
DS 2010 naming

David Evans
de239@cl.cam.ac.uk

1

mailto:de239@cl.cam.ac.uk
mailto:de239@cl.cam.ac.uk

1

Naming in Distributed Systems

Unique identifiers UIDs e.g. 128 bits
 - are never reused
 - refer to the same thing at all times, or to nothing at all
UIDs should be location-independent! Can the named object be moved?

Pure and impure names (as Needham called them)
 pure names
 - the name itself yields no information, and commits the system to nothing
 - it can only be used to compare with other similar names e.g. in table look-up

 impure names
 - the name yields information,
 - commits the system to maintaining the context in which it can be resolved

Naming

2

Examples of impure names

 foo@cl.cam.ac.uk name of a person, registered in a DNS domain
 foo@lcs.mit.edu name of a person, registered in another DNS domain
 another or the same person?

puccini.cl.cam.ac.uk name of a machine, registered in a DNS domain

(disc-pack-ID, object-ID) Bad idea from history of naming files and directories.
 Seemed efficient until the objects had to be moved

(host-ID, object-ID) OK, it’s impure but how are pure names generated in a DS?
 We must not have centralised name allocation.
 (host-ID, object-ID) has been used (badly) in middleware,
 and has made the objects unmoveable.
 It could be used to generate pure names,
 if we do not make use of the separate fields. Typical example:

32-bit host-ID 96 bit object-ID

Naming

mailto:jmb25@cl.cam.ac.uk
mailto:jmb25@cl.cam.ac.uk
mailto:jeanb@lcs.mit.edu
mailto:jeanb@lcs.mit.edu

3

Unique names

Both pure and impure names can be unique.
Uniqueness has to have a context
 for impure names:
 - hierarchical names: scope of uniqueness is level in hierarchy
 (uniqueness is within the names in the directory in which the name is recorded)
 for pure names
 - a bit pattern: flat, system-wide uniqueness (what else is there?)

Problems with pure names:
 - where to look them up to find out information about them?
 - how do you know that an object does not exist? How can a global search be avoided?
 - how to engineer uniqueness reliably in a distributed system?
 centralised creation of names? As discussed above, (host-ID, object-ID)?

Problems with impure names:
 - how to restructure the namespace
 e.g. when objects move about such as when companies restructure

Naming

4

Examples of (pure/impure) names - unique identification

UK national insurance - allocated on employment
US Social Security - allocated on employment
Passport
Driving licence
Services: RAC, AA, AAA(US), AAA(Aus)
Credit cards
Bank accounts
Utilities’ customer numbers: gas/electricity/water/phone
Charity members
Loyalty card members

For the above examples:
• Is the structure explicit or implicit?
• Is allocation centralised or distributed?
• What is the resolution context?

Naming

5

More examples of names - unique identification?
UK health service (NHS) ID
 but hospitals still use local patient numbers with names recorded at the time
 e.g. is J. Ken Moody the same person as John K. Moody?
 can medication information be used interchangeably?

Professional societies: BCS, ACM, IEEE
 Tale of woe from Jean Bacon: Jean Bacon is not unique and is therefore unsuitable as a database

key. Jean Bacon in Connecticut USA and I were allocated the same IEEE membership number
with merged records: Cambridge work, Connecticut home. IEEE membership would not believe
me until I found her and we emailed them together.

e.g. from the Computer Lab, Jatinder Singh is held up at immigration
because he shares the name and date of birth of another Jatinder Singh

Naming

6

Telephone company analogy – wired service
Geographically partitioned distributed naming database.
 Electronic version is current, paper directories are an official cache
 Frequency of update (some years ago):
 Cambridge area 1,000,000 entries, 5,000 updates a week

Given a name e.g. (Yudel Luke), or (Yudel Luke, 3 Acacia Drive) which directory to use?
 - don’t know where to look up pure names

