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Re-ordered Syllabus

Lecture 01 Basic Concepts. Relations, attributes, tuples, and
relational schema. Tables in SQL.

Lecture 02 Query languages. Relational algebra, relational calculi
(tuple and domain). Examples of SQL constructs that mix
and match these models.

Lecture 03 More on SQL. Null values (and three-valued logic). Inner
and Outer Joins. Views and integrity constraints.

Lecture 04 Redundancy is a Bad Thing. Update anomalies.
Capturing redundancy with functional and multivalued
dependencies.
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Re-ordered Syllabus

Lecture 05 Analysis of Redundancy. Implied functional
dependencies, logical closure. Reasoning about
functional dependencies.

Lecture 06 Eliminating Redundancy. Schema decomposition.
Lossless join decomposition. Dependency preservation.
3rd normal form. Boyce-Codd normal form.

Lecture 07 Schema Decomposition. Decomposition examples.
Multivalued dependencies and Fourth normal form.
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Re-ordered Syllabus

Lectures 08, 09, 10 Redundancy can be a Good Thing! Database
updates. The main issue: query response vs. update
throughput. Locking vs. update throughput. Indices are
derived data! Selective de-normalization. Materialized
views. The extreme case: “read only” database, data
warehousing, data-cubes, and OLAP vs OLTP.

Lecture 11 Entity-Relationship Modeling. High-level modeling.
Entities and relationships. Representation in relational
model. Reverse engineering as a common application.

Lecture 12 What is a DBMS? Different levels of abstraction, data
independence. Other data models (Object-Oriented
databases, Nested Relations). XML as a universal data
exchange language.
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Recommended Reading

Textbooks
UW1997 Ullman, J. and Widom, J. (1997). A first course in

database systems. Prentice Hall.
D2004 Date, C.J. (2004). An introduction to database systems.

Addison-Wesley (8th ed.).
SL2002 Silberschatz, A., Korth, H.F. and Sudarshan, S. (2002).

Database system concepts. McGraw-Hill (4th ed.).
EN2000S Elmasri, R. and Navathe, S.B. (2000). Fundamentals of

database systems. Addison-Wesley (3rd ed.).
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Reading for the fun of it ...

Research Papers (Google for them)
C1970 E.F. Codd, (1970). "A Relational Model of Data for Large

Shared Data Banks". Communications of the ACM.
F1977 Ronald Fagin (1977) Multivalued dependencies and a

new normal form for relational databases. TODS 2 (3).
L2003 L. Libkin. Expressive power of SQL. TCS, 296 (2003).

C+1996 L. Colby et al. Algorithms for deferred view maintenance.
SIGMOD 199.

G+1997 J. Gray et al. Data cube: A relational aggregation
operator generalizing group-by, cross-tab, and sub-totals
(1997) Data Mining and Knowledge Discovery.

H2001 A. Halevy. Answering queries using views: A survey.
VLDB Journal. December 2001.
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Lecture 01: Relations and Tables

Lecture Outline
Relations, attributes, tuples, and relational schema
Representation in SQL : Tables, columns, rows (records)
Important: users should be able to create and manipulate
relations (tables) without regard to implementation details!
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Edgar F. Codd

pgflastimage

The problem : in 1970 you could not
write a database application without
knowing a great deal about the the
low-level physical implementation of
the data.
Codd’s radical idea [C1970]: give
users a model of data and a
language for manipulating that data
which is completely independent of
the details of its physical
representation/implementation.
This decouples development of
Database Management Systems
(DBMSs) from the development of
database applications (at least in a
idealized world).

This is the kind of abstraction at the heart of Computer Science!
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Let’s start with mathematical relations

Suppose that S1 and S2 are sets. The Cartesian product, S1 × S2, is
the set

S1 × S2 = {(s1, s2) | s1 ∈ S1, s2 ∈ S2}

A (binary) relation over S1 × S2 is any set r with

r ⊆ S1 × S2.

In a similar way, if we have n sets,

S1, S2, . . . ,Sn,

then an n-ary relation r is a set

r ⊆ S1 × S2 × · · · × Sn = {(s1, s2, . . . , sn) | si ∈ Si}
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Did you notice the prestidigitation?

What do we really mean by this notation?

S1 × S2 × · · · × Sn

Does it represent n − 1 applications of a binary operator ×? NO!.
If we wanted to be extremely careful we might write something like
×(S1, S2, . . . ,Sn).
We perform this kind of sleight of hand very often. Here’s an example
from OCaml:

let flatten_left : ((’a * ’b) * ’c) -> (’a * ’b * ’c)
= function p ->

(fst (fst p), snd (fst p), snd p)

Perhaps if we had the option of writing *(’a, ’b, ’c) it would make
this implicit flattening more obvious.
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Mathematical vs. database relations

Suppose we have an n-tuple t ∈ S1 × S2 × · · · × Sn. Extracting the i-th
component of t , say as πi(t), feels a bit low-level.

Solution: (1) Associate a name, Ai (called an attribute name) with
each domain Si . (2) Instead of tuples, use records — sets of pairs
each associating an attribute name Ai with a value in domain Si .

A database relation R over the schema
A1 : S1 × A2 : S2 × · · · × An : Sn is a finite set

R ⊆ {{(A1, s1), (A2, s2), . . . , (An, sn)} | si ∈ Si}
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Example
A relational schema
Students(name: string, sid: string, age : integer)

A relational instance of this schema
Students = {

{(name, Fatima), (sid, fm21), (age, 20)},
{(name, Eva), (sid, ev77), (age, 18)},
{(name, James), (sid, jj25), (age, 19)}
}

A tabular presentation

name sid age
Fatima fm21 20
Eva ev77 18
James jj25 19
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Creating Tables in SQL

create table Students
(sid varchar(10),
name varchar(50),
age int);

-- insert record with attribute names
insert into Students set

name = ’Fatima’, age = 20, sid = ’fm21’;

-- or insert records with values in same order
-- as in create table
insert into Students values

(’jj25’ , ’James’ , 19),
(’ev77’ , ’Eva’ , 18);
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Listing a Table in SQL

-- list by attribute order of create table
mysql> select * from Students;
+------+--------+------+
| sid | name | age |
+------+--------+------+
| ev77 | Eva | 18 |
| fm21 | Fatima | 20 |
| jj25 | James | 19 |
+------+--------+------+
3 rows in set (0.00 sec)
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Listing a Table in SQL

-- list by specified attribute order
mysql> select name, age, sid from Students;
+--------+------+------+
| name | age | sid |
+--------+------+------+
| Eva | 18 | ev77 |
| Fatima | 20 | fm21 |
| James | 19 | jj25 |
+--------+------+------+
3 rows in set (0.00 sec)
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Keys in SQL
A key is a set of attributes that will uniquely identify any record (row) in
a table. We will get more precise in Lecture 06.

