
Introduction to Middleware I
• What is Middleware?

– Layer between OS and distributed applications
Hides complexity and heterogeneity of distributed system– Hides complexity and heterogeneity of distributed system

– Bridges gap between low-level OS communications and programming
language abstractions
P id i b i d i f f– Provides common programming abstraction and infrastructure for
distributed applications

– Overview at: http://www.middleware.org

Distributed ApplicationsDistributed ApplicationsDistributed Applications

Middleware (remote calls, object invocation,
messages, …)

Operating System CommsOperating System Comms

N k

Operating System Comms

g ,)

(sockets, IP, TCP, UDP, …)

1
NetworkNetwork (packets, bits…)Network

Middleware

Introduction to Middleware II

• Middleware provides support for (some of):
Naming Location Service discovery Replication– Naming, Location, Service discovery, Replication

– Protocol handling, Communication faults, QoS
– Synchronisation, Concurrency, Transactions, Storage
– Access control, Authentication

• Middleware dimensions:
– Request/Reply vs. Asynchronous Messaging

L ifi L i d d t– Language-specific vs. Language-independent
– Proprietary vs. Standards-based
– Small-scale vs. Large-scaleSmall scale vs. Large scale
– Tightly-coupled vs. Loosely-coupled components

2
Middleware

Outline

• Part I: Remote Procedure Call (RPC)
Historic interest– Historic interest

• Part II: Object-Oriented Middleware (OOM)
– Java RMIJava RMI
– CORBA
– Reflective Middleware

• Part III: Message-Oriented Middleware (MOM)
– Java Message Service
– IBM MQSeries
– Web Services

Part IV: E ent Based Middle are• Part IV: Event-Based Middleware
– Cambridge Event Architecture
– Hermes

3

Hermes

Middleware

Part I: Remote Procedure Call (RPC)

• Masks remote function calls as being local
• Client/server model• Client/server model
• Request/reply paradigm usually implemented with

message passing in RPC servicemessage passing in RPC service
• Marshalling of function parameters and return value

Caller RPC Service RPC Service Remote
Function1) Marshal args

2) Generate ID

call(…)

2) Generate ID
3) Start timer 4) Unmarshal

5) Record ID fun(…)

message

6) Marshal
7) Set timer

8) Unmarshal
9) Acknowledge

4
Middleware

Properties of RPC

Language-level pattern of function call
• easy to understand for programmer• easy to understand for programmer

Synchronous request/reply interactionSynchronous request/reply interaction
• natural from a programming language point-of-view
• matches replies to requests
• built in synchronisation of requests and replies

Distribution transparency (in the no-failure case)
• hides the complexity of a distributed system

Various reliability guarantees
d l i h di ib d f f il

5

• deals with some distributed systems aspects of failure

Middleware

Failure Modes of RPC

• Invocation semantics supported by RPC in the light of:
network and/or server congestion,network and/or server congestion,
client, network and/or server failure

note DS independent failure modes
• RPC systems differ, many examples, local was Mayflower

Maybe or at most once (RPC system tries once)Maybe or at most once (RPC system tries once)
• Error return – programmer may retry

Exactly once (RPC system retries a few times)
Hard error return some failure most likely• Hard error return – some failure most likely
note that “exactly once” cannot be guaranteed

6
Middleware

Disadvantages of RPC
 Synchronous request/reply interaction

• tight coupling between client and server
• client may block for a long time if server loaded

leads to multi-threaded programming at client
• slow/failed clients may delay servers when replying

fork(…)
slow/failed clients may delay servers when replying
multi-threading essential at servers

remote call

 Distribution Transparency
• Not possible to mask all problems

join(…)

 RPC paradigm is not object-oriented
• invoke functions on servers as opposed to methods on objects

7
Middleware

Part II: Object-Oriented Middleware (OOM)
• Objects can be local or remote
• Object references can be local or remotej
• Remote objects have visible remote interfaces
• Masks remote objects as being local using proxy objectsMasks remote objects as being local using proxy objects
• Remote method invocation

OOM OOMlocal remote

bj t bj t
object A skeleton

object B

object
request
broker

/

object
request
broker

/

proxy

/
object

manager

/
object

manager

8

proxy
object B object B

Middleware

Properties of OOM

Support for object-oriented programming model
objects methods interfaces encapsulation– objects, methods, interfaces, encapsulation, …

– exceptions (were also in some RPC systems e.g. Mayflower)

Synchronous request/reply interaction
– same as RPC

Location Transparency
– system (ORB) maps object references to locations

Ser ices comprising m ltiple ser ers are easier to b ild ith OOMServices comprising multiple servers are easier to build with OOM
– RPC programming is in terms of server-interface (operation)
– RPC system looks up server address in a location service

9

RPC system looks up server address in a location service

Middleware

Java Remote Method Invocation (RMI)

