
� Topic VIII �
The state of the art

Scala

< www.scala-lang.org >

References:

� Scala By Example by M.Odersky. Programming

Methods Laboratory, EPFL, 2008.

� An overview of the Scala programming language by

M.Odersky et al. Technical Report

LAMP-REPORT-2006-001, Second Edition, 2006.

� 217

� A Scala Tutorial for Java Programmers by M.Schinz and

P.Haller. Programming Methods Laboratory, EPFL, 2008.

� 218

Scala (I)

� Scala has been developed from 2001 in the Programming

Methods Laboratory at EPFL by a group lead by Martin

Odersky. It was first released publicly in 2004, with a

second version released in 2006.

� Scala is aimed at the construction of components and

component systems.

One of the major design goals of Scala was that it should

be flexible enough to act as a convenient host language

for domain specific languages implemented by library

modules.

� 219

� Scala has been designed to work well with Java and C#.

Every Java class is seen in Scala as two entities, a class

containing all dynamic members and a singleton object,

containing all static members.

Scala classes and objects can also inherit from Java

classes and implement Java interfaces. This makes it

possible to use Scala code in a Java framework.

� Scala’s influences: Beta, C#, FamilyJ, gbeta, Haskell,

Java, Jiazzi, ML≤, Moby, MultiJava, Nice, OCaml, Pizza,

Sather, Smalltalk, SML, XQuery, etc.

� 220

A procedural language �
def qsort(xs: Array[Int]) �

def swap(i: Int, j:Int) �

val t = xs(i); xs(i) = xs(j); xs(j) = t

}

def sort(l: Int, r: Int) �

val pivot = xs((l+r)/2); var i = l; var j = r

while (i <= j) �

while (lt(xs(i), pivot)) i += 1

while (lt(xs(j), pivot)) j -= 1

if (i<=j) � swap(i,j); i += 1; j -= 1 }

}

if (l<j) sort(l,j)

if (j<r) sort(i,r)

}

sort(0,xs.length-1)

}

� 221

NB:

� Definitions start with a reserved word.

� Type declarations use the colon notation.

� Array selections are written in functional notation.

(In fact, arrays in Scala inherit from functions.)

� Block structure.

� 222

A declarative language �

def qsort[T](xs: Array[T])(lt: (T,T)=>Boolean): Array[T]

= if (xs.length <= 1) xs

else �

val pivot = xs(xs.length/2)

Array.concat(qsort(xs filter (x => lt(x,pivot))) lt ,

xs filter (x => x == pivot) ,

qsort(xs filter (x => lt(pivot,x))) lt)

}

� 223

NB:

� Polymorphism.

� Type declarations can often be omitted because the

compiler can infer it from the context.

� Higher-order functions.

� The binary operation e � e
� is always interpreted a the

method call e. � �e �).

� The equality operation == between values is designed to

be transparent with respect to the type representation.

� 224

Scala (II)

Scala fuses (1) object-oriented programming and (2) functional

programming in a statically typed programming language.

1. Scala uses a uniform and pure object-oriented model

similar to that of Smalltalk: Every value is an object and

every operation is a message send (that is, the invocation

of a method).

In fact, even primitive types are not treated specially; they

are defined as type aliases of Scala classes.

2. Scala is also a functional language in the sense that

functions are first-class values.

� 225

Mutable state

� Real-world objects with state are represented in Scala by

objects that have variables as members.

� In Scala, all mutable state is ultimately built from variables.

� Every defined variable has to be initialised at the point of

its definition.

� Variables may be private.

� 226

Blocks

Scala is an expression-oriented language, every function

returns some result.

Blocks in Scala are themselves expressions. Every block

ends in a result expression which defines its value.

Scala uses the usual block-structured scoping rules.

� 227

Functions

A function in Scala is a first-class value.

The anonymous function

(x1: T1, ... , xn: Tn) => E

is equivalent to the block

� def f (x1: T1 , ... , xn: Tn) = E ; f }

where f is a fresh name which is used nowhere else in the

program.

� 228

Parameter passing

Scala uses call-by-value by default, but it switches to

call-by-name evaluation if the parameter type is preceded

by =>.

Imperative control structures

A functional implementation of while loops:

def whileLoop(cond: => Boolean)(comm: => Unit)

� if (cond) comm ; whileLoop(cond)(comm) }

� 229

Classes and objects

� classes provide fields and methods. These are accessed

using the dot notation. However, there may be private

fields and methods that are inaccessible outside the class.

Scala, being an object-oriented language, uses dynamic

dispatch for method invocation. Dynamic method dispatch

is analogous to higher-order function calls. In both cases,

the identity of the code to be executed is known only at

run-time. This similarity is not superficial. Indeed, Scala

represents every function value as an object.

� 230

� Every class in Scala has a superclass which it extends.

A class inherits all members from its superclass. It may

also override (i.e. redefine) some inherited members.

If class A extends class B, then objects of type A may be

used wherever objects of type B are expected. We say in

this case that type A conforms to type B.

