
Process groups and message ordering

If processes belong to groups, certain algorithms can be used that depend on group properties

• membership
t () kill ()create (name), kill (name)

join (name, process), leave (name, process)

• internal structure?
NO (peer structure) – failure tolerant complex protocolsNO (peer structure) failure tolerant, complex protocols
YES (a single coordinator and point of failure) – simpler protocols
e.g. all join requests must go to the coordinator – concurrent joins avoided

• closed or open?p
OPEN – a non-member can send a message to the group
CLOSED – only members can send to the group

• failures?
a failed process leaves the group without executing leavea failed process leaves the group without executing leave

• robustness
leave, join and failures happen during normal operation – algorithms must be robustleave, join and failures happen during normal operation algorithms must be robust

1Message ordering – Process groups

Message delivery for a process group - assumptions

ASSUMPTIONS
• messages are multicast to named process groups

• reliable channels: a given message is delivered reliably to all members of the group

• FIFO from a given source to a given destinationg g

• processes don’t crash (failure and restart not considered)

• processes behave as specified e g send the same values to all processes• processes behave as specified e.g. send the same values to all processes
- we are not considering so-called Byzantine behaviour

(when malicious or erroneous processes do not behave according to their specifications
see Lamport’s Byzantine Generals problem).

2Message ordering – Process groups

Ordering message delivery

application may specify delivery order to message service
i l () d l d l dprocess

message service
may reorder delivery to application
(on request for some order) by buffering messages

e.g. arrival (no) order, total order, causal order

OS comms. interface

(q f) y ff g g

assume FIFO from each source at this level
(done by lower levels)

total order = every process receives all messages in the same order (including its own)total order every process receives all messages in the same order (including its own).
We first consider causal order

3Message ordering – Process groups

Message delivery – causal order

application processes time

First, define causal order in terms of one-to-one messages; later, multicast to a process group

P1

P2

m

P2

P3
m′

P1 sent message m provably before P2 sent message m'
The above diagram shows a violation of causal delivery order
Causal delivery order requires that, at P3, m is delivered before m' y q
The definition relates to POTENTIAL causality, not application semantics

DEFINITION f l d li d (h “h d b f ”)DEFINITION of causal delivery order (where < means “happened before”)

sendi (m) < sendj (m') => deliverk (m) < deliverk (m')

4Message ordering – Process groups

Message delivery – causal order for a process group

If we know that all processes in a group receive all messages, the message delivery
service can implement causal delivery order (for total order, see later)

application processes, time

P1

P2

P3

m
m′

application
process

message service
the message service can postpone the delivery

of messages to the application process

OS comms. interface

5Message ordering – Process groups

Message delivery – causal order using Vector Clocks

A vector clock is maintained by the message service at each node for each process:

application processes

P1
1,0,0 2,1,0

P2

P3

0,1,0 1,2,0

1,0,1 1,1,2

vector notation:
- fixed number of processes N
- each process’s message service keeps a vector of dimension N
- for each process, each entry records the most up-to-date value of the state counter

delivered to the application process for the process at that positiondelivered to the application process, for the process at that position

6Message ordering – Process groups

Vector Clocks – message service operation

application processes

P1
1,0,0 2,1,0 3,3,0 4,3,4

P2

P3

0,1,0 1,2,0 1,3,0 1,4,4

P3
1,0,1 1,1,2 1,3,3 1,3,4

Message service operation:
• before send increment local process state value in local vector
• on send, timestamp message with sending process’s local vectorp g g p
• on receive by message service – see below
• on deliver to receiving application process, increment receiving process’s state value

in its local vector and update the other fields of the vector by comparing its values
with the incoming vector (timestamp) and recording the higher value in each field,
thus updating this process’s knowledge of system state

7Message ordering – Process groups

Implementing causal order using Vector Clocks
li tiapplication processes

P1
1,0,0 2,2,0

1 1 0 1 2 0
P2

P3

1,1,0 1,2,0

0 0 0
?

