
Partial Recursive Functions

Computation Theory , L 8 101/171



Aim

A more abstract, machine-independent description of the
collection of computable partial functions than provided
by register/Turing machines:

they form the smallest collection of partial
functions containing some basic functions and
closed under some fundamental operations for
forming new functions from old—composition,
primitive recursion and minimization.

The characterization is due to Kleene (1936), building on work of
Gödel and Herbrand.
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Examples of recursive definitions
{

f1(0) ≡ 0

f1(x + 1) ≡ f1(x) + (x + 1)
f1(x) = sum of
0, 1, 2, . . . , x
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


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f2(0) ≡ 0

f2(1) ≡ 1

f2(x + 2) ≡ f2(x) + f2(x + 1)

f2(x) = xth Fibonacci
number
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f3(0) ≡ 0

f3(x + 1) ≡ f3(x + 2) + 1
f3(x) undefined except
when x = 0
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f2(x + 2) ≡ f2(x) + f2(x + 1)

f2(x) = xth Fibonacci
number

{

f3(0) ≡ 0

f3(x + 1) ≡ f3(x + 2) + 1
f3(x) undefined except
when x = 0

f4(x) ≡ if x > 100 then x− 10
else f4( f4(x + 11))

f4 is McCarthy’s "91
function", which maps
x to 91 if x ≤ 100 and
to x− 10 otherwise
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Primitive recursion
Theorem. Given f ∈ N

n
⇀N and g ∈ N

n+2
⇀N,

there is a unique h ∈ N
n+1

⇀N satisfying

{

h(~x, 0) ≡ f (~x)

h(~x, x + 1) ≡ g(~x, x, h(~x, x))

for all ~x ∈ N
n and x ∈ N.

We write ρn( f , g) for h and call it the partial function
defined by primitive recursion from f and g.

Computation Theory , L 8 104/171



Primitive recursion
Theorem. Given f ∈ N

n
⇀N and g ∈ N

n+2
⇀N,

there is a unique h ∈ N
n+1

⇀N satisfying

(∗)

{

h(~x, 0) ≡ f (~x)

h(~x, x + 1) ≡ g(~x, x, h(~x, x))

for all ~x ∈ N
n and x ∈ N.

Proof (sketch). Existence: the set

h , {(~x, x, y) ∈ N
n+2 | ∃y0, y1, . . . , yx

f (~x) = y0 ∧ (
∧x−1

i=0 g(~x, i, yi) = yi+1)∧ yx = y}
defines a partial function satisfying (∗).

Uniqueness: if h and h′ both satisfy (∗), then one can prove by
induction on x that ∀~x (h(~x, x) = h′(~x, x)).
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Example: addition

Addition add ∈ N
2
�N satisfies:

{

add(x1, 0) ≡ x1

add(x1, x + 1) ≡ add(x1, x) + 1

So add = ρ1( f , g) where

{

f (x1) , x1

g(x1, x2, x3) , x3 + 1

Note that f = proj1
1 and g = succ ◦ proj3

3; so add can
be built up from basic functions using composition and
primitive recursion: add = ρ1(proj1

1, succ ◦ proj3
3).
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Example: predecessor

Predecessor pred ∈ N�N satisfies:

{

pred(0) ≡ 0

pred(x + 1) ≡ x

So pred = ρ0( f , g) where

{

f () , 0

g(x1, x2) , x1

Thus pred can be built up from basic functions using
primitive recursion: pred = ρ0(zero0, proj2

1).

Computation Theory , L 8 107/171



Example: multiplication

Multiplication mult ∈ N
2
�N satisfies:

{

mult(x1, 0) ≡ 0

mult(x1, x + 1) ≡ mult(x1, x) + x1

and thus mult = ρ1(zero1, add ◦ (proj3
3, proj3

1)).

So mult can be built up from basic functions using
composition and primitive recursion (since add can be).
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Definition. A [partial] function f is primitive recursive
( f ∈ PRIM) if it can be built up in finitely many steps
from the basic functions by use of the operations of
composition and primitive recursion.

In other words, the set PRIM of primitive recursive
functions is the smallest set (with respect to subset
inclusion) of partial functions containing the basic
functions and closed under the operations of composition
and primitive recursion.
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Definition. A [partial] function f is primitive recursive
( f ∈ PRIM) if it can be built up in finitely many steps
from the basic functions by use of the operations of
composition and primitive recursion.

Every f ∈ PRIM is a total function, because:

I all the basic functions are total

I if f , g1, . . . , gn are total, then so is f ◦ (g1, . . . , gn)
[why?]

I if f and g are total, then so is ρn( f , g) [why?]
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Definition. A [partial] function f is primitive recursive
( f ∈ PRIM) if it can be built up in finitely many steps
from the basic functions by use of the operations of
composition and primitive recursion.

Theorem. Every f ∈ PRIM is computable.

Proof. Already proved: basic functions are computable;
composition preserves computability. So just have to show:

ρn( f , g) ∈ N
n+1

�N computable if f ∈ N
n
�N and

g ∈ N
n+1

�N are.

Suppose f and g are computed by RM programs F and G (with our
usual I/O conventions). Then the RM specified on the next slide
computes ρn( f , g). (We assume X1, . . . , Xn+1, C are some registers
not mentioned in F and G; and that the latter only use registers
R0, . . . , RN , where N ≥ n + 2.)
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START (X1,...,Xn+1,Rn+1)::=(R1,...,Rn+1,0)

F

C+ C=Xn+1? yes

no

HALT

(R1,...,Rn,Rn+1,Rn+2)::=(X1,...,Xn,C,R0)

G (R0,Rn+3,...,RN)::=(0,0,...,0)
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