
DS 2010 middleware

David Evans
de239@cl.cam.ac.uk



What is middleware?

distributed 
applications

middleware

OS comms. 
interface sockets, IP, ...

remote calls, method 
invocations, messages, ...

I layer between OS and distributed applications
I hides complexity and heterogeneity of distributed system
I bridges gap between low-level OS comms and programming

language abstractions
I provides common programming abstraction and infrastructure

for distributed applications



Middleware properties

I middleware provides support for (some of)
I naming, location, service discovery, replication
I protocol handling, communication faults, QoS
I synchronisation, concurrency, transactions, storage
I access control, authentication

I middleware dimensions

request/reply vs. asynchronous messaging
language-specific vs. language-independent
proprietary vs. standards-based
small-scale vs. large-scale
tightly-coupled vs. loosely-coupled components



Approaches to middleware

I Remote Procedure Call (RPC)
I historic interest, but can still be very useful

I Object-Oriented Middleware (OOM)
I Java RMI
I CORBA
I reflective middleware

I Message-Oriented Middleware (MOM)
I Java Message Service
I IBM MQSeries
I Web Services

I Event-Based Middleware
I Cambridge Event Architecture
I Hermes



RPC: overview

I makes remote function calls look local
I client/server model
I request/reply paradigm usually implemented with message

passing in RPC service
I marshalling of function parameters and return value

caller

call(...)

RPC service

1. marshal args
2. generate ID
3. start timer

8. unmarshal
9. acknowledge 

RPC service

4. unmarshal
5. record ID

6. marshal
7. set timer

remote function

fun(...)

message



Properties of RPC

I language-level pattern of function call
I easy to understand for programmer

I synchronous request/reply interaction
I natural from a programming language point of view
I matches replies to requests
I built in synchronisation of requests and replies

I distribution transparency (in the no-failure case)
I hides the complexity of a distributed system

I various reliability guarantees
I deals with some distributed systems aspects of failure



Failure modes of RPC

I invocation semantics supported by RPC in the light of
I network and/or server congestion
I client, network, and/or server failure

I at most once (RPC system tries once)
I error return—programmer may retry

I exactly once (RPC system retries a few times)
I hard error return—some failure most likely

(note that “exactly once” cannot be guaranteed)



Disadvantages of RPC

I synchronous request/reply interaction
I tight coupling between client and server
I may block for a long time
I leads to multi-threaded programming at client and, especially,

server
I distribution transparency

I not possible to mask all problems
I lacks notion of service

I programmer may not be interested in specific servers
I RPC paradigm is not object-oriented

I invoke functions on servers as opposed to methods on objects



Object-Oriented Middleware (OOM)

I objects can be local or remote
I object references can be local or remote
I remote objects have visible remote interfaces
I makes remote objects look local using proxy objects

OOMlocal

object A

proxy 
object B

object 
request 
broker/
object 

manager

OOM remote

skeleton 
object B

object B

object 
request 
broker/
object 

manager



Properties of OOM

I support for object-oriented programming model
I objects, methods, interfaces, encapsulation, . . .
I exceptions (also in some RPC systems)

I location transparency
I system maps object references to locations

I synchronous request/reply interaction
I same as RPC

I services
I easier to build using object concepts



Java Remote Method Invocation (RMI)

I remote methods in Java

public interface PrintService extends
Remote {

int print(Vector printJob) throws
RemoteException;

}

I RMI compiler creates proxies and skeletons
I RMI registry used for interface lookup
I everything has to be in Java, unless you like pain

(single-language system)



CORBA

I Common Object Request Broker Architecture
I open standard by the OMG
I language and platform independent

I Object Request Broker (ORB)
I General Inter-ORB Protocol (GIOP) for communication
I Interoperable Object References (IOR) contain object location
I CORBA Interface Definition Language (IDL)
I stubs (proxies) and skeletons created by IDL compiler
I dynamic remote method invocation

I Interface Repository
I querying existing remote interfaces

I Implementation Repository
I activating remote objects on demand



CORBA IDL
I definition of language-independent remote interfaces

I language mappings to C++, Java, Smalltalk, . . .
I translation by IDL compiler

I type system
I basic: long (32 bit), long long (64 bit), short, float, char, boolean,

octet, any, . . .
I constructed: struct, union, sequence, array, enum
I objects: common super type Object

I parameter passing
I in, out, inout
I basic & constructed types passed by value
I objects passed by reference

typedef sequence<string> Files;
interface PrintService : Server {

void print(in Files printJob);
};



CORBA services

I naming service
I names→ remote object references

I trading service
I attributes (properties)→ remote object references

I persistent object service
I implementation of persistent CORBA objects

I transaction service
I making object invocation a part of transactions

I event service and notification service
I asynchronous communication based on messaging (cf. MOM);

not an integrated programming model with general IDL messages



Disadvantages of OOM

I synchronous request/reply interaction only
I so CORBA oneway semantics added
I Asynchronous Method Invocation (AMI); can be yucky
I but implementations may not be loosely coupled

I distributed garbage collection
I releasing memory for unused remote objects

I OOM rather static and heavy-weight
I bad for ubiquitous systems and embedded devices