? = message service
0,0,0

P3’s vector is at (0,0,0) and a message with timestamp (1,2,0) arrives from P2
i.e. P2 has received a message from P1 that P3 hasn’t seen.

More detail of P3’s message service:
receiver vector sender sender vector decision new receiver vector

0 0 0 P2 1 2 0 buffer 0 0 00,0,0 P2 1,2,0 buffer 0,0,0
P3 is missing a message from P1 that sender P2 has already received

0,0,0 P1 1,0,0 deliver 1,0,1
1,0,1 P2 1,2,0 deliver 1,2,2

In each case: do the sender and receiver agree on the state of all other processes?
If the sender has a higher state value for any of these others, the receiver is missing a
message so buffer the message

8

message, so buffer the message

Message ordering – Process groups

Vector Clocks - example
li tiapplication processes

P1
1,0,0,0 2,0,2,0

P2

P3 1,0,1,0 1,0,2,0
?

P4 1,0,2,21,0,0,1

sender sender vector receiver receiver vector decision new receiver vector
P3 1,0,2,0 P1 1,0,0,0 deliver P1 -> 2,0,2,0

same states for P2 and P4
P3 1 0 2 0 P4 1 0 0 1 d li P4 1 0 2 2P3 1,0,2,0 P4 1,0,0,1 deliver P4 -> 1,0,2,2

same states for P1 and P2
P3 1,0,2,0 P2 0,0,0,0 buffer P2 -> 0,0,0,0

same state for P4, different for P1- missing message f , ff f g g
P1 1,0,0,0 P2 0,0,0,0 deliver P2 -> 1,1,0,0

reconsider buffered message:
P3 1,0,2,0 P2 1,1,0,0 deliver P2 -> 1,2,2,0

t t f P1 d P4

9

same states for P1 and P4

Message ordering – Process groups

Total order is not enforced by the vector clocks algorithm
li tiapplication processes

P1
1,0,0,0 3,2,2,0

1 2 0 01 1 0 0

2,2,0,0

1 3 2 0
P2

P3 1,0,1,0 1,0,2,0

1,2,0,01,1,0,0 1,3,2,0

1,2,3,0

m1
m3m2

P4 1,0,2,21,0,0,1 1,2,2,3

m2 and m3 are not causally related

P1 receives m1, m2, m3
P2 receives m1, m2, m3
P3 receives m1, m3, m2
P4 receives m1, m3, m2

If the application requires total order this could be enforced by modifying
the vector clock algorithm to include ACKs and delivery to self.

10Message ordering – Process groups

Totally ordered multicast

The vectors can be a large overhead on message transmission and a simpler algorithm
can be used if only total order is required.

Recall the ASSUMPTIONS
• messages are multicast to named process groups
• reliable channels: a given message is delivered reliably to all members of the group
• FIFO from a given source to a given destination• FIFO from a given source to a given destination
• processes don’t crash (failure and restart not considered)
• no Byzantine behaviour

total order algorithm
- sender multicasts to all including itself
- all acknowledge receipt as a multicast message
- message is delivered in timestamp order after all ACKs have been received

If h d li b h h li i hIf the delivery system must support both, so that applications can choose,
vector clocks can achieve both causal and total ordering.

11Message ordering – Process groups

Total ordered multicast – outline of approach
li tiapplication processes

P1

P2 1 2 3

P3

1

3

2

ACKs

P1 increments its clock to 1 and multicasts a message with timestamp 1
All delivery systems collect the message, multicast ACK and collect all ACKs
- no contention – deliver message to application processes
and increment local clocks to 2.

P2 and P3 both multicast messages with timestamp 3
All delivery systems collect messages multicast ACKs and collect ACKsAll delivery systems collect messages, multicast ACKs and collect ACKs.
- contention – so use a tie-breaker (e.g. lowest process ID wins)
and deliver P2s message before P3s

This is just a sketch of an approach. In practice, timeouts would have to be used to take
account of long delays due to congestion and/or failure of components and/or
communication links

12Message ordering – Process groups