• Covered in 1B Advanced Java programming
• Distributed objects in Java• Distributed objects in Java

public interface PrintService extends Remote {public interface PrintService extends Remote {
int print(Vector printJob) throws RemoteException;

}

• RMI compiler creates proxies and skeletons
• RMI registry used for interface lookupeg s y used o e ace oo up
• Entire system written in Java (single-language system)

10
Middleware

CORBA

• Common Object Request Broker Architecture
Open standard by the OMG (Version 3 0)– Open standard by the OMG (Version 3.0)

– Language- and platform independent

• Object Request Broker (ORB)Object Request Broker (ORB)
– General Inter-ORB Protocol (GIOP) for communication
– Interoperable Object References (IOR) contain object location
– CORBA Interface Definition Language (IDL)

• Stubs (proxies) and skeletons created by IDL compiler
– Dynamic remote method invocation

• Interface Repository
– Querying existing remote interfaces

• Implementation Repository

11
– Activating remote objects on demand

Middleware

CORBA IDL

• Definition of language-independent remote interfaces
Language mappings to C++ Java Smalltalk– Language mappings to C++, Java, Smalltalk, …

– Translation by IDL compiler

• Type systemType system
– basic types: long (32 bit),

long long (64 bit), short,
fl t h b l

typedef sequence<string> Files;
interface PrintService : Server {
void print(in Files printJob);float, char, boolean,

octet, any, …
– constructed types: struct, union, sequence, array, enum

p (p);
};

yp q y
– objects (common super type Object)

• Parameter passing
– in, out, inout
– basic & constructed types passed by value

bj t d b f
12

– objects passed by reference

Middleware

CORBA Services (selection)

• Naming Service
Names remote object references– Names remote object references

• Trading Service
– Attributes (properties) remote object referencesAttributes (properties) remote object references

• Persistent Object Service
– Implementation of persistent CORBA objectsp p j

• Transaction Service
– Making object invocation part of transactions

• Event Service and Notification Service
– In response to applications‘ need for asynchronous communication
– built above synchronous communication with push or pull options
– not an integrated programming model with general IDL messages

13
Middleware

Disadvantages of OOM

 Synchronous request/reply interaction only
• So CORBA oneway semantics added and -• So CORBA oneway semantics added and -
• Asynchronous Method Invocation (AMI)
• But implementations may not be loosely coupled

 Distributed garbage collection
• Releasing memory for unused remote objects

 OOM h i d h i h OOM rather static and heavy-weight
• Bad for ubiquitous systems and embedded devices

14
Middleware

OOM experience

Keynote address at Middleware 2009
Steve VinoskiSteve Vinoski
From Middleware Implementor to Middleware User
(Th d b k i)(There and back again)

Available from the course materials page and the MW09
th b it

15

program on the website
Middleware

Reflective Middleware

• Flexible middleware (OOM) for mobile and context-aware
applications – adaptation to context through monitoringapplications adaptation to context through monitoring
and substitution of components

• Interfaces for reflection
– Objects can inspect middleware behaviourj p

• Interfaces for customisabilityy
– Dynamic reconfiguration depending on environment
– Different protocols, QoS, ...
– e.g. use different marshalling strategy over unreliable wireless link

16
Middleware

Part III: Message-Oriented Middleware (MOM)
• Communication using messages
• Messages stored in message queues
• message servers decouple client and server
• Various assumptions about message content

Client App. Server App.

Message ServersMessage Servers

local message
queues

local message
queues

message
queues

Network Network Network

17
Middleware

Properties of MOM

Asynchronous interaction
Client and server are only loosely coupled– Client and server are only loosely coupled

– Messages are queued
– Good for application integration

Support for reliable delivery service
– Keep queues in persistent storage

Processing of messages by intermediate message server(s)
– May do filtering, transforming, logging, …
– Networks of message servers

Natural for database integration

18
Middleware

IBM MQSeries

• One-to-one reliable message passing using queues
Persistent and non persistent messages– Persistent and non-persistent messages

– Message priorities, message notification

• Queue ManagersQueue Managers
– Responsible for queues
– Transfer messages from input to output queues
– Keep routing tables

• Message Channels
– Reliable connections between queue managers

• Messaging API: MQopen Open a queue
MQclose Close a queue
MQput Put message into opened queue
MQget Get message f om local q e e

19

MQget Get message from local queue

Middleware

Java Message Service (JMS)

• API specification to access MOM implementations
• Two modes of operation *specified*:• Two modes of operation *specified*:

– Point-to-point
• one-to-one communication using queuesone to one communication using queues

– Publish/Subscribe
• cf. Event-Based Middleware

• JMS Server implements JMS API
• JMS Clients connect to JMS servers
• Java objects can be serialised to JMS messages
• A JMS interface has been provided for MQ
• pub/sub (one-to-many) - just a specification?

