compare ML’s response to each of the following:

fst((1,2),3); fst(1,2,3);

1. Recall that the function

fun hd (x::_) = x;

returns the first element of a list. Getting at the last element is harder. Write a recursive
function last to return the last element of a list. Comment, using O-notation, on the time
and space complexity of last(xs), comparing it with hd(rev xs).

2. Now do the same thing for tl: write a recursive function butLast to remove the
last element of a list. For example, butLast[1,2,3,4] should return [1,2,3]. Note that
butLast(xs) must be equivalent to rev(tl(rev xs)) so butLast[1] should return [].
Compare the time and space complexity of butLast with rev(tl(rev xs)).

3. Write a function nth such that nth(x,n) returns the nth element of list x, counting
the head of the list as element zero.

Exercise 3* — List of Lists

Write a function choose(k,xs) that returns all k-element lists that can be drawn
from xs, ignoring the order of list elements. If n is the length of xs, then (provided k 6 n)
the result should be an

(
n

k

)
-element list. Here are some sample inputs and outputs

- choose (3, [1,2]);

> [] : (int list) list

- choose (3, [1,2,3]);

> [[1,2,3]] : (int list) list

- choose (3, [1,2,3,4,5]);

> [[1,2,3],[1,2,4],[1,2,5],[1,3,4],[1,3,5],[1,4,5],[2,3,4],

[2,3,5],[2,4,5],[3,4,5]] : (int list) list

Exercise 4 — Route Finding

This problem is concerned with finding routes through a system of one-way streets.
Suppose we have an ML list of pairs

[(x1, y1), . . . , (xn, yn)]

where each (xi, yi) means that there is a route from xi to yi. (This need not mean there is
a route from yi to xi!) The exercises on this sheet lead up to a programme for producing
the list of all pairs (x, y) such that there is a route from x to y involving one or more steps
from the input list. (So do not include (x, x) unless there is a non-trivial route from x
back to itself.)

1. Write a function startpoints(pairs,z) that produces the list of all x such that
(x, z) is in the list pairs.

2. Write a function endpoints(z,pairs) that produces the list of all y such that (z, y)
is in the list pairs.

3. Write a function allpairs(xs,ys) that produces the list of all (x, y) for x in the list
xs and y in the list ys.

4. Call a list of pairs complete if whenever (x, z) and (z, y) are in the list, then (x, y) is
also in the list. Write a function addnew((x,y),pairs), where the list pairs is expected
to be complete. The result should be a new list containing (x, y), the elements of pairs,
and just enough additional pairs to make the result list complete.
Hint: use startpoints, endpoints, and allpairs.

5. Write a function routes(pairs) (where pairs is not necessarily complete) that
produces a list of all (x, y) such that there is a route from x to y via the pairs. The
result of the function should be a complete list of pairs. Hint: use addnew.

Test it on things like [(1, 2), (2, 1)]: it must not loop! Test it on bigger examples. How
efficient is your programme?

Mathematicians may like to know that this problem is really concerned with the
transitive closure of a relation. A list of pairs represents the finite relation R that holds
just between those pairs (xi, yi) in the list. The transitive closure of R is another relation
R+, and R+(x, y) holds just when there is a chain from x to y along R:

x = x0, R(x0, x1), . . . , R(xn−1, xn), R(xn, y), n > 0

Thus R(x, y) implies R+(x, y) and (R◦R+)(x, y) implies R+(x, y), but we do not necessarily
have R+(x, x).

Note: it is not necessary to estimate the cost of the routes function to secure a ‘tick’
but a reasoned derivation of the cost expressed in big-O notation will count as Exercise 4*.

Exercise 5a — Functions as Arguments and Results

The Tick 5 exercise is in two parts, 5a and 5b, and associated with these parts are
two optional starred problems, 5a* and 5b*. It is necessary to complete both 5a and 5b to
secure Tick 5 and it is necessary to complete both 5a* and 5b* for a star to be recorded
against Tick 5.

1. Consider the family of functions f0, f1, f2, . . ., where f0(n) = n, f1(n) = 1 + n,
f2(n) = 2 + n, . . . In general, for integers m and n,

fm(n) = m + n

Write an ML function plus such that plus(m) returns fm (as an ML function). Either
use let fun to declare a local function, or use fn. In fact, ML offers a special syntax for
defining functions like plus:

fun plus m n : int = m+n;

These are sometimes called curried functions.

Evaluate the definitions

val succ = plus 1;

fun add(m,n) : int = m+n;

Test all these functions. What is the relationship between plus and add?

2. If f is a function and n > 0 is an integer then the function fn is defined as follows:

fn(x) = f(f(· · · f(
︸ ︷︷ ︸

n times

x) · · ·))

In particular, f0(x) = x.
Given that s is the function such that s(x) = x + 1 (i.e. it simply adds 1 to its

argument), we can express the sum of two non-negative integers m and n as m+n = sn(m)
(i.e. 1 is added to m but n times over).