-- with this create table
create table Students

(sid varchar(10),
name varchar(50),
age int,
primary key (sid));

-- if we try to insert this (fourth) student ...
mysql> insert into Students set

name = ’Flavia’, age = 23, sid = ’fm21’;

ERROR 1062 (23000): Duplicate
entry ’fm21’ for key ’PRIMARY’
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Put all information in one big table?

Suppose we want to add information about college membership to our
Student database. We could add an additional attribute for the college.

StudentsWithCollege :
+--------+------+------+--------+
| name | age | sid | college|
+--------+------+------+--------+
| Eva | 18 | ev77 | King’s |
| Fatima | 20 | fm21 | Clare |
| James | 19 | jj25 | Clare |
+--------+------+------+--------+

T. Griffin (cl.cam.ac.uk) Databases DB 2010 18 / 145



Put logically independent data in distinct tables?
Students : +--------+------+------+-----+

| name | age | sid | cid |
+--------+------+------+-----+
| Eva | 18 | ev77 | k |
| Fatima | 20 | fm21 | cl |
| James | 19 | jj25 | cl |
+--------+------+------+-----+

Colleges : +-----+---------------+
| cid | college_name |
+-----+---------------+
| k | King’s |
| cl | Clare |
| sid | Sidney Sussex |
| q | Queens’ |

... .....

But how do we put them back together again?
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The main themes of these lectures

We will focus on databases from the perspective of an application
writer.

I We will not be looking at implementation details.
The main question is this:

I What criteria can we use to asses the quality of a database
application?

We will see that there is an inherent tradeoff between query
response time and (concurrent) update throughput.
Understanding this tradeoff will involve a careful analysis of the
data redundancy implied by a database schema design.
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Outline

1 Lecture 01 : Basic Concepts

2 Lecture 02 : Query languages

3 Lecture 03 : More on SQL

4 Lecture 04 : Redundancy is a Bad Thing

5 Lecture 05 : Analysis of Redundancy

6 Lecture 06 : Eliminating Redundancy

7 Lecture 07 : Schema Decomposition

8 Lecture 8, 9 and 10 : Redundancy is a Good Thing!
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Lecture 02: Relational Expressions

Outline
Database query languages
The Relational Algebra
The Relational Calculi (tuple and domain)
SQL
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What is a (relational) database query language?

Input : a collection of Output : a single
relation instances relation instance

R1, R2, · · · , Rk =⇒ Q(R1, R2, · · · , Rk )

How can we express Q?
In order to meet Codd’s goals we want a query language that is
high-level and independent of physical data representation.

There are many possibilities ...
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The Relational Algebra (RA)

Q ::= R base relation
| σp(Q) selection
| πX(Q) projection
| Q ×Q product
| Q −Q difference
| Q ∪Q union
| Q ∩Q intersection
| ρM(Q) renaming

p is a simple boolean predicate over attributes values.
X = {A1, A2, . . . , Ak} is a set of attributes.
M = {A1 7→ B1, A2 7→ B2, . . . , Ak 7→ Bk} is a renaming map.
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Relational Calculi

The Tuple Relational Calculus (TRC)

Q = {t | P(t)}

The Domain Relational Calculus (DRC)

Q = {(A1 = v1, A2 = v2, . . . ,Ak = vk ) | P(v1, v2, · · · , vk )}
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The SQL standard

Origins at IBM in early 1970’s.
SQL has grown and grown through many rounds of
standardization :

I ANSI: SQL-86
I ANSI and ISO : SQL-89, SQL-92, SQL:1999, SQL:2003,

SQL:2006, SQL:2008
SQL is made up of many sub-languages :

I Query Language
I Data Definition Language
I System Administration Language
I ...
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Selection

R

A B C D
20 10 0 55
11 10 0 7
4 99 17 2

77 25 4 0

=⇒

Q(R)

A B C D
20 10 0 55
77 25 4 0

RA Q = σA>12(R)

TRC Q = {t | t ∈ R ∧ t .A > 12}
DRC Q = {{(A, a), (B, b), (C, c), (D, d)} |

{(A, a), (B, b), (C, c), (D, d)} ∈ R ∧ a > 12}
SQL select * from R where R.A > 12
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Projection

R

A B C D
20 10 0 55
11 10 0 7
4 99 17 2
77 25 4 0

=⇒

Q(R)

B C
10 0
99 17
25 4

RA Q = πB,C(R)

TRC Q = {t | ∃u ∈ R ∧ t .[B,C] = u.[B,C]}
DRC Q = {{(B, b), (C, c)} |

∃{(A, a), (B, b), (C, c), (D, d)} ∈ R}
SQL select distinct B, C from R
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Why the distinct in the SQL?

The SQL query

select B, C from R

will produce a bag (multiset)!

R

A B C D
20 10 0 55
11 10 0 7
4 99 17 2

77 25 4 0

=⇒

Q(R)

B C
10 0 ? ? ?
10 0 ? ? ?
99 17
25 4

SQL is actually based on multisets, not sets. We will look into this
more in Lecture 09.
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Renaming

R

A B C D
20 10 0 55
11 10 0 7
4 99 17 2

77 25 4 0

=⇒

Q(R)

A E C F
20 10 0 55
11 10 0 7
4 99 17 2
77 25 4 0

RA Q = ρ{B 7→E , D 7→F}(R)

TRC Q = {t | ∃u ∈ R ∧ t .A = u.A ∧ t .E = u.E ∧ t .C =
u.C ∧ t .F = u.D}

DRC Q = {{(A, a), (E , b), (C, c), (F , d)} |
∃{(A, a), (B, b), (C, c), (D, d)} ∈ R}

SQL select A, B as E, C, D as F from R
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Product

R
A B
20 10
11 10
4 99

S
C D
14 99
77 100 =⇒

Q(R, S)
A B C D
20 10 14 99
20 10 77 100
11 10 14 99
11 10 77 100
4 99 14 99
4 99 77 100

Note the automatic flattening
RA Q = R × S

TRC Q = {t | ∃u ∈ R, v ∈ S, t .[A,B] = u.[A,B] ∧ t .[C,D] =
v .[C,D]}

DRC Q = {{(A, a), (B, b), (C, c), (D, d)} |
{(A, a), (B, b)} ∈ R ∧ {(C, c), (D, d)} ∈ S}