Lookup doesn’t yield useable information:
Call# -> unobtainable, where # is from the official cache (paper directories)
 we detect out-of-date values, call directory enquiries, cache unofficially
Call# -> unobtainable, for a number that we know and use often, or from personal address book
 redial, report fault, check official cache, ask social network if X has moved phone

Can’t find an entry in the official cache (exact matching required)
 e.g. Phillips - check spelling – Philips
 e.g. try acronyms S.S. for Social Services

BT offer a web service www.thephonebook.com (name and address -> number)
 only offers exact matching e.g. Philips not suggested for Phillips (do you mean?)
 search engine approaches are used to augment directory lookup

Naming

http://www.thephonebook.com/
http://www.thephonebook.com/

7

Name spaces and naming domains

In general, provide clients with values of attributes of named objects
Name space
 - the collection of valid names recognised by a name service
 - a precise specification is required, giving the structure of names
 e.g. ISBN:1-234567-89-1 namespace identifier, namespace-specific string
 /a/b/c/d file system pathname, variable length, hierarchical
 puccini.cl.cam.ac.uk DNS machine name – see case study below
 128 bit system-wide OS port name for Mach

Naming domain
 a name space for which there exists a single overall administrative authority
 for assigning names within it
 this authority may delegate name assignment for nested sub-domains (see DNS below)

Naming

8

Name resolution - binding

 Name resolution or binding
 obtaining a value for an attribute of the named object that allows the object to be used

Late binding is considered good practice
Programs should contain names, not addresses

name service
file-service?

IP-address, port# (, timestamp maybe)

A machine may fail and the service move to another machine.
Your local agent may cache resolved names for subsequent use,
 and may expire values based on timestamps (TTL time-to-live)

Cached values are always used “at your own risk”.
They should not be embedded in programs.

If cached values don’t work, the lookup has to be repeated.
Lookup may be iterative for large-scale systems – see later.

Naming

9

Names, attributes and values stored in a name service

Directories are likely to be replicated for scalability, fault-tolerance, efficiency, availability

Directory names often resolve to a list of hosts plus their addresses to avoid an extra lookup per
host

Attribute-based (inverse) lookup may be offered – a YELLOW PAGES style of service for object
discovery e.g. X.500, LDAP

object type attribute list

user login-name, mailbox-hosts(s)
computer architecture, OS, network-address, owner
service network-address, version#, protocol
group list of names of members
alias canonical name
directory? list of hosts holding the directory
 (may be held in a separate structure rather
 than as a type of name, as here)

example:

Naming

10

Names, attributes and values - examples

 object type -> list of attribute names

name service holds:

 object-type, object-name -> list of attribute values

You can acquire a standard directory service e.g. LDAP and use it to store
whatever your service/application needs

querying:

 object-type, object-name, attribute-name -> attribute value

 computer, puccini.cl.cam.ac.uk, address -> IP-address
 user, some-user-name, public-key -> PK bit pattern

checking:

 object-type, object-name, attribute-name, attribute value -> yes/no

 ACL, filename, some-user-name, write-access -> yes/no

Attribute-based (inverse) lookup:

 object-type, attribute-name, attribute value -> list of object-names

 computer, OS version#, OS version# value -> list of computers

Naming

11

Iterative name resolution

user agent (UA) starts from the root address of the name service, or tries some well-known sub-tree
root, e.g. the location of the uk directory may be used by agents in the UK

To resolve cl.cam.ac.uk there are two alternatives

look up ac’s address in uk, then look up cl’s address in ac
The UA will cache resolved names as hints for future use

any name server will take a name, resolve it, and return the resolved value

The client may be able to choose, e.g. select “recursive” in DNS

Engineering optimisations:
 use of caching at UA and at directories
 try cached values first

user user
program agent

NS1

NS2

NS3

Naming

12

Name services - used to be hot stuff!
DNS Internet Domain Name System, see below

Grapevine: Xerox PARC early 1980’s, Birrell, Levin, Needham, Schroeder CACM 25(1) 1982
 two-level naming hierarchy e.g. name@registry birrell@pa
 primarily for email, but also gave primitive authentication and access control
 (check password as attribute of user, check ACL)
 any Grapevine server would take any request from a GV user agent