Express the product m × n and power mn similarly. Hint: consider what has to be
done to what n times over to obtain m× n and what has to be done to what n times over
to obtain mn. Note that the functions which are equivalent to s(x) may have to depend
upon m.

3. Write an ML function nfold such that nfold(f,n) returns the function fn. Use nfold
and the results of the previous exercise to write functions to compute sums, products, and
powers.

Exercise 5a* — Generic Operations

This exercise concerns a universal type we can define in ML to cope with generic
data. This type comprises numbers, booleans, and strings. It also permits pairing, which
represents all forms of structured data. Finally, the constructor Named lets us easily attach
a ‘type label’ (a string) to any piece of data.

1. Enter the following declaration and experiment with building various values of type
univ.

datatype univ = Int of int

| Real of real

| Bool of bool

| String of string

| Pair of univ*univ

| Named of string*univ;

2. Type in the function uofl:

fun uofl [] = String"nil"

| uofl (u::us) = Pair(u, uofl us);

To find out what it does, execute things like

uofl [Int 3, Real 1.4, String "what"];

Write and test the function lofu, an inverse of uofl in the sense that lofu(uofl(l))
should always equal l. Hint : fill in the ??? in the following:

fun lofu (String"nil") = ???

| lofu (Pair(u, v)) = ???

3. What does this function do? Could you imagine writing a similar function that worked
on ordinary ML values?

fun ints (Int n) = [n]

| ints (Pair(u, v)) = ints u @ ints v

| ints (Named(s,u)) = ints u

| ints u = [];

Write a function similar to ints to find the sum of all Real numbers contained in a univ.

Exercise 5b — Integer Streams

1. Here is a definition of integer streams. Calling makeints(n) makes the stream of
all integers starting with n; note its use of fn()=> to create a function. Calling tail(s)

applies this function to the dummy value ().

datatype stream = Item of int * (unit->stream);

fun cons (x,xs) = Item(x, xs);

fun head (Item(i,xf)) = i;

fun tail (Item(i,xf)) = xf();

fun makeints n = cons(n, fn()=> makeints(n+1));

The ML identifier it always holds the value of the last expression typed at top level
(that is, not contained in a val declaration). Test makeints by typing

makeints 4;

tail it;

tail it;

By typing tail it; again and again, you can see successive items in the stream.

2. Calling the function maps f xs, where xs is the stream x1, x2, x3, . . ., returns the
stream f(x1), f(x2), f(x3), . . .:

fun maps f xs = cons(f (head xs), fn()=> maps f (tail xs));

Note the very typical use of fn()=>, head, and tail.

3. Write a function nth(s,n) to return the nth element of sequence s. For example,
nth(makeints 1,100) should return 100. Use maps and makeints to make the stream of
positive squares (1, 4, 9, . . .) and find its 49th element.

4. Write the function filters f xs to return the stream of all xi in xs such that f(xi)
is true. Use it to make the stream of positive integers that are not divisible by 2 or 3.

Exercise 5b* — Integer Streams Continued

1. Write a function map2 f xs ys, similar to maps, to take streams x1, x2, x3, . . . and
y1, y2, y3, . . . and return the stream f(x1)(y1), f(x2)(y2), f(x3)(y3), . . .

2. The Fibonacci Numbers are defined as follows: F1 = 1, F2 = 1, and Fn+2 = Fn+Fn+1.
So new elements of the sequence are defined in terms of two previous elements. If ML lists
were streams then we could define the steam of Fibonacci Numbers (in pseudo-ML) as
follows:

val fibs = 1 :: 1 :: map2 plus fibs (tail fibs);

Here plus m n = m+n, and two copies of fibs recursively appear in the definition of
this stream. But this code is not legal; we have to use cons. We also have to force fibs

into a function, since in ML only functions can be recursive. So the following is legal:

fun fibs() =

cons(1, fn()=>

cons(1, fn()=> map2 plus (fibs()) (tail(fibs()))));

Use this code to compute the fifteenth Fibonacci Number.

3. Write a function merge(xs,ys) that takes two increasing streams, x0 < x1 < x2 < . . .
and y0 < y1 < y2 < . . ., and returns the increasing stream containing all the x’s and y’s.
Since the input streams are increasing, you need to compare their heads, take the smaller
one, and recursively merge whatever remains. Make certain there are no repeated elements
in the output stream.

4. Construct in ML the increasing stream containing all numbers of the form 2i
× 3j for

integers i, j > 0. Hint : The first element is 1, and each new element can be obtained by
multiplying some previous element by 2 or 3. The code is similar to fibs, and calls merge.

5. Construct the increasing stream of all numbers of the form 2i
× 3j

× 5k for integers i,
j, k > 0. What is the sixtieth element of this stream?

Exercise 6 — Vacation Task

The concluding Tick 6 exercise is the subject of a separate handout which will be
issued later in the term. As noted on the front page, this exercise is compulsory for
CST candidates but not for candidates who borrow Paper 1, though such candidates are
welcome to try it.