SQL select A, B, C, D from R, S
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Union

R

A B
20 10
11 10
4 99

S

A B
20 10
77 1000

=⇒

Q(R, S)

A B
20 10
11 10
4 99
77 1000

RA Q = R ∪ S
TRC Q = {t | t ∈ R ∨ t ∈ S}
DRC Q = {{(A, a), (B, b)} | {(A, a), (B, b)} ∈

R ∨ {(A, a), (B, b)} ∈ S}
SQL (select * from R) union (select * from S)
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Intersection

R

A B
20 10
11 10
4 99

S

A B
20 10
77 1000

=⇒

Q(R)

A B
20 10

RA Q = R ∩ S
TRC Q = {t | t ∈ R ∧ t ∈ S}
DRC Q = {{(A, a), (B, b)} | {(A, a), (B, b)} ∈

R ∧ {(A, a), (B, b)} ∈ S}
SQL

(select * from R) intersect (select * from S)
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Difference

R

A B
20 10
11 10
4 99

S

A B
20 10
77 1000

=⇒

Q(R)

A B
11 10
4 99

RA Q = R − S
TRC Q = {t | t ∈ R ∧ t 6∈ S}
DRC Q = {{(A, a), (B, b)} | {(A, a), (B, b)} ∈

R ∧ {(A, a), (B, b)} 6∈ S}
SQL (select * from R) except (select * from S)
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Query Safety
A query like Q = {t | t ∈ R ∧ t 6∈ S} raises some interesting questions.
Should we allow the following query?

Q = {t | t 6∈ S}

We want our relations to be finite!

Safety
A (TRC) query

Q = {t | P(t)}

is safe if it is always finite for any database instance.

Problem : query safety is not decidable!
Solution : define a restricted syntax that guarantees safety.

Safe queries can be represented in the Relational Algebra.
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Division

Given R(X, Y) and S(Y), the division of R by S, denoted R ÷ S, is the
relation over attributes X defined as (in the TRC)

R ÷ S ≡ {x | ∀s ∈ S, x ∪ s ∈ R}.

name award
Fatima writing
Fatima music
Eva music
Eva writing
Eva dance
James dance

÷

award
music
writing
dance

=
name
Eva
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Division in the Relational Algebra?

Clearly, R ÷ S ⊆ πX(R). So R ÷ S = πX(R)− C, where C represents
counter examples to the division condition. That is, in the TRC,

C = {x | ∃s ∈ S, x ∪ s 6∈ R}.

U = πX(R)× S represents all possible x ∪ s for x ∈ X(R) and
s ∈ S,
so T = U − R represents all those x ∪ s that are not in R,
so C = πX(T ) represents those records x that are counter
examples.

Division in RA

R ÷ S ≡ πX(R)− πX((πX(R)× S)− R)
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Limitations of simple relational query languages

The expressive power of RA, TRC, and DRC are essentially the
same.

I None can express the transitive closure of a relation.

We could extend RA to a more powerful languages (like Datalog).
SQL has been extended with many features beyond the Relational
Algebra.

I stored procedures
I recursive queries
I ability to embed SQL in standard procedural languages
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Lecture 03:

Outline
Joining Tables
Foreign Keys
What is NULL in SQL?

I The need for three-valued logic (3VL).

Views
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Product is special!

R

A B
20 10
4 99

=⇒

R × ρA7→C, B 7→D(R)

A B C D
20 10 20 10
20 10 4 99
4 99 20 10
4 99 4 99

× is the only operation in the Relational Algebra that created new
records (ignoring renaming),
But × usually creates too many records!
Joins are the typical way of using products in a constrained
manner.
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First, a wee bit of notation

Let X be a set of k attribute names.

We will often ignore domains (types) and say that R(X) denotes a
relational schema.
When we write R(Z, Y) we mean R(Z ∪ Y) and Z ∩ Y = φ.
u.[X] = v .[X] abbreviates u.A1 = v .A1 ∧ · · · ∧ u.Ak = v .Ak .
~X represents some (unspecified) ordering of the attribute names,
A1, A2, . . . , Ak

If ~W = B1, B2, . . . , Bk , then X 7→W abbreviates
A1 7→ B1, · · ·Ak 7→ Bk .
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Equi-join

Equi-Join
Given R(X, Y) and S(Y, Z), we define the equi-join, denoted R on S,
as a relation over attributes X,Y,Z defined as

R on S ≡ {t | ∃u ∈ R, v ∈ S, u.[Y] = v .[Y] ∧ t = u.[X] ∪ u.[Y] ∪ v .[Z]}

In the Relational Algebra:

R on S = πX,Y,Z(σY=Y′(R × ρ~Y7→~Y′(S)))
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Join example

Students

name sid age cid
Fatima fm21 20 cl
Eva ev77 18 k
James jj25 19 cl

Colleges

cid cname
k King’s
cl Clare
q Queens’
...

...

=⇒

πname,cname(Students on Colleges)

name cname
Fatima Clare

Eva King’s
James Clare

T. Griffin (cl.cam.ac.uk) Databases DB 2010 44 / 145



The same in SQL

select name, cname
from Students, Colleges
where Students.cid = Colleges.cid

+--------+--------+
| name | cname |
+--------+--------+
| Eva | King’s |
| Fatima | Clare |
| James | Clare |
+--------+--------+
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Keys, again

Relational Key
Suppose R(X) is a relational schema with Z ⊆ X. If for any records u
and v in any instance of R we have

u.[Z] = v .[Z] =⇒ u.[X] = v .[X],

then Z is a superkey for R. If no proper subset of Z is a superkey, then
Z is a key for R. We write R(Z, Y) to indicate that Z is a key for
R(Z ∪ Y).

Note that this is a semantic assertion, and that a relation can have
multiple keys.
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Foreign Keys and Referential Integrity

Foreign Key
Suppose we have R(Z, Y). Furthermore, let S(W) be a relational
schema with Z ⊆W. We say that Z represents a Foreign Key in S for R
if for any instance we have πZ(S) ⊆ πZ(R). This is a semantic
assertion.

