
C t d Di t ib t d S t I t d tiConcurrent and Distributed Systems Introduction

• 8 lectures on concurrency control in centralised systemsy y
- interaction of components in main memory
- interactions involving main memory and persistent storage
( t l d h )(concurrency control and crashes)

• 8 lectures on distributed systems
• Part 1A Operating Systems concepts are neededp g y p

Let’s look at the total system picture first

How do distributed systems differ fundamentally from centralised systems?
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Fundamental properties of distributed systemsFundamental properties of distributed systems

1. Concurrent execution of components on different nodes
2. Independent failure modes of nodes and connections
3. Network delay between nodes
4. No global time – each node has its own clock

Implications: to be studied in lectures 9 – 16
1 components do not all fail together and connections may also fail1       components do not all fail together and connections may also fail
2, 3 - can’t know why there’s no reply – node/comms. failure and/or 

node/comms. congestion
4     - can’t use locally generated timestamps for ordering events from ca use oca y ge e a ed es a ps o o de g eve s o

different nodes in a DS
1, 3 - inconsistent views of state/data when it’s distributed
1 - can’t wait for quiescence to resolve inconsistenciesq

What are the fundamental problems for a single node?
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single node characteristics cf distributed systemssingle node characteristics cf. distributed systems

1. Concurrent execution of components in a single nodep g
2. Failure modes - all components crash together, but disc failure 

modes are independent 
3 N t k d l t l t b t id i t ti ith di3. Network delay not relevant – but consider interactions with disc 

(persistent store)
4. Single clock – event ordering not a problem
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single node characteristics: concurrent executionsingle node characteristics: concurrent execution

1. Concurrent execution of components in a single nodep g

When a program is executing in main memory all components fail together 
on a crash e g power failureon a crash, e.g. power failure.

Some old systems, e.g. original UNIX, assumed uniprocessor operation. 
C t ti f t i hi d iConcurrent execution of components is achieved on uniprocessors 
by interrupt-driven scheduling of components. Preemptive scheduling 
creates most potential flexibility and most difficulties. 

Multiprocessors are now the norm. 
Multi-core instruction sets are being examined in detail and found g
problematic (sequential consistency). 
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single node characteristics: failure modessingle node characteristics: failure modes

2 Failure modes - all components crash together, but disc failure modes u e odes co po e s c s oge e , bu d sc u e odes
are independent 

3 Network delay not relevant – but consider interactions with disc 
( i t t t )(persistent store)

In lectures 5-8 we consider programs that operate on persistent 
data on disc. We define transactions: composite operations  
in the presence of concurrent execution and crashes.in the presence of concurrent execution and crashes. 
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single node characteristics: time and event orderingsingle node characteristics: time and event ordering

4. Single clock – event ordering “not a problem”?. S g e c oc eve o de g o p ob e ?

In distributed systems we can assume that the timestamps
d b i d d d d h i dgenerated by a given node and appended to the messages it sends are 

ordered sequentially. 

We could previously assume sequential ordering of instructions on a 
single computer, including multiprocessors. But multi-core computers 
now reorder instructions in complex ways. Sequential consistency is p y q y
proving problematic.

We shall concentrate on classical concurrency control concepts Multi-We shall concentrate on classical concurrency control concepts. Multi
core will be covered in depth in later years.
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single node as DS component (for lectures 9 16)single node as DS component (for lectures 9-16)
Support for distributed software components is by a software layer 

(middleware) above potentially heterogeneous OS(middleware) above potentially heterogeneous OS

components of homogeneous interfacecomponents of
distributed software

middleware layer

above heterogeneous OS

OS interface
OS

functions
comms.

subsystem

network

We shall first consider a single node’s software structure and dynamic execution
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single node: software components g p
• Software structure
• Support for persistent storage
• Dynamic concurrent execution – see next slide

/ /

OS
f i

OS interface

program/
process

program/
process

device
handlers

functions

network

comms.
subsystem

storage

disc
controller

I/O
devices

subsystem
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single node – concurrent executiong

program/
process

program/
process

OS interface

device

OS
functions

comms

p p

d tdevice
handlers

network

comms.
subsystem

disc
t ll

I/O
d i

data

storage
subsystem

controller devices

• note shared data areas in OS
l h d• also, programs may share data

• also, “threads” in a concurrent program may share data
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concurrent execution and process schedulingp g

program/
process

program/
process

device
handlers

OS
functions

OS interface

comms.
b tdatahandlers subsystemdata

RECALL from part 1A  OS:

• preemptive scheduling
• interrupt-driven execution – devices, timers, system calls

p

• OS processes have static priority, page fault > disc > …. > system call handling
• OS process priority higher than application process priority

PROBLEM: process preemption while reading/writing shared data
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Some OS components and processes - 1

user program

language 
ti /lib

programming language-
defined I/O interface

OS interface (language independent)

runtime/library

system call

I/O l

buffer area for a device type

I/O control

read or write • synchronous I/O   
ser process calls into s stem

operations 
for access to
data buffers

data buffers 
user process calls into system
(becomes a system process)