� Scala maintains the invariant that interpreting a value of a

subclass as an instance of its superclass does not change

the representation of the value.

Amongst other things, it guarantees that for each pair of

types S <: T and each instance s of S the following

semantic equality holds:

s.asInstanceOf[T].asInstanceOf[S] = s

� 231

� Methods in Scala do not necessarily take a parameter list.

These parameterless methods are accessed just as value

fields.

The uniform access of fields and parameterless methods

gives increased flexibility for the implementor of a class.

Often, a field in one version of a class becomes a

computed value in the next version. Uniform access

ensures that clients do not have to be rewritten because

of that change.

� 232

� abstract classes may have deferred members which are

declared but which do not have an implementation.

Therefore, no objects of an abstract class may be created

using new.

abstract class IntSet �

def incl(x:Int): IntSet

def contains(x:Int): Boolean

}

Abstract classes may be used to provide interfaces.

� 233

� Scala has object definitions. An object definition defines

a class with a single instance. It is not possible to create

other objects with the same structure using new.

object EmptySet extends IntSet �

def incl(x: Int): IntSet

= new NonEmptySet(x,EmptySet,EmptySet)

def contains(x: Int): Boolean = false

}

An object is created the first time one of its members is

accessed. (This strategy is called lazy evaluation.)

� 234

� A trait is a special form of an abstract class that does

not have any value parameters for its constructor and is

meant to be combined with other classes.

trait IntSet �

def incl(x:Int): IntSet

def contains(x:Int): Boolean

}

Traits may be used to collect signatures of some

functionality provided by different classes.

� 235

Case study (I)
abstract class Expr �

def isNumber: Boolean

def isSum: Boolean

def numValue: Int

def leftOp: Expr

def rightOp: Expr

}

class Number(n: Int) extends Expr �

def isNumber: Boolean = true

def isSum: Boolean = false

def numValue: Int = n

def leftOp: Expr = error(�Number.leftOp�)

def rightOp: Expr = error(�Number.rightOp�)

}

� 236

class Sum(e1: Expr; e2: Expr) extends Expr �

def isNumber: Boolean = false

def isSum: Boolean = true

def numValue: Int = error(�Sum.numValue�)

def leftOp: Expr = e1

def rightOp: Expr = e2

}

def eval(e: Expr): Int = �

if (e.isNumber) e.NumValue

else if (e.isSum) eval(e.leftOp) + eval(e.rightOp)

else error(�bad expression�)

}

? What is good and what is bad about this implementation?

� 237

Case study (II)
abstract class Expr �

def eval: Int

}

class Number(n: Int) extends Expr �

def eval: Int = n

}

class Sum(e1: Expr; e2: Expr) extends Expr �

def eval: Int = e1.eval + e2.eval

}

� 238

This implementation is easily extensible with new types

of data:

class Prod(e1: Expr; e2: Expr) extends Expr �

def eval: Int = e1.eval * e2.eval

}

But, is this still the case for extensions involving new

operations on existing data?

� 239

Case study (III)
Case classes

abstract class Expr

case class Number(n: Int) extends Expr

case class Sum(e1: Expr; e2: Expr) extends Expr

case class Prod(e1: Expr; e2: Expr) extends Expr

� Case classes implicitly come with a constructor function,

with the same name as the class.

Hence one can construct expression trees as:

Sum(Sum(Number(1) , Number(2)) , Number(3))

� 240

� Case classes and case objects implicitly come with

implementations of methods toString, equals, and

hashCode.

� Case classes implicitly come with nullary accessor

methods which retrieve the constructor arguments.

� Case classes allow the constructions of patterns which

refer to the case class constructor.

� 241

Case study (III)
Pattern matching

The match method takes as argument a number of cases:

def eval(e: Expr): Int

= e match

� case Number(x) => x

case Sum(l,r) => eval(l) + eval(r)

case Prod(l,r) => eval(l) * eval(r)

}

If none of the patterns matches, the pattern matching

expression is aborted with a MatchError exception.

� 242

Generic types and methods

� Classes in Scala can have type parameters.

abstract class Set[A] �

def incl(x: A): Set[A]

def contains(x: A): Boolean

}

� Scala has a fairly powerful type inferencer which allows

one to omit type parameters to polymorphic functions

and constructors.

� 243

Generic types
Variance annotations

The combination of type parameters and subtyping poses

some interesting questions.

? If T is a subtype of a type S, should Array[T] be a
subtype of the type Array[S]?

! No, if one wants to avoid run-time checks!

Example:

val x = new Array[String](1)

val y: Array[Any] = x // disallowed in Scala because

// Array is not covariant

y.update(0 , new Rational(1,2))

� 244

In Scala, generic types like the following one:

class Array[A] �

def apply(index: Int): A

...

def update(index: Int, elem: A)

...

}

have by default non-variant subtyping.

However, one can enforce co-variant subtyping by prefixing a

formal type parameter with a +. There is also a prefix - which

indicates contra-variant subtyping.