Referential integrity
A database is said to have referential integrity when all foreign key
constraints are satisfied.
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Foreign Keys in SQL

create table Colleges
( cid varchar(3) not NULL,

cname varchar(50) not NULL,
primary key (cid) )

create table Students
( sid varchar(10) not NULL,

name varchar(50) not NULL,
age int,
cid varchar(3) not NULL,
primary key (sid),
constraint student_college

foreign key (cid)
references Colleges(cid) )
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An Example : Whatsamatta U
The entities of Whatsamatta U :

Person

name pid email
Fatima fm21 ft@happy.com
Eva ev77 eva@funny.com
James jj25 jj@sad.com
Tim tgg22 tgg@glad.com

College

cid cname
k King’s
cl Clare
q Queens’
...

...

Course

csid course_name part
a1 Algorithms I IA
a2 Algorithms II IB
db databases IB
ds Denotational Semantics II

Term

tid term_name
lt Lent

ms Michaelmas
er Easter
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An Example : Whatsamatta U
The relationships (more about this in Lecture 11) of Whatsamatta U :

InCollege

pid cid
fm21 cl
ev77 k
ev77 q
jj25 cl
tgg22 k

Attends
pid csid

ev77 a2
ev77 db
jj25 a1

OfferedIn
csid tid
a1 er
a2 ms
db lt
ds ms

Lectures

csid pid
a1 fm21
a2 fm21
a2 tgg22
db tgg22
ds fm21T. Griffin (cl.cam.ac.uk) Databases DB 2010 50 / 145



Example query

Query
All records of name and term_name associated with each lecturer
and the terms in which they are lecturing.

πname,term_name(Person on Lectures on Course on OfferedIn on Term)

name term_name
Fatima Michaelmas
Fatima Easter
Tim Lent
Tim Michaelmas
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What is NULL in SQL?

What if you don’t know Kim’s age?

mysql> select * from students;
+------+--------+------+
| sid | name | age |
+------+--------+------+
| ev77 | Eva | 18 |
| fm21 | Fatima | 20 |
| jj25 | James | 19 |
| ks87 | Kim | NULL |
+------+--------+------+
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What is NULL?

NULL is a place-holder, not a value!
NULL is not a member of any domain (type),
For records with NULL for age, an expression like age > 20
must unknown!
This means we need (at least) three-valued logic.

Let ⊥ represent We don’t know!

∧ T F ⊥
T T F ⊥
F F F F
⊥ ⊥ F ⊥

∨ T F ⊥
T T T T
F T F ⊥
⊥ T ⊥ ⊥

v ¬v
T F
F T
⊥ ⊥
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NULL can lead to unexpected results
mysql> select * from students;
+------+--------+------+
| sid | name | age |
+------+--------+------+
| ev77 | Eva | 18 |
| fm21 | Fatima | 20 |
| jj25 | James | 19 |
| ks87 | Kim | NULL |
+------+--------+------+

mysql> select * from students where age <> 19;
+------+--------+------+
| sid | name | age |
+------+--------+------+
| ev77 | Eva | 18 |
| fm21 | Fatima | 20 |
+------+--------+------+

select ... where P

The select statement only returns those records where the where
predicate evaluates to true.
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The ambiguity of NULL

Possible interpretations of NULL
There is a value, but we don’t know what it is.
No value is applicable.
The value is known, but you are not allowed to see it.
...

A great deal of semantic muddle is created by conflating all of these
interpretations into one non-value.

On the other hand, introducing distinct NULLs for each possible
interpretation leads to very complex logics ...
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Not everyone approves of NULL

C. J. Date [D2004], Chapter 19
“Before we go any further, we should make it very clear that in our
opinion (and in that of many other writers too, we hasten to add),
NULLs and 3VL are and always were a serious mistake and have no
place in the relational model.”
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age is not a good attribute ...

The age column is guaranteed to go out of date! Let’s record dates of
birth instead!

create table Students
( sid varchar(10) not NULL,

name varchar(50) not NULL,
birth_date date,
cid varchar(3) not NULL,
primary key (sid),
constraint student_college foreign key (cid)
references Colleges(cid) )
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age is not a good attribute ...

mysql> select * from Students;
+------+---------+------------+-----+
| sid | name | birth_date | cid |
+------+---------+------------+-----+
| ev77 | Eva | 1990-01-26 | k |
| fm21 | Fatima | 1988-07-20 | cl |
| jj25 | James | 1989-03-14 | cl |
+------+---------+------------+-----+
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Use a view to recover original table
(Note : the age calculation here is not correct!)
create view StudentsWithAge as
select sid, name,
(year(current_date()) - year(birth_date)) as age,
cid

from Students;

mysql> select * from StudentsWithAge;
+------+---------+------+-----+
| sid | name | age | cid |
+------+---------+------+-----+
| ev77 | Eva | 19 | k |
| fm21 | Fatima | 21 | cl |
| jj25 | James | 20 | cl |
+------+---------+------+-----+

Views are simply identifiers that represent a query. The view’s name
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Contest!! Prizes!! Fame!!

Clearly the calculation of age does not take into account the day and
month of year. Two prizes will be awarded in lecture for

SQL Contest
the cleanest correct solution using standard SQL (no
vendor-specific hacks),
the most obfuscated (yet still correct) solution
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Lecture 05: Functional Dependencies

Outline
Update anomalies
Functional Dependencies (FDs)
Normal Forms, 1NF, 2NF, 3NF, and BCNF
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Transactions from an application perspective

Main issues
Avoid update anomalies
Minimize locking to improve transaction throughput.
Maintain integrity constraints.

These issues are related.

T. Griffin (cl.cam.ac.uk) Databases DB 2010 63 / 145



Update anomalies

Big Table

sid name college course part term_name
yy88 Yoni New Hall Algorithms I IA Easter
uu99 Uri King’s Algorithms I IA Easter
bb44 Bin New Hall Databases IB Lent
bb44 Bin New Hall Algorithms II IB Michaelmas
zz70 Zip Trinity Databases IB Lent
zz70 Zip Trinity Algorithms II IB Michaelmas

How can we tell if an insert record is consistent with current
records?
Can we record data about a course before students enroll?
Will we wipe out information about a college when last student
associated with the college is deleted?
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Redundancy implies more locking ...

... at least for correct transactions!