20
Middleware

Disadvantages of MOM

 Poor programming abstraction (but has evolved)
• Rather low level (cf Packets)• Rather low-level (cf. Packets)
• Request/reply more difficult to achieve, but can be done

 Message formats originally unknown to middleware
• No type checking (JMS addresses this – implementation?)

 Queue abstraction only gives one-to-one communication
• Limits scalability (JMS pub/sub – implementation?)

21
Middleware

Web Services

• Use well-known web standards for distributed computing
CommunicationCommunication

• Message content expressed in XML
• Simple Object Access Protocol (SOAP)• Simple Object Access Protocol (SOAP)

– Lightweight protocol for sync/async communication

Service Description
• Web Services Description Language (WSDL)

– Interface description for web services

Service DiscoveryService Discovery
• Universal Description Discovery and Integration (UDDI)

– Directory with web service description in WSDL

22

Directory with web service description in WSDL

Middleware

Properties of Web Services

Language-independent and open standard

SOAP offers OOM and MOM-style communication:
• Synchronous request/reply like OOM
• Asynchronous messaging like MOM• Asynchronous messaging like MOM
• Supports internet transports (http, smtp, ...)
• Uses XML Schema for marshalling types to/from programming

language types

WSDL says how to use a web service

UDDI h l t fi d th i ht b i

http://api.google.com/GoogleSearch.wsdl

UDDI helps to find the right web service
• Exports SOAP API for access

23
Middleware

Disadvantages of Web Services

 Low-level abstraction
• leaves a lot to be implemented• leaves a lot to be implemented

 Interaction patterns have to be builtInteraction patterns have to be built
• one-to-one and request-reply provided
• one-to-many?
• still synchronous service invocation, rather than notification
• No nested/grouped invocations, transactions, ...

 No location transparency

24
Middleware

What we lack, so far

 General interaction patterns
• we have one to one and request reply• we have one-to-one and request-reply
• one-to-many? many to many?
• notification?
• dynamic joining and leaving?

 Location transparency
• anonymity of communicating entities

 Support for pervasive computing
• data values from sensors• data values from sensors
• lightweight software

25
Middleware

Part IV: Event-Based Middleware a.k.a. Publish/Subscribe

• Publishers (advertise and) publish events (messages)
S b ib i t t i t ith b i ti• Subscribers express interest in events with subscriptions

• Event Service notifies interested subscribers of published events
• Events can have arbitrary content (typed) or name/value pairsEvents can have arbitrary content (typed) or name/value pairs

publish subscribe

Event Service

(event-broker

SubscriberPublisher
publish

subscribe

notify

(event broker

network)
SubscriberPublisher publish

subscribe

notify

SubscriberPublisher publish
subscribe

notify

26
Middleware

Topic-Based and Content-Based Pub/Sub

• Event Service matches events against subscriptions
• What do subscriptions look like?• What do subscriptions look like?

Topic-Based Publish/Subscribe
– Publishers publish events belonging to a topic or subject
– Subscribers subscribe to a topic

subscribe(PrintJobFinishedTopic)subscribe(PrintJobFinishedTopic, …)

(Topic and) Content-Based Publish/Subscribe
Publishers publish events belonging to topics and– Publishers publish events belonging to topics and

– Subscribers provide a filter based on content of events
subscribe(type=printjobfinished, printer=‘aspen’, …)

27
Middleware

Properties of Publish/Subscribe

Asynchronous communication
• Publishers and subscribers are loosely coupled• Publishers and subscribers are loosely coupled

Many-to-many interaction between pubs. and subs.
• Scalable scheme for large-scale systems
• Publishers do not need to know subscribers, and vice-versa
• Dynamic join and leave of pubs subs (brokers see lecture DS 8)• Dynamic join and leave of pubs, subs, (brokers - see lecture DS-8)

(Topic and) Content-based pub/sub very expressive
• Filtered information delivered only to interested parties
• Efficient content-based routing through a broker network

28
Middleware

Composite Event Detection (CED)
• Content-based pub/sub may not be expressive enough

– Potentially thousands of event types (primitive events)y yp (p)
– Subscribers interest: event patterns (define high-level events, ref DS-2)

• Event Patterns
PrinterOutOfPaperEvent or PrinterOutOfTonerEvent

• Composite Event Detectors (CED)
– Subscribe to primitive events and publish composite events

Publisher

Publisher
CED

Publisher
Subscriber

Publisher

Publisher

CED

CED Subscriber

29

Publisher

Middleware

Summary

• Middleware is an important abstraction for building
distributed systemsdistributed systems

1. Remote Procedure Call
2. Object-Oriented Middleware
3. Message-Oriented Middleware

• Synchronous vs asynchronous communication

4. Event-Based Middleware

• Synchronous vs. asynchronous communication
• Scalability, many-to-many communication

Lang age integration• Language integration
• Ubiquitous systems, mobile systems

30
Middleware

