
Aim

A more abstract, machine-independent description of the
collection of computable partial functions than provided
by register/Turing machines:

they form the smallest collection of partial
functions containing some basic functions and
closed under some fundamental operations for
forming new functions from old—composition,
primitive recursion and minimization.

The characterization is due to Kleene (1936), building on work of
Gödel and Herbrand.
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Minimization
Given a partial function f ∈ N

n+1
⇀N, define

µn f ∈ N
n
⇀N by

µn f (~x) , least x such that f (~x, x) = 0
and for each i = 0, . . . , x− 1,
f (~x, i) is defined and > 0
(undefined if there is no such x)

In other words

µn f = {(~x, x) ∈ N
n+1 | ∃y0, . . . , yx

(
x∧

i=0

f (~x, i) = yi)∧ (
x−1
∧

i=0

yi > 0)∧ yx = 0}
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Example of minimization

integer part of x1/x2 ≡ least x3 such that
(undefined if x2=0) x1 < x2(x3 + 1)
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Example of minimization

integer part of x1/x2 ≡ least x3 such that
(undefined if x2=0) x1 < x2(x3 + 1)

≡ µ2 f (x1, x2)

where f ∈ N
3
�N is

f (x1, x2, x3) ,

{

1 if x1 ≥ x2(x3 + 1)

0 if x1 < x2(x3 + 1)
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Definition. A partial function f is partial recursive
( f ∈ PR) if it can be built up in finitely many steps
from the basic functions by use of the operations of
composition, primitive recursion and minimization.

In other words, the set PR of partial recursive functions
is the smallest set (with respect to subset inclusion) of
partial functions containing the basic functions and
closed under the operations of composition, primitive
recursion and minimization.
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Definition. A partial function f is partial recursive
( f ∈ PR) if it can be built up in finitely many steps
from the basic functions by use of the operations of
composition, primitive recursion and minimization.

Theorem. Every f ∈ PR is computable.

Proof. Just have to show:

µn f ∈ N
n
�N is computable if f ∈ N

n+1
�N is.

Suppose f is computed by RM program F (with our usual I/O
conventions). Then the RM specified on the next slide computes
µn f . (We assume X1, . . . , Xn, C are some registers not mentioned in
F; and that the latter only uses registers R0, . . . , RN , where
N ≥ n + 1.)
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START

(X1,...,Xn)::=(R1,...,Rn)

(R1,...,Rn,Rn+1)::=(X1,...,Xn,C)

C+ (R0,Rn+2,...,RN)::=(0,0,...,0)

F

R
−
0

R0::=C HALT
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Computable = partial recursive

Theorem. Not only is every f ∈ PR computable, but
conversely, every computable partial function is partial
recursive.

Proof (sketch). Let f be computed by RM M. Recall how we
coded instantaneous configurations c = (`, r0, . . . , rn) of M as
numbers p[`, r0, . . . , rn]q. It is possible to construct primitive
recursive functions lab, val0, nextM ∈ N�N satisfying

lab(p[`, r0, . . . , rn]q) = `

val0(p[`, r0, . . . , rn]q) = r0

nextM(p[`, r0, . . . , rn]q) = code of M’s next configuration

(Showing that nextM ∈ PRIM is tricky—proof omitted.)
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Proof sketch, cont.

Let configM(~x, t) be the code of M’s configuration after t steps,
starting with initial register values ~x. It’s in PRIM because:

{

configM(~x, 0) = p[0,~x]q

configM(~x, t + 1) = nextM(configM(~x, t))
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Proof sketch, cont.

Let configM(~x, t) be the code of M’s configuration after t steps,
starting with initial register values ~x. It’s in PRIM because:

{

configM(~x, 0) = p[0,~x]q

configM(~x, t + 1) = nextM(configM(~x, t))

Can assume M has a single HALT as last instruction, Ith say (and
no erroneous halts). Let haltM(~x) be the number of steps M takes
to halt when started with initial register values ~x (undefined if M
does not halt). It satisfies

haltM(~x) ≡ least t such that I− lab(configM(~x, t)) = 0

and hence is in PR (because lab, configM , I− ( ) ∈ PRIM).
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Proof sketch, cont.

Let configM(~x, t) be the code of M’s configuration after t steps,
starting with initial register values ~x. It’s in PRIM because:

{

configM(~x, 0) = p[0,~x]q

configM(~x, t + 1) = nextM(configM(~x, t))

Can assume M has a single HALT as last instruction, Ith say (and
no erroneous halts). Let haltM(~x) be the number of steps M takes
to halt when started with initial register values ~x (undefined if M
does not halt). It satisfies

haltM(~x) ≡ least t such that I− lab(configM(~x, t)) = 0

and hence is in PR (because lab, configM , I− ( ) ∈ PRIM).

So f ∈ PR, because f (~x) ≡ val0(configM(~x, haltM(~x))).
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Definition. A partial function f is partial recursive
( f ∈ PR) if it can be built up in finitely many steps
from the basic functions by use of the operations of
composition, primitive recursion and minimization.

The members of PR that are total are called recursive
functions.

Fact: there are recursive functions that are not primitive
recursive. For example. . .
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Ackermann’s function

There is a (unique) function ack ∈ N
2
�N satisfying

ack(0, x2) = x2 + 1
ack(x1 + 1, 0) = ack(x1, 1)

ack(x1 + 1, x2 + 1) = ack(x1, ack(x1 + 1, x2))
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ack(x1 + 1, 0) = ack(x1, 1)

ack(x1 + 1, x2 + 1) = ack(x1, ack(x1 + 1, x2))

I ack is computable, hence recursive [proof: exercise].

I Fact: ack grows faster than any primitive recursive
function f ∈ N

2
�N:

∃N f ∀x1, x2 > N f ( f (x1, x2) < ack(x1, x2)).
Hence ack is not primitive recursive.
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