Big Table

sid name college course part term_name
yy88 Yoni New Hall Algorithms I IA Easter
uu99 Uri King’s Algorithms I IA Easter
bb44 Bin New Hall Databases IB Lent
bb44 Bin New Hall Algorithms II IB Michaelmas
zz70 Zip Trinity Databases IB Lent
zz70 Zip Trinity Algorithms II IB Michaelmas

Change New Hall to Murray Edwards College
I Conceptually simple update
I May require locking entire table.

T. Griffin (cl.cam.ac.uk) Databases DB 2010 65 / 145



Redundancy is the root of (almost) all database evils

It may not be obvious, but redundancy is also the cause of update
anomalies.
By redundancy we do not mean that some values occur many
times in the database!

I A foreign key value may be have millions of copies!

But then, what do we mean?
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Functional Dependency

Functional Dependency (FD)
Let R(X) be a relational schema and Y ⊆ X, Z ⊆ X be two attribute
sets. We say Y functionally determines Z, written Y→ Z, if for any two
tuples u and v in an instance of R(X) we have

u.Y = v .Y→ u.Z = v .Z.

We call Y→ Z a functional dependency.

A functional dependency is a semantic assertion. It represents a rule
that should always hold in any instance of schema R(X).

T. Griffin (cl.cam.ac.uk) Databases DB 2010 67 / 145



Example FDs

Big Table

sid name college course part term_name
yy88 Yoni New Hall Algorithms I IA Easter
uu99 Uri King’s Algorithms I IA Easter
bb44 Bin New Hall Databases IB Lent
bb44 Bin New Hall Algorithms II IB Michaelmas
zz70 Zip Trinity Databases IB Lent
zz70 Zip Trinity Algorithms II IB Michaelmas

sid→ name
sid→ college
course→ part
course→ term_name
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Keys, revisited

Candidate Key
Let R(X) be a relational schema and Y ⊆ X. Y is a candidate key if

1 The FD Y→ X holds, and
2 for no proper subset Z ⊂ Y does Z→ X hold.

Prime and Non-prime attributes
An attribute A is prime for R(X) if it is a member of some candidate key
for R. Otherwise, A is non-prime.

Database redundancy roughly means the existence of non-key
functional dependencies!
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First Normal Form (1NF)

We will assume every schema is in 1NF.

1NF
A schema R(A1 : S1, A2 : S2, · · · , An : Sn) is in First Normal Form
(1NF) if the domains S1 are elementary — their values are atomic.

name
Timothy George Griffin

=⇒

first_name middle_name last_name
Timothy George Griffin
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Second Normal Form (2NF)

Second Normal Form (2CNF)
A relational schema R is in 2NF if for every functional dependency
X→ A either

A ∈ X, or
X is a superkey for R, or
A is a member of some key, or
X is not a proper subset of any key.
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3NF and BCNF

Third Normal Form (3CNF)
A relational schema R is in 3NF if for every functional dependency
X→ A either

A ∈ X, or
X is a superkey for R, or
A is a member of some key.

Boyce-Codd Normal Form (BCNF)
A relational schema R is in BCNF if for every functional dependency
X→ A either

A ∈ X, or
X is a superkey for R.
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Inclusions

Clearly BCNF ⊆ 3NF ⊆ 2NF . These are proper inclusions:

In 2NF, but not 3NF
R(A, B, C), with F = {A→ B, B → C}.

In 3NF, but not BCNF
R(A, B, C), with F = {A,B → C, C → B}.

This is in 3NF since AB and AC are keys, so there are no
non-prime attributes
But not in BCNF since C is not a key and we have C → B.
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The Plan

Given a relational schema R(X) with FDs F :
Reason about FDs

I Is F missing FDs that are logically implied by those in F?

Decompose each R(X) into smaller R1(X1), R2(X2), · · ·Rk (Xk ),
where each Ri(Xi) is in the desired Normal Form.

Are some decompositions better than others?
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Desired properties of any decomposition

Lossless-join decomposition
A decomposition of schema R(X) to S(Y ∪ Z) and T (Y ∪ (X− Z)) is a
lossless-join decomposition if for every database instances we have
R = S on T .

Dependency preserving decomposition
A decomposition of schema R(X) to S(Y ∪ Z) and T (Y ∪ (X− Z)) is
dependency preserving, if enforcing FDs on S and T individually has
the same effect as enforcing all FDs on S on T .

We will see that it is not always possible to achieve both of these goals.
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Lecture 06: Reasoning about FDs

Outline
Implied dependencies (closure)
Armstrong’s Axioms
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Semantic Closure

Notation

F |= Y→ Z

means that any database instance that that satisfies every FD of F ,
must also satisfy Y→ Z.

The semantic closure of F , denoted F+, is defined to be

F+ = {Y→ Z | Y ∪ Z ⊆ atts(F )and ∧ F |= Y→ Z}.

The membership problem is to determine if Y→ Z ∈ F+.
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Reasoning about Functional Dependencies

We write F ` Y→ Z when Y→ Z can be derived from F via the
following rules.

Armstrong’s Axioms
Reflexivity If Z ⊆ Y, then F ` Y→ Z.

Augmentation If F ` Y→ Z then F ` Y,W→ Z,W.
Transitivity If F ` Y→ Z and F |= Z→W, then F ` Y→W.
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Logical Closure (of a set of attributes)

Notation

closure(F , X) = {A | F ` X→ A}

Claim 1
If Y→W ∈ F and Y ⊆ closure(F , X), then W ⊆ closure(F , X).

Claim 2
Y→W ∈ F+ if and only if W ⊆ closure(F , Y).
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Soundness and Completeness

Soundness

F ` f =⇒ f ∈ F+

Completeness

f ∈ F+ =⇒ F ` f
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Proof of Completeness (soundness left as an exercise)

Show ¬(F ` f ) =⇒ ¬(F |= f ):

Suppose ¬(F ` Y→ Z) for R(X).
Let Y+ = closure(F , Y).
∃B ∈ Z, with B 6∈ Y+.
Construct an instance of R with just two records, u and v , that
agree on Y+ but not on X− Y+.
By construction, this instance does not satisfy Y→ Z.
But it does satisfy F ! Why?

I let S→ T be any FD in F , with u.[S] = v .[S].
I So S ⊆ Y+. and so T ⊆ Y+ by claim 1,
I and so u.[T ] = v .[T ]
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Consequences of Armstrong’s Axioms

Union If F |= Y→ Z and F |= Y→W, then F |= Y→W,Z.
Pseudo-transitivity If F |= Y→ Z and F |= U,Z→W, then

F |= Y,U→W.
Decomposition If F |= Y→ Z and W ⊆ Z, then F |= Y→W.