Clearinghouse, Xeroc PARC, Oppen and Dalal 1983
 ISO standard based on an extension of Grapevine
 three-level hierarchy

GNS Global Name Service, DEC SRC, Lampson et al. 1986 - see below
 full hierarchical naming
 support for namespace restructuring

X.500 and LDAP, see below

Name services in Middleware
CORBA: naming and (interface) trading services, Java JNDI, Web W3C: UDDI
Allow registration of names/interfaces of externally invocable components with interface
 references and attributes such as location
May offer separate services for: name –> object-reference, object-reference –> location

Naming

13

Case Study: DNS - Internet Domain Name System

Before 1987 the whole naming database was held centrally and copied to selected servers periodically
The Internet had become too large scale and a distributed, hierarchical scheme was needed
 (Paul V. Mockapetris, 1987)

What does DNS name?
 In practice, the objects are: - computers
 - servers such as mail hosts

...but can be other crazy things

The directory structure (resolution context) is captured as: - domains

Domains are, in fact, one of the objects that DNS names.

Naming

14

DNS – Definition of names

Definition of names
 hierarchy of components (labels), highest level in hierarchy is last component, total max 255 chars
 label: max 63 chars, case insensitive, restrictions on the character set (but people are talking Unicode

and http://و�ز�ا�ر�ة�-ا�ل�أ�ت�ص�ا�ل�ا�ت�.م�ص�ر�/ works so...)
 final label of a fully qualified name can be:
 3-letter code: type of hosting organisation
 edu, gov, mil are still US-based, others, e.g. com, net, org, int, can be anywhere

 2-letter code: country of origin defined by ISO e.g. uk, fr, ie, de, ...
 other stuff e.g. eu
final 2-letter label doesn’t always imply country of location of host , but where the host was registered
 e.g. www.yahoo.co.uk has been in Germany
 e.g. ISO have defined many small “country of origin” domains such as to, cc, bv, ...

 arpa: for inverse lookup, e.g.
 170.9.232.128.in-addr.arpa
 1.0.0.0.0.0.e.f.f.f.0.0.0.0.0.0.4.1.0.1.d.1.1.0.8.4.3.0.1.0.a.2.ip6.arpa

Examples of domain names: mit.edu
 cl.cam.ac.uk
 cs.tcd.ie
 tu-darmstadt.de

Naming

http://xn----rmckbbajlc6dj7bxne2c.xn--wgbh1c/
http://xn----rmckbbajlc6dj7bxne2c.xn--wgbh1c/
http://www.yahoo.co.uk/
http://www.yahoo.co.uk/

15

DNS

Computers using DNS are grouped into zones e.g. uk, cam
Within a zone, management of nested sub-domains can be delegated
 e.g. cl is managed locally by the domain manager who adds names to a local file (though,

conceptually, this can be a database or whatever)
Each zone has a primary name server that holds the master list for the zone. Secondary name servers

hold replicas for the zone.

Queries can relate to individual hosts or zones/domains, examples:

 query response
 A computer name -> IPv4 address
 AAAA computer names -> IPv6 address
 MX mail host for domain -> list < host, preference, IP address >
 includes mail hosts for detached computers
 NS DNS servers for a domain -> list < host, authority?Y/N, IP address >

...and many more

Naming

17

DNS name servers – note the large scale
The domain database is partitioned into directories that form a distributed namespace
We need a starting point for name resolution
DNS directory addresses can be looked up for a domain
 yielding: IP address, well-known port

 cam.ac.uk
cl.cam.ac.uk
........

directory: ac.uk

cl.cam.ac.uk
........

directory: cam.ac.uk

name server: cl.cam.ac.uk
names -> attributes/values redundant link (or cached value)

for frequently used name

Directories are replicated for availability and good response (primary and secondaries per domain)
Authorised name server for domain is distinguished - weak consistency of secondaries with primary
Resolved queries are cached with a TTL (time to live)
 (by user agents and directories) – works because naming data tends to be stable
Queries and responses may be batched into composite query messages

Naming

18

DNS design assumptions and future issues

DNS and other name services were designed, in the days of desktops,
 on the assumption that objects are static, so that cached values continue to work,

update rates are low, etc.