� 245

Scala uses a conservative approximation to verify soundness

of variance annotations: a covariant type parameter of a class

may only appear in co-variant position inside the class. Hence,

the following class definition is rejected:

class Array[+A] �

def apply(index: Int): A

...

def update(index:Int , elem: A)

...

}

� 246

Functions are objects

Recall that Scala is an object-oriented language in that every

value is an object. It follows that functions are objects in Scala.

Indeed, the function type

(A1, ..., Ak) => B

is equivalent to the following parameterised class type:

abstract class Functionk[-A1,...,-Ak,+B]

� def apply(x1:A1,...,xn:Ak): B }

�






Since function types are classes in Scala, they can be
further refined in subclasses. An example are arrays,
which are treated as special functions over the type of
integers.








� 247

The function x => x+1 would be expanded to an instance

of Function1 as follows:

new Function1[Int,Int] �

def apply(x:Int): Int = x+1

}

Conversely, when a value of a function type is applied to

some arguments, the apply method of the type is implicitly

inserted; e.g. for f and object of type Function1[A,B],

the application f(x) is expanded to f.apply(x).

NB: Function subtyping is contra-variant in its arguments

whereas it is co-variant in its result. ? Why?

� 248

Generic types
Type parameter bounds

trait Ord[A] �

def lt(that: A): Boolean

}

case class Num(value: Int) extends Ord[Num] �

def lt(that: Num) = this.value < that.value

}

trait Heap[A <: Ord[A]] �

def insert(x: A): Heap[A]

def min: A

def remove: Heap[A]

}

� 249

Generic types
View bounds

One problem with type parameter bounds is that they require

forethought: if we had not declared Num as a subclass of Ord,

we would not have been able to use Num elements in heaps.

By the same token, Int is not a subclass of Ord, and so

integers cannot be used as heap elements.

� 250

A more flexible design, which admits elements of these types,

uses view bounds:

trait Heap[A <% Ord[A]] �

def insert(x: A): Heap[A]

def min: A

def remove: Heap[A]

}

A view bounded type parameter clause [A <% T] only

specifies that the bounded type A must be convertible to

the bound type T, using an implicit conversion.

Views allow one to augment a class with new members and

supported traits.

� 251

Generic types
Lower bounds

Co-variant generic functional stacks:

abstract class Stack[+A] �

def push[B >: A](x: B): Stack[B]

= new NonEmptyStack(x,this)

def top: A

def pop: Stack[A]

}

class NonEmptyStack[+A](elem: A, rest: Stack[A])

extends Stack[A] �

def top = elem

def pop = rest

}

� 252

object EmptyStack extends Stack[Nothing] �

def top = error("EmptyStack.top")

def pop = error("EmptyStack.pop")

}

� Scala does not allow to parameterise objects with types.

� Nothing is a subtype of all other types.

� 253

Implicit parameters and conversions

� Implicit parameters

In Scala, there is an implicit keyword that can be used

at the beginning of a parameter list.
def qsort[T](xs: Array[T])(implicit o: Ord[T]): Array[T]

= if (xs.length <= 1) xs

else �

val pivot = xs(xs.length/2)

Array.concat(qsort(xs filter (x => o.lt(x,pivot))) ,

xs filter (x => x == pivot) ,

qsort(xs filter (x => o.lt(pivot,x))))

}

� 254

The principal idea behind implicit parameters is that

arguments for them can be left out from a method call.

If the arguments corresponding to implicit parameters

are missing, they are inferred by the Scala compiler.

NB: View bounds are convenient syntactic sugar for

implicit parameters.

� Implicit conversions

As last resort in case of type mismatch the Scala

compiler will try to apply an implicit conversion.

implicit def int2ord(x: Int): Ord[Int]

= new Ord[Int] � def lt(y: Int) = x < y }

Implicit conversions can also be applied in member

selections.

� 255

Mixin-class composition

Every class or object in Scala can inherit from several traits in

addition to a normal class.

trait AbsIterator[T] �

def hasNext: Boolean

def next: T

}

trait RichIterator[T] extends AbsIterator[T] �

def foreach(f: T => Unit): Unit =

while (hasNext) f(next)

}

� 256

class StringIterator(s: String)

extends AbsIterator[Char] �

private var i = 0

def hasNext = i < s.length

def next = � val x = s charAt i; i = i+1; x }

}

Traits can be used in all contexts where other abstract classes

appear; however only traits can be used as mixins.

� 257

object Test �

def main(args: Array[String]): Unit = �

class Iter extends StringIterator(args(0))

with RichIterator[Char]

val iter = new Iter

iter.foreach(System.out.println)

}

}

The class Iter is constructed from a mixin composition of

the parents StringIterator (called the superclass) and

RichIterator (called a mixin) so as to combine their

functionality.

� 258

The class Iter inherits members from both StringIterator

and RichIterator.

NB: Mixin-class composition is a form of multiple inheritance!

� 259

Language innovations

� Flexible syntax and type system.

� Pattern matching over class hierarchies unifies functional

and object-oriented data access.

� Abstract types and mixin composition unify concepts from

object and module systems.

� 260