Exercise : Prove these using Armstrong’s axioms!

T. Griffin (cl.cam.ac.uk) Databases DB 2010 83 / 145



Proof of the Union Rule

Suppose we have
F |= Y→ Z,
F |= Y→W.

By augmentation we have

F |= Y,Y→ Y,Z,

that is,
F |= Y→ Y,Z.

Also using augmentation we obtain

F |= Y,Z→W,Z.

Therefore, by transitivity we obtain

F |= Y→W,Z.
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Example application of functional reasoning.

Heath’s Rule
Suppose R(A, B, C) is a relational schema with functional
dependency A→ B, then

R = πA,B(R) onA πA,C(R).
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Proof of Heath’s Rule

We first show that R ⊆ πA,B(R) onA πA,C(R).
If u = (a, b, c) ∈ R, then u1 = (a, b) ∈ πA,B(R) and
u2 = (a, c) ∈ πA,C(R).
Since {(a, b)} onA {(a, c)} = {(a, b, c)} we know
u ∈ πA,B(R) onA πA,C(R).

In the other direction we must show R′ = πA,B(R) onA πA,C(R) ⊆ R.
If u = (a, b, c) ∈ R′, then there must exist tuples
u1 = (a, b) ∈ πA,B(R) and u2 = (a, c) ∈ πA,C(R).
This means that there must exist a u′ = (a, b′, c) ∈ R such that
u2 = πA,C({(a, b′, c)}).
However, the functional dependency tells us that b = b′, so
u = (a, b, c) ∈ R.
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Closure Example

R(A, B,C,D,D,F ) with
A,B → C
B,C → D
D → E
C,F → B

What is the closure of {A, B}?

{A, B} A,B→C
=⇒ {A, B, C}

B,C→D
=⇒ {A, B, C, D}
D→E
=⇒ {A, B, C, D, E}

So {A, B}+ = {A, B, C, D, E} and A,B → C,D,E .
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Lecture 07: Decomposition to Normal Forms

Outline
Attribute closure algorithm
Schema decomposition methods
Problems with obtaining both dependency preservation and
lossless-join property
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Closure

By soundness and completeness

closure(F , X) = {A | F ` X→ A} = {A | X→ A ∈ F+}

Claim 2 (from previous lecture)
Y→W ∈ F+ if and only if W ⊆ closure(F , Y).

If we had an algorithm for closure(F , X), then we would have a (brute
force!) algorithm for enumerating F+:

F+

for every subset Y ⊆ atts(F )
I for every subset Z ⊆ closure(F , Y),

F output Y→ Z

T. Griffin (cl.cam.ac.uk) Databases DB 2010 90 / 145



Attribute Closure Algorithm

Input : a set of FDs F and a set of attributes X.
Output : Y = closure(F , X)

1 Y := X
2 while there is some S→ T ∈ F with S ⊆ Y and T 6⊆ Y, then

Y := Y ∪ T.
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An Example (UW1997, Exercise 3.6.1)

R(A, B,C,D) with F made up of the FDs

A,B → C
C → D
D → A

What is F+?

Brute force!
Let’s just consider all possible nonempty sets X — there are only 15...
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Example (cont.)

F = {A,B → C, C → D, D → A}

For the single attributes we have

{A}+ = {A},
{B}+ = {B},
{C}+ = {A, C, D},

I {C} C→D
=⇒ {C, D} D→A

=⇒ {A, C, D}
{D}+ = {A, D}

I {D} D→A
=⇒ {A, D}

The only new dependency we get with a single attribute on the left is
C → A.
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Example (cont.)

F = {A,B → C, C → D, D → A}

Now consider pairs of attributes.

{A, B}+ = {A, B, C, D},
I so A,B → D is a new dependency
{A, C}+ = {A, C, D},

I so A,C → D is a new dependency
{A, D}+ = {A, D},

I so nothing new.
{B, C}+ = {A, B, C, D},

I so B,C → A,D is a new dependency
{B, D}+ = {A, B, C, D},

I so B,D → A,C is a new dependency
{C, D}+ = {A, C, D},

I so C,D → A is a new dependency
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Example (cont.)

F = {A,B → C, C → D, D → A}

For the triples of attributes:

{A, C, D}+ = {A, C, D},
{A, B, D}+ = {A, B, C, D},

I so A,B,D → C is a new dependency
{A, B, C}+ = {A, B, C, D},

I so A,B,C → D is a new dependency
{B, C, D}+ = {A, B, C, D},

I so B,C,D → A is a new dependency

And since {A, B, C, D}+ = {A, B, C, D}, we get no new
dependencies with four attributes.
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Example (cont.)

We generated 11 new FDs:

C → A A,B → D
A,C → D B,C → A
B,C → D B,D → A
B,D → C C,D → A

A,B,C → D A,B,D → C
B,C,D → A

Can you see the Key?
{A, B}, {B, C}, and {B, D} are keys.

Note: this schema is already in 3NF! Why?
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General Decomposition Method (GDM)

GDM
1 Understand your FDs F (compute F+),
2 find R(X) = R(Z, W, Y) (sets Z, W and Y are disjoint) with FD

Z→W ∈ F+ violating a condition of desired NF,
3 split R into two tables R1(Z, W) and R2(Z, Y)

4 wash, rinse, repeat

Reminder
For Z→W, if we assume Z ∩W = {}, then the conditions are

1 Z is a superkey for R (2NF, 3NF, BCNF)
2 W is a subset of some key (2NF, 3NF)
3 Z is not a proper subset of any key (2NF)
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The lossless-join condition is guaranteed by GDM

This method will produce a lossless-join decomposition because
of (repeated applications of) Heath’s Rule!
That is, each time we replace an S by S1 and S2, we will always
be able to recover S as S1 on S2.
Note that in GDM step 3, the FD Z→W may represent a key
constraint for R1.

But does the method always terminate? Please think about this ....
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Return to Example — Decompose to BCNF

R(A, B,C,D)

F = {A,B → C, C → D, D → A}

Which FDs in F+ violate BCNF?
C → A
C → D
D → A

A,C → D
C,D → A
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Return to Example — Decompose to BCNF

Decompose R(A, B,C,D) to BCNF
Use C → D to obtain

R1(C, D). This is in BCNF. Done.
R2(A, B, C) This is not in BCNF. Why? A,B and B,C are the only
keys, and C → A is a FD for R1. So use C → A to obtain

I R2.1(A, C). This is in BCNF. Done.
I R2.2(B, C). This is in BCNF. Done.