With huge data centres and high bandwidth available, is it time to re-centralise to a few
first-class servers? See Tim Deegan’s thesis (examined by Paul Mockapetris) and:

 T Deegan, J Crowcroft and A Warfield,
 “The MAIN name system, an exercise in centralized computing”
 ACM SIGCOMM 35(5), Oct 2005.

New issues relate to mobile devices and myriad small devices including sensors

Mobile devices may attach anywhere worldwide
 device’s MAC address is a UID, IP address?
 see comms. courses for details of protocols

Naming

19

Name service design: Replication and Consistency

Directories are replicated for scalability, availability, reliability , ...

How should propagation of updates between replicas be managed?
 lookup (arguments) < - > is the most recent value known, system wide,
 guaranteed to be returned?

If system-wide (strong) consistency were guaranteed this would imply:
• delay on update
• delay on lookup

It is essential to have fast access to naming data
 – so we relax the consistency requirement

Is this justified?

Naming

20

Name services – assumptions to justify weak consistency
Design assumptions were as below, but new issues have arisen

• naming data change rarely,
• changes propagate quickly,
• inconsistencies will be rare

 YES – information on users and (some) machines
 NO – distribution lists (see analysis of how Grapevine outgrew its specification)
 NEW – mobile users, computers, and small devices e.g. Internet-enabled phones
 NEW – huge numbers of devices to be named – does the design rely on low update traffic?

• we detect obsolete naming data when it doesn’t work
 YES – users
 NO – distribution lists

• If it works it doesn’t matter that it’s out of date
 – you might have made the request a little earlier
 – recall uncertainties over time in DS

Naming

21

Consistency – vs - Availability

We have argued that availability must be chosen for name services, so use weak consistency
When only weak consistency is supported:
 lookup (arguments) - > returns either: value, version# / timestamp
 or: not known at time of last update
Examples:
Service on failed machine, restart at new IP address – update directory(s) – rare event
User changes company – coarse time grain
Companies merge – coarse time grain
Change of password – takes time to propagate – insecurity during propagation
Changes to ACLs and DLs – insecurity during propagation
Revocation of users’ credentials – may have been used for authentication/authorisation
 at session start – can the effect be made instantaneous?
Hot lists e.g. stolen credit cards – must propagate fast – push rather than pull model

Lessons:
Note design assumptions
Take care what data the name service is being used for
Does the service offer notification of change, on registration of interest, as in active databases?

Naming

22

Long-term Consistency
Requirement:
If updates stopped there would be consistency once all updates had propagated
Note that failure and restart behaviour must be specified for updates to propagate reliably

This requirement cannot be tested in a distributed system
 - no guarantee that there will be periods of quiescence (no activity)

Updates are propagated by the message transport system
 - conflicting updates might arrive out of order, from different sources
 - need an arbitration policy based on timestamps
 - but recall unreliability of source timestamps, so outcomes of an agreement protocol
 may not meet the external requirements.

Name services typically exchange whole directories periodically and compare them.
The directory is tagged with a new version# after this consistency check
 e.g. GNS declares a new “epoch”

Naming

23

Example: Grapevine – the first?

registration mail
database host

Note that small scale allows a simple design with rapid navigation
2D names name@registry
Every GV server contains the GV registry that contains, for all GV registries worldwide,
 registry-name -> list of addresses where registry is held
2 types of name within a registry
 group-name -> list of members for distribution lists, also used for ACLs
 individual-name -> attributes such as password, mail-host-list, ...