Reflective middleware

OOM with
I interfaces for reflection

I objects can inspect middleware behaviour
I interfaces for customisability

I dynamic reconfiguration depending on environment
I different protocols, QoS, . . . ; e.g., use different marshalling

strategy over unreliable wireless link



Message-Oriented Middleware (MOM)

I communication using messages
I messages stored in message queues
I optional message servers decouple client and server
I various assumptions about message content

network

local message 
queues

message server

message queues
local message 

queues

network network

client 
application

server 
application



Properties of MOM

I asynchronous interaction
I client and server are only loosely coupled
I messages are queued
I good for application integration

I support for reliable delivery service
I keep queues in persistent storage

I processing of messages by intermediate message server
I may do filtering, transforming, logging, . . .
I networks of message servers

I natural for database integration



IBM MQSeries
(probably since called WebSphere MQ Awesomeness. . . )

I one-to-one reliable message passing using queues
I persistent and non-persistent messages
I message priorities, message notification

I Queue Managers
I responsible for queues
I transfer messages from input to output queues
I keep routing tables

I Message Channels
I reliable connections between queue managers

I messaging API

MQopen open a queue
MQclose close a queue
MQput put message into opened queue
MQget get message from local queue



Java Message Service (JMS)

I API specification to access MOM implementations
I Two modes of operation specified

I point-to-point, one-to-one communication using queues
I publish/subscribe, see Event-Based Middleware

I JMS Server implements JMS API
I JMS Clients connect to JMS servers
I Java objects can be serialised to JMS messages
I a JMS interface has been provided for MQ



Disadvantages of MOM

I poor programming abstraction (but has evolved)
I rather low-level
I request/reply awkward
I can lead to multi-threaded code

I message formats unknown to middleware
I no type checking (JMS addresses this—implementation?)

I queue abstraction only gives one-to-one communication
I limits scalability (JMS pub/sub. . . ?)



Web services

use well-known web standards for distributed computing
I communication

I message content expressed in XML
I Simple Object Access Protocol (SOAP): a lightweight protocol

for sync/async communication

I service description
I Web Services Description Language (WSDL): interface

description for web services

I service discovery
I Universal Description Discovery and Integration (UDDI):

directory with web service descriptions in WSDL



Properties of web services

I language-independent and open standard
I SOAP offers OOM and MOM-style communication

I synchronous request/reply like OOM
I asynchronous messaging like MOM
I supports Internet transports (HTTP, SMTP, . . . )
I uses XML Schema for marshalling types to/from programming

language types
I WSDL says how to use a web service

I http://api.google.com/GoogleSearch.wsdl

I UDDI helps to find the right web service
I exports SOAP API for access

http://api.google.com/GoogleSearch.wsdl


Disadvantages of web services

I low-level abstraction
I leaves a lot to be implemented

I interaction patterns have to be built
I one-to-one and request-reply provided
I one-to-many?
I still service invocation, rather than notification
I nested/grouped invocations, transactions, . . .

I location transparency—depend on DNS?



What we lack so far

I general interaction patterns
I we have one-to-one and request-reply
I one-to-many? many to many?
I notification?
I dynamic joining and leaving?

I location transparency
I anonymity of communicating entities

I support for pervasive computing
I data values from sensors



Event-based middleware, aka publish/subscribe

I publishers (advertise and) publish events (messages)
I subscribers express interest in events using subscriptions
I event service notifies interested subscribers of published events
I events can have arbitrary content (typed) or name/value pairs

event service

publisher

publisher

publisher

publish

subscriber

subscriber

subscriber

subscribe &
notify



Topic-based and content-based pub/sub

I event service matches events against subscriptions
I topic-based

I publishers publish events belonging to topic or subject
I subscribers subscribe to topic
subscribe(PrintJobFinishedTopic, ...)

I (topic and) content-based
I publishers publish events belonging to topics
I subscribers provide a filter based on content of events
subscribe(type=printjobfinshed,
printer=“aspen”, ...)



Properties of publish/subscribe

I asynchronous communication
I publishers and subscribers are loosely coupled

I many-to-many interaction between pubs and subs
I scalable scheme for large-scale systems
I publishers do not need to know subscribers, and vice-versa
I dynamic join and leave of pubs, subs, (brokers—see later)

I (topic and) content-based pub/sub very expressive
I filtered information delivered only to interested parties
I efficient content-based routing through a broker network



P/S leads to Composite Event Detection (CED)

I content-based pub/sub may not be expressive enough
I potentially thousands of event types (primitive events)
I subscribers interest: event patterns (define high-level events)

PrinterOutOfPaperEvent or
PrinterOutOfTonerEvent

I Composite Event Detectors (CED)
I subscribe to primitive events and publish composite events

subscriber

subscriber

publisher

publisher

publisher

publisher

CED

CED

CED



Middleware: summary

I middleware is an important abstraction for building distributed
systems

1. Remote Procedure Call
2. Object-Oriented Middleware
3. Message-Oriented Middleware
4. Event-Based Middleware

I synchronous vs. asynchronous communication
I scalability, many-to-many communication
I language integration
I ubiquitous systems, mobile systems


