Lecture 5

PCF

PCF syntax

lypes

$$au ::= nat \mid bool \mid au
ightarrow au$$

Expressions

$$M ::= \mathbf{0} \mid \mathbf{succ}(M) \mid \mathbf{pred}(M)$$
 $\mid \mathbf{true} \mid \mathbf{false} \mid \mathbf{zero}(M)$
 $\mid x \mid \mathbf{if} \ M \ \mathbf{then} \ M \ \mathbf{else} \ M$
 $\mid \mathbf{fin} \ x : \tau . M \mid MM \mid \mathbf{fix}(M)$

where $x \in \mathbb{V}$, an infinite set of variables.

definition a PCF term is an α -equivalence class of expressions. bound variables (created by the fin expression-former): by **Technicality:** We identify expressions up to lpha-conversion of

PCF typing relation, $\Gamma \vdash M : \tau$

- I is a type environment, *i.e.* a finite partial function mapping variables to types (whose domain of definition is denoted $dom(\Gamma))$
- M is a term
- 7 is a type.

Notation:

M: au means M is closed and $\emptyset \vdash M: au$ holds.

$$\mathrm{PCF}_{\tau} \stackrel{\mathrm{def}}{=} \{ M \mid M : \tau \}.$$

PCF typing relation (sample rules)

(:fn)
$$\frac{\Gamma[x \mapsto \tau] \vdash M : \tau'}{\Gamma \vdash \mathbf{fn} \, x : \tau \cdot M : \tau \to \tau'} \quad \text{if } x \notin dom(\Gamma)$$

$$(:app) \frac{\Gamma \vdash M_1 : \tau \to \tau' \quad \Gamma \vdash M_2 : \tau}{\Gamma \vdash M_1 M_2 : \tau'}$$

$$(:fix) \frac{\Gamma \vdash M : \tau \to \tau}{\Gamma \vdash \mathbf{fix}(M) : \tau}$$

Partial recursive functions in PCF

Primitive recursion.

$$\begin{cases} h(x,0) = f(x) \\ h(x,y+1) = g(x,y,h(x,y)) \end{cases}$$

Minimisation.

$$m(x) \,=\,$$
 the least $y\geq 0$ such that $k(x,y)=0$

PCF evaluation relation

takes the form

$$M \Downarrow_{\tau} V$$

where

- \tau is a PCF type
- $M,V\in\operatorname{PCF}_ au$ are closed PCF terms of type au
- V is a value,

 $V ::= \mathbf{0} \mid \mathbf{succ}(V) \mid \mathbf{true} \mid \mathbf{false} \mid \mathbf{fn} \ x : \tau \cdot M$

PCF evaluation (sample rules)

$$(\Downarrow_{
m val}) \quad V \Downarrow_{ au} V \quad (V ext{ a value of type } au)$$
 $(\Downarrow_{
m cbn}) \quad rac{M_1 \Downarrow_{ au o au'} (ext{fin } x : au . M_1') \quad M_1' [M_2/x] \Downarrow_{ au'} V}{M_1 M_2 \Downarrow_{ au'} V}$ $(\Downarrow_{
m fix}) \quad rac{M ext{fix}(M) \Downarrow_{ au} V}{ ext{fix}(M) \Downarrow_{ au} V}$

Contextual equivalence

without affecting the observable results of executing the equivalent if any occurrences of the first phrase in a complete program can be replaced by the second phrase program. Two phrases of a programming language are contextually

Contextual equivalence of PCF terms

Given PCF terms M_1, M_2 , PCF type τ , and a type

environment Γ , the relation $|\Gamma \vdash M_1 \cong_{\mathrm{ctx}} M_2 : au$

$$\Gamma \vdash M_1 \cong_{\mathrm{ctx}} M_2 : \tau$$

is defined to hold iff

- Both the typings $\Gamma \vdash M_1 : \tau$ and $\Gamma \vdash M_2 : \tau$ hold.
- and for all values $V:\gamma$, For all PCF contexts ${\mathcal C}$ for which ${\mathcal C}[M_1]$ and ${\mathcal C}[M_2]$ are closed terms of type γ , where $\gamma = nat$ or $\gamma = bool$,

$$C[M_1] \Downarrow_{\gamma} V \Leftrightarrow C[M_2] \Downarrow_{\gamma} V.$$

PCF denotational semantics — aims

- PCF types $\tau \mapsto$ domains $\llbracket \tau \rrbracket$.
- Closed PCF terms $M: \tau \mapsto \text{elements } \llbracket M \rrbracket \in \llbracket \tau \rrbracket.$ Denotations of open terms will be continuous functions.
- Compositionality.

In particular:
$$\llbracket M \rrbracket = \llbracket M' \rrbracket \ \Rightarrow \ \llbracket \mathcal{C}[M] \rrbracket = \llbracket \mathcal{C}[M'] \rrbracket$$
.

Soundness.

For any type
$$\tau$$
, $M \downarrow_{\tau} V \Rightarrow [M] = [V]$.

Adequacy.

For
$$\tau = bool$$
 or nat , $[\![M]\!] = [\![V]\!] \in [\![\tau]\!] \implies M \Downarrow_\tau V$.

if $\llbracket M_1
rbracket$ and $\llbracket M_2
rbracket$ are equal elements of the domain $\llbracket au
rbracket$, then **Theorem.** For all types au and closed terms $M_1, M_2 \in \mathrm{PCF}_{ au}$, $M_1 \cong_{\mathrm{ctx}} M_2 : \tau.$

Proof.

$$\mathcal{C}[M_1] \downarrow_{nat} V \Rightarrow \llbracket \mathcal{C}[M_1] \rrbracket = \llbracket V \rrbracket$$
 (soundness)

$$\Rightarrow \llbracket \mathcal{C}[M_2] \rrbracket = \llbracket V \rrbracket$$

(compositionality

on
$$\llbracket M_1
rbracket = \llbracket M_2
rbracket)$$

$$\Rightarrow C[M_2] \downarrow_{nat} V$$

(adequacy)

and symmetrically.

Proof principle

To prove

$$M_1 \cong_{\mathrm{ctx}} M_2 : \tau$$

it suffices to establish

$$\llbracket M_1
rbracket = \llbracket M_2
rbracket$$
 in $\llbracket au
rbracket$

The proof principle is sound, but is it complete? That is, condition for contextual equivalence? is equality in the denotational model also a necessary