Problems – soon outgrew its specification of #servers, #clients
 huge distribution lists were not foreseen
 client mail transport protocol used for system updates – could be held up

registration mail
server server

a Grapevine GV server

Naming

24

Global Name service GNS (DEC – 1986)
 Lampson, Designing a Global Name service, Proc 5th ACM PODC, 1986

Aims: long life – allowing many changes in the organisation of the namespace
 large scale – an arbitrary number of names and domains

Names
Define 2D names of the form < directory-name, value-name >
 where value-names may be a tree such as:

 foo

mailboxes password phone/fax

host1 ... hostN

The GNS directory structure is hierarchical
Every directory has a Directory Identifier (DI), a UID the novel design aspect of GNS
A full name is any name starting with a DI
 - doesn’t require a root directory
 - doesn’t rely on the availability of some root directory

Naming

25

GNS namespace reconfiguration
If the directory hierarchy is reconfigured, a directory may still be found via its DI
Names starting with that DI do not change if the reconfiguration is above that DI

top

Compaq DEC IBM

MA SRC

Support is needed by the directory service to locate a directory from its DI
 a DI is a pure name – where do we look it up?
Directories usually map directory pathnames to IP addresses
In addition, top level GNS directories store DIs with directory names, e.g.

ALM YTH

top

 Compaq IBM

MA SRC

DEC ALM YTH

old names still work below the DEC directory

Top 999

Compaq 552 DEC 311

Top 999

Compaq 552

DEC 311

Naming

26

GNS namespace reconfiguration – directory updates

Names starting from DEC: 311/SRC, birrell do not change. DEC is always 311
Names starting above DEC: 999/DEC/SRC, birrell -> 999/Compaq/DEC/SRC, birrell

Directory entries include – DIs with directory names
 – pathnames from root

552 = 999/Compaq IP
311 = 999/DEC addresses
 n = 999/DEC/SRC

Top 999

Compaq 552 DEC 311

Top 999

Compaq 552

DEC 311

552 = 999/Compaq IP
311 = 999/Compaq/DEC addresses
 n = 999/Compaq/DEC/SRC

Naming

27

X.500 Directory Service (White and yellow pages)

ISO and CCITT standard, above OSI protocol stack
More general than most name services where names must be known precisely
 and are resolved to locations
Components:
 DIT directory information tree
 DSA directory service agent X.500 is resource-consuming
 DUA directory user agent and difficult to use
 DAP directory access protocol

1993 major revision including replication, access control, schema management,
But X.500 was not accepted as a generic name service
X.509 certificates for authentication and attributes/authorisation have been successful

LDAP Lightweight Directory Access Protocol, Howes, Kille, Yeong, Robins, 1993
accepted by IETF – widely used
 - access protocol built on TCP/IP
 - heavy use of strings, instead of ASN.1 data-types
 - simplification of server and client
 - current status V3
 - LDUP duplication and update protocol being developed

Naming

28

Naming Postlude
Naming for the Internet, see DNS
Naming for companies, worldwide, motivated Grapevine, see also GNS
Standard name services, X.500, LDAP

Naming for the web – document names are based on internet naming
 scheme://host-name:port/pathname at host
 scheme = protocol: http, ftp, local file
 host-name = web server’s DNS address, default port 80
 pathname is in web server’s filing system of file containing data for web page
 e.g. http://www.cl.cam.ac.uk/research/

Also, W3C have defined standards for web services (see Middleware)
 with message content expressed in XML
 SOAP – simple object access protocol
 WSDL – web service description language
 UDDI – universal description, discovery and integration
 (directory service with web service descriptions in WSDL)

Naming

http://www.cl.cam.ac.uk/research/
http://www.cl.cam.ac.uk/research/