• asynchronous I/O
a system process takes the call
user process picks up result later

device
handler

read or write user process picks up result later 

interrupt service
routine (ISR) hardware interface
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Some OS components and processes - 2
user program

language 
runtime/library • buffers must be accessed under mutual exclusion

system call

I/O control

• condition synchronisation is also needed:
process gets mutex access to buffer (for how, see later)
process finds buffer full on write or empty on read

ti

buffer area for a device type

process finds buffer full on write or empty on read
process must BLOCK until space or data available
process must not block while holding mutex access
(else we have deadlock!)

operations 
for access to
data buffers

data buffers 

• note priority of device handlers > priority of user calls

• interrupts are independent of process execution
device
handler

• interrupts are independent of process execution

• if mutex access to buffer is not enforced, top-down 
access could be preempted by interrupt-driven, bottom-up 
access resulting in deadlock or incorrect datainterrupt service

routine (ISR)

access, resulting in deadlock or incorrect data.
• same issue in hardware-software synchronisation 

– see next slide:
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Some OS components and processes - 3

process A 

• interrupts are independent of process execution

• care is needed over priority of ISR and interrupt-driven code

• wait and signal must be atomic operationswait and signal must be atomic operations

wait (event)

f d t

implementation of processes and events

use of processes and events

event manager process data

process manager
finds event has not occurred

event data

A

wait ( )

g process data

A

block ( )

unblock ( )

… then is interrupted before
event data is updated

interrupt 
service
routine 

signal ( )

schedule

finds A is not waiting
t k iti(ISR) so sets a wake-up-waiting

(event has occurred) and exits
A proceeds to await event and block
We have deadlock!
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Processes and threads
a) Sequential programming languages

one program one program
address space address space

b) Concurrent programming language, no OS support (user threads only)

address space address space
one program
one process

runtime
system

one program
one process

runtime
system

one program
many processes

ti t

user  threads

one program
many processes

ti t

user  threads

OS kernel

kernel threads

OS kernel

runtime system

kernel threads

runtime system

address space address space

c) Concurrent programming language,
OS kernel threads for user threads 

one program
many processes

user  threads

one program
many processes

user  threads

OS kernel

runtime system

kernel threads

runtime system
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Runtime system - user threads
b) i l ( h d l )b) Concurrent programming language, no OS support (user threads only)

one program

address space

many processes

runtime system

user  threads
A B N

address space of a process

user  threads

runtime system – user thread implementation
user thread operations

per thread stack 
and control block

p
utID = create_thread ( )
kill_thread (utID)
wait_thread (utID)
signal thread (utID)

see later  - may not
wait and signal

kernel threads         one per process

and control block g _ ( )
schedule_thread  ( ) a thread, but a mutexmany variations:

coroutines – application programmer
does scheduling
processes runtime system schedules OS kernelprocesses – runtime system schedules
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user threads onlyuser threads only

1. the application can’t respond to OS events by switching user-threadspp p y g
2. can’t use for real-time applications – delay is unbounded
3. the whole process is blocked if any thread makes a system call and 

bl kblocks
4. applications can’t exploit a multiprocessor. The OS knows, and can 

schedule, only one kernel thread 
5. BUT handling shared data in the concurrent program is simple. 

There is no user-thread preemption i.e. threads are ONLY switched 
on calls to the runtime systemon calls to the runtime system. 
After an interrupt, control returns to the point at which the interrupt 
occurred. 
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Runtime system - kernel threads
) i l h l k l h dc) Concurrent programming language, OS can have several kernel threads per process

one program

address space address space of a process

many processes

runtime system

user  threads
A B N

user  threads

runtime system – user thread implementation

user/kernel thread operations
tID = create_thread ( )
kill thread (tID)

per thread stack 
and control block

kill_thread (tID)
wait_thread  (tID)
signal_thread (tID)

OS kernel

several kernel threads      per process

tID = create_thread ( )  calls OS_create_thread ( )
kill_thread (tID)            calls OS_kill_thread (tID)
wait thread  (tID) may call OS block thread (tID)_ ( ) y _ _ ( )
signal_thread (tID) may call OS_unblock_thread (tID)

The OS schedules threads
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kernel threads and user threadskernel threads and user threads

1. thread scheduling is via the OS scheduling algorithm g g g
2. applications can respond to OS events by switching threads, but only 

if OS scheduling is preemptive and priority-based. Real-time 
response is therefore OS dependentresponse is therefore OS-dependent

3. user threads can make blocking system calls without blocking the 
whole process – other threads can run

4. applications can exploit a multiprocessor
5. managing shared writeable data becomes complex
6 th diff t th d k d ’t t tl6. there are different thread packages – needn’t create exactly one 

kernel thread per user thread.
modern applications may create large numbers of threads
kernel may allow a maximum number of threads per process
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