Exercise : Try starting with any of the other BCNF violations and see
where you end up.
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The GDM does not always preserve dependencies!

R(A, B, C, D, E)

A,B → C
D,E → C

B → D

{A, B}+ = {A, B, C, D},
so A,B → C,D,
and {A, B, E} is a key.

{B, E}+ = {B, C, D, E} ,
so B,E → C,D,
and {A, B, E} is a key (again)

Let’s try for a BCNF decomposition ...
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Decomposition 1

Decompose R(A, B, C, D, E) using A,B → C,D :
R1(A, B, C, D). Decompose this using B → D:

I R1.1(B, D). Done.
I R1.2(A, B, C). Done.

R2(A, B, E). Done.

But in this decomposition, how will we enforce this dependency?

D,E → C
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Decomposition 2

Decompose R(A, B, C, D, E) using B,E → C,D:
R3(B, C, D, E). Decompose this using D,E → C

I R3.1(C, D, E). Done.
I R3.2(B, D, E). Decompose this using B → D:

F R3.2.1(B, D). Done.
F R3.2.2(B, E). Done.

R4(A, B, E). Done.

But in this decomposition, how will we enforce this dependency?

A,B → C
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Summary

It always is possible to obtain BCNF that has the lossless-join
property (using GDM)

I But the result may not preserve all dependencies.
It is always possible to obtain 3NF that preserves dependencies
and has the lossless-join property.

I Using methods based on “minimal covers” (for example, see
EN2000).
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Lecture 08: Multivalued Dependencies

Outline
Multivalued Dependencies
Fourth Normal Form (4NF)
General integrity Constraints
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Another look at Heath’s Rule

Given R(Z, W, Y) with FDs F
If Z→W ∈ F+, the

R = πZ,W(R) on πZ,Y(R)

What about an implication in the other direction? That is, suppose we
have

R = πZ,W(R) on πZ,Y(R).

Q Can we conclude anything about FDs on R? In particular,
is it true that Z→W holds?

A No!
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We just need one counter example ...

R = πA,B(R) on πA,C(R)

A B C
a b1 c1
a b2 c2
a b1 c2
a b2 c1

A B
a b1
a b2

A C
a c1
a c2

Clearly A→ B is not an FD of R.
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A concrete example

course_name lecturer text
Databases Tim Ullman and Widom
Databases Fatima Date
Databases Tim Date
Databases Fatima Ullman and Widom

Assuming that texts and lecturers are assigned to courses
independently, then a better representation would in two tables:

course_name lecturer
Databases Tim
Databases Fatima

course_name text
Databases Ullman and Widom
Databases Date
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Time for a definition!

Multivalued Dependencies (MVDs)
Let R(Z, W, Y) be a relational schema. A multivalued dependency,
denoted Z � W, holds if whenever t and u are two records that agree
on the attributes of Z, then there must be some tuple v such that

1 v agrees with both t and u on the attributes of Z,
2 v agrees with t on the attributes of W,
3 v agrees with u on the attributes of Y.
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A few observations

Note 1
Every functional dependency is multivalued dependency,

(Z→W) =⇒ (Z � W).

To see this, just let v = u in the above definition.

Note 2
Let R(Z, W, Y) be a relational schema, then

(Z � W) ⇐⇒ (Z � Y),

by symmetry of the definition.
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MVDs and lossless-join decompositions

Fun Fun Fact
Let R(Z, W, Y) be a relational schema. The decomposition R1(Z, W),
R2(Z, Y) is a lossless-join decomposition of R if and only if the MVD
Z � W holds.

T. Griffin (cl.cam.ac.uk) Databases DB 2010 112 / 145



Proof of Fun Fun Fact

Proof of (Z � W) =⇒ R = πZ,W(R) on πZ,Y(R)

Suppose Z � W.
We know (from proof of Heath’s rule) that R ⊆ πZ,W(R) on πZ,Y(R).
So we only need to show πZ,W(R) on πZ,Y(R) ⊆ R.
Suppose r ∈ πZ,W(R) on πZ,Y(R).
So there must be a t ∈ R and u ∈ R with
{r} = πZ,W({t}) on πZ,Y({u}).
In other words, there must be a t ∈ R and u ∈ R with t .Z = u.Z.
So the MVD tells us that then there must be some tuple v ∈ R
such that

1 v agrees with both t and u on the attributes of Z,
2 v agrees with t on the attributes of W,
3 v agrees with u on the attributes of Y.

This v must be the same as r , so r ∈ R.
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Proof of Fun Fun Fact (cont.)

Proof of R = πZ,W(R) on πZ,Y(R) =⇒ (Z � W)

Suppose R = πZ,W(R) on πZ,Y(R).
Let t and u be any records in R with t .Z = u.Z.
Let v be defined by {v} = πZ,W({t}) on πZ,Y({u}) (and we know
v ∈ R by the assumption).
Note that by construction we have

1 v .Z = t .Z = u.Z,
2 v .W = t .W,
3 v .Y = u.Y.

Therefore, Z � W holds.
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Fourth Normal Form

Trivial MVD
The MVD Z � W is trivial for relational schema R(Z, W, Y) if

1 Z ∩W 6= {}, or
2 Y = {}.

4NF
A relational schema R(Z, W, Y) is in 4NF if for every MVD Z � W
either

Z � W is a trivial MVD, or
Z is a superkey for R.

Note : 4NF ⊂ BCNF ⊂ 3NF ⊂ 2NF
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General Decomposition Method Revisited

GDM++

1 Understand your FDs and MVDs F (compute F+),
2 find R(X) = R(Z, W, Y) (sets Z, W and Y are disjoint) with either

FD Z→W ∈ F+ or MVD Z � W ∈ F+ violating a condition of
desired NF,

3 split R into two tables R1(Z, W) and R2(Z, Y)

4 wash, rinse, repeat
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Summary

We always want the lossless-join property. What are our options?

3NF BCNF 4NF
Preserves FDs Yes Maybe Maybe

Preserves MVDs Maybe Maybe Maybe
Eliminates FD-redundancy Maybe Yes Yes

Eliminates MVD-redundancy No No Yes
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General integrity constraints

Suppose that C is some constraint we would like to enforce on our
database.
Let Q¬C be a query that captures all violations of C.
Enforce (somehow) that the assertion that is always Q¬C empty.

