Lecture 3

Constructions on Domains

Discrete cpo's and flat domains

For any set X, the relation of equality

$$x \sqsubseteq x' \stackrel{\text{def}}{\Leftrightarrow} x = x' \qquad (x, x' \in X)$$

makes (X,\sqsubseteq) into a cpo, called the discrete cpo with underlying

Let $X_{\perp}\stackrel{\mathrm{def}}{=} X\cup\{\bot\}$, where \bot is some element not in X. Then

$$d \sqsubseteq d' \stackrel{\text{def}}{\Leftrightarrow} (d = d') \lor (d = \bot) \qquad (d, d' \in X_\bot)$$

flat domain determined by X . makes (X_\perp,\sqsubseteq) into a domain (with least element \perp), called the

Binary product of cpo's and domains

The product of two cpo's (D_1,\sqsubseteq_1) and (D_2,\sqsubseteq_2) has underlying

$$D_1 \times D_2 = \{ (d_1, d_2) \mid d_1 \in D_1 \& d_2 \in D_2 \}$$

and partial order <a> defined by

$$(d_1, d_2) \sqsubseteq (d'_1, d'_2) \stackrel{\text{def}}{\Leftrightarrow} d_1 \sqsubseteq_1 d'_1 \& d_2 \sqsubseteq_2 d'_2$$
.

Lubs of chains are calculated componentwise:

$$\bigsqcup_{n\geq 0} (d_{1,n}, d_{2,n}) = (\bigsqcup_{i\geq 0} d_{1,i}, \bigsqcup_{j\geq 0} d_{2,j}) .$$

If (D_1,\sqsubseteq_1) and (D_2,\sqsubseteq_2) are domains so is $(D_1 imes D_2,\sqsubseteq)$ and $\perp_{D_1 \times D_2} = (\perp_{D_1}, \perp_{D_2})$.

Continuous functions of two arguments

each argument separately: f:(D imes E) o F is monotone if and only if it is monotone in **Proposition.** Let D, E, F be cpo's. A function

$$\forall d, d' \in D, e \in E. d \sqsubseteq d' \Rightarrow f(d, e) \sqsubseteq f(d', e)$$

 $\forall d \in D, e, e' \in E. e \sqsubseteq e' \Rightarrow f(d, e) \sqsubseteq f(d, e').$

in each argument separately: Moreover, it is continuous if and only if it preserves lubs of chains

$$f(\bigsqcup_{m\geq 0} d_m, e) = \bigsqcup_{m\geq 0} f(d_m, e)$$

$$f(d, \bigsqcup_{n\geq 0} e_n) = \bigsqcup_{n\geq 0} f(d, e_n).$$

Function cpo's and domains

 $(D \longrightarrow E, \sqsubseteq)$ has underlying set Given cpo's (D, \sqsubseteq_D) and (E, \sqsubseteq_E) , the function cpo

$$D \to E \stackrel{\mathrm{def}}{=} \{ f \mid f : D \to E \text{ is a } \mathit{continuous} \text{ function} \}$$

and partial order: $f \sqsubseteq f' \overset{\text{def}}{\Leftrightarrow} \forall d \in D \cdot f(d) \sqsubseteq_E f'(d)$.

Lubs of chains are calculated 'argumentwise' (using lubs in E):

$$\bigsqcup_{n\geq 0} f_n = \lambda d \in D. \bigsqcup_{n\geq 0} f_n(d) .$$

 $d \in D$ If E is a domain, then so is $D \to E$ and $\perp_{D \to E}(d) = \perp_E$, all

Continuity of composition

For cpo's D, E, F, the composition function

$$\circ: \big((E \to F) \times (D \to E)\big) \longrightarrow (D \to F)$$

defined by setting, for all $f \in (D \to E)$ and $g \in (E \to F)$, $g \circ f = \lambda d \in D.g(f(d))$

is continuous.

Continuity of the fixpoint operator

Let *D* be a domain.

fixed point, $fx(f) \in D$. continuous function $f \in (D o D)$ possesses a least By Tarski's Fixed Point Theorem we know that each

Proposition. The function

$$fx:(D \rightarrow D) \rightarrow D$$

is continuous.