Example
C = Z→W, and FD that was not preserved for relation R(X),
Let QR be a join that reconstructs R,
Let Q′

R be this query with X 7→ X′ and
Q¬C = σW6=W′(σZ=Z′(QR ×Q′

R))
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Assertions in SQL

create view C_violations as ....

create assertion check_C
check not (exists C_violations)
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Lecture 04: Database Updates

Outline
Transactions
Short review of ACID requirements
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Transactions — ACID properties

Should be review from Concurrent Systems and Applications
Atomicity Either all actions are carried out, or none are

logs needed to undo operations, if needed
Consistency If each transaction is consistent, and the database is

initially consistent, then it is left consistent
This is very much a part of applications design.

Isolation Transactions are isolated, or protected, from the effects of
other scheduled transactions

Serializability, 2-phase commit protocol
Durability If a transactions completes successfully, then its effects

persist
Logging and crash recovery
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Lecture 09 and 10

Two Themes ...
Redundancy can be a GOOD thing!
Duplicates, aggregates, and group by in SQL, and evolution to
“Data Cube”

.... come together in OLAP
OLTP : Online Transaction Processing (traditional databases)

I Data is normalized for the sake of updates.
OLAP : Online Analytic Processing

I These are (almost) read-only databases.
I Data is de-normalized for the sake of queries!
I Multi-dimensional data cube emerging as common data model.

F This can be seen as a generalization of SQL’s group by
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Materialized Views

Suppose Q is a very expensive, and very frequent query.
Why not de-normalize some data to speed up the evaluation of Q?

I This might be a reasonable thing to do, or ...
I ... it might be the first step to destroying the integrity of your data

design.
Why not store the value of Q in a table?

I This is called a materialized view.
I But now there is a problem: How often should this view be

refreshed?
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FIDO = Fetch Intensive Data Organization
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Example : Embedded databases
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Example : Hinxton Bioinformatics
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Example : Data Warehouse (Decision support)

business analysis queries

Extract 

fast updates

Operational Database Data Warehouse
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OLAP vs. OLTP

OLTP Online Transaction Processing
OLAP Online Analytical Processing

Commonly associated with terms like Decision
Support, Data Warehousing, etc.

OLAP OLTP
Supports analysis day-to-day operations

Data is historical current
Transactions mostly reads updates

optimized for query processing updates
Normal Forms not important important
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OLAP Databases : Data Models and Design

The big question
Is the relational model and its associated query language (SQL) well
suited for OLAP databases?

Aggregation (sums, averages, totals, ...) are very common in
OLAP queries

I Problem : SQL aggregation quickly runs out of steam.
I Solution : Data Cube and associated operations (spreadsheets on

steroids)
Relational design is obsessed with normalization

I Problem : Need to organize data well since all analysis queries
cannot be anticipated in advance.

I Solution : Multi-dimensional fact tables, with hierarchy in
dimensions, star-schema design.

Let’s start by looking at aggregate queries in SQL ...
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An Example ...

mysql> select * from marks;
+-------+-----------+------+
| sid | course | mark |
+-------+-----------+------+
| ev77 | databases | 92 |
| ev77 | spelling | 99 |
| tgg22 | spelling | 3 |
| tgg22 | databases | 100 |
| fm21 | databases | 92 |
| fm21 | spelling | 100 |
| jj25 | databases | 88 |
| jj25 | spelling | 92 |
+-------+-----------+------+
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... of duplicates

mysql> select mark from marks;
+------+
| mark |
+------+
| 92 |
| 99 |
| 3 |
| 100 |
| 92 |
| 100 |
| 88 |
| 92 |
+------+
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Why Multisets?

Duplicates are important for aggregate functions.

mysql> select min(mark),
max(mark),
sum(mark),
avg(mark)

from marks;
+-----------+-----------+-----------+-----------+
| min(mark) | max(mark) | sum(mark) | avg(mark) |
+-----------+-----------+-----------+-----------+
| 3 | 100 | 666 | 83.2500 |
+-----------+-----------+-----------+-----------+
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The group by clause

mysql> select course,
min(mark),
max(mark),
avg(mark)

from marks
group by course;

+-----------+-----------+-----------+-----------+
| course | min(mark) | max(mark) | avg(mark) |
+-----------+-----------+-----------+-----------+
| databases | 88 | 100 | 93.0000 |
| spelling | 3 | 100 | 73.5000 |
+-----------+-----------+-----------+-----------+
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Visualizing group by

sid course mark
ev77 databases 92
ev77 spelling 99
tgg22 spelling 3
tgg22 databases 100
fm21 databases 92
fm21 spelling 100
jj25 databases 88
jj25 spelling 92

group by
=⇒

course mark
spelling 99
spelling 3
spelling 100
spelling 92

course mark
databases 92
databases 100
databases 92
databases 88
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Visualizing group by

course mark
spelling 99
spelling 3
spelling 100
spelling 92

course mark
databases 92
databases 100
databases 92
databases 88

min(mark)
=⇒

course min(mark)

spelling 3
databases 88
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The having clause

How can we select on the aggregated columns?

mysql> select course,
min(mark),
max(mark),
avg(mark)

from marks
group by course
having min(mark) > 60;

+-----------+-----------+-----------+-----------+
| course | min(mark) | max(mark) | avg(mark) |
+-----------+-----------+-----------+-----------+
| databases | 88 | 100 | 93.0000 |
+-----------+-----------+-----------+-----------+
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Use renaming to make things nicer ...

mysql> select course,
min(mark) as minimum,
max(mark) as maximum,
avg(mark) as average

from marks
group by course
having minimum > 60;

+-----------+---------+---------+---------+
| course | minimum | maximum | average |
+-----------+---------+---------+---------+
| databases | 88 | 100 | 93.0000 |
+-----------+---------+---------+---------+
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Limits of SQL aggregation

Flat tables are great for processing, but hard for people to read
and understand.
Pivot tables and cross tabulations (spreadsheet terminology) are
very useful for presenting data in ways that people can
understand.
SQL does not handle pivot tables and cross tabulations well.
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A very influential paper [G+1997]
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From aggregates to data cubes
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The Data Cube

Data modeled as an n-dimensional (hyper-) cube
Each dimension is associated with a hierarchy
Each “point” records facts
Aggregation and cross-tabulation possible along all dimensions
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Hierarchy for Location Dimension
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Cube Operations
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The Star Schema as a design tool
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