
Turing Machines

Computation Theory , L 6 69/171

Algorithms, informally

No precise definition of “algorithm” at the time Hilbert
posed the Entscheidungsproblem, just examples.

Common features of the examples:

I finite description of the procedure in terms of
elementary operations

e.g. multiply two decimal digits by
looking up their product in a table

I deterministic (next step uniquely determined if there
is one)

I procedure may not terminate on some input data,
but we can recognize when it does terminate and
what the result is.

Computation Theory , L 6 70/171

Register Machine computation abstracts away from any
particular, concrete representation of numbers (e.g. as
bit strings) and the associated elementary operations of
increment/decrement/zero-test.

Turing’s original model of computation (now called a
Turing machine) is more concrete: even numbers have to
be represented in terms of a fixed finite alphabet of
symbols and increment/decrement/zero-test
programmed in terms of more elementary
symbol-manipulating operations.

Computation Theory , L 6 71/171

Register Machine computation abstracts away from any
particular, concrete representation of numbers (e.g. as
bit strings) and the associated elementary operations of
increment/decrement/zero-test.

Turing’s original model of computation (now called a
Turing machine) is more concrete: even numbers have to
be represented in terms of a fixed finite alphabet of
symbols and increment/decrement/zero-test
programmed in terms of more elementary
symbol-manipulating operations.

Computation Theory , L 6 71/171

Turing machines, informally

q

↓
. 0 1 0 1 1 · · ·

Computation Theory , L 6 72/171

Turing machines, informally

q

↓
. 0 1 0 1 1 · · ·

machine is in one of
a finite set of states

tape symbol
being scanned by
tape head

special left endmarker symbol
special blank symbol

linear tape, unbounded to right, divided into cells
containing a symbol from a finite alphabet of
tape symbols. Only finitely many cells contain
non-blank symbols.

Computation Theory , L 6 72/171

Turing machines, informally

q

↓
. 0 1 0 1 1 · · ·

I Machine starts with tape head pointing to the special left
endmarker ..

Computation Theory , L 6 73/171

Turing machines, informally

q

↓
. 0 1 0 1 1 · · ·

I Machine starts with tape head pointing to the special left
endmarker ..

I Machine computes in discrete steps, each of which depends
only on current state (q) and symbol being scanned by tape
head (0).

Computation Theory , L 6 73/171

Turing machines, informally

q

↓
. 0 1 0 1 1 · · ·

I Machine starts with tape head pointing to the special left
endmarker ..

I Machine computes in discrete steps, each of which depends
only on current state (q) and symbol being scanned by tape
head (0).

I Action at each step is to overwrite the current tape cell with a
symbol, move left or right one cell, or stay stationary, and
change state.

Computation Theory , L 6 73/171

Turing Machines

are specified by:

I Q, finite set of machine states

I Σ, finite set of tape symbols (disjoint from Q) containing
distinguished symbols . (left endmarker) and (blank)

I s ∈ Q, an initial state

I δ ∈ (Q× Σ)�(Q∪ {acc, rej})× Σ×{L, R, S}, a
transition function—specifies for each state and symbol a next
state (or accept acc or reject rej), a symbol to overwrite the
current symbol, and a direction for the tape head to move
(L=left, R=right, S=stationary).

Computation Theory , L 6 74/171

Turing Machines

are specified by:

I Q, finite set of machine states

I Σ, finite set of tape symbols (disjoint from Q) containing
distinguished symbols . (left endmarker) and (blank)

I s ∈ Q, an initial state

I δ ∈ (Q× Σ)�(Q∪ {acc, rej})× Σ×{L, R, S}, a
transition function, satisfying:

for all q ∈ Q, there exists q′ ∈ Q∪ {acc, rej}
with δ(q, .) = (q′, ., R)
(i.e. left endmarker is never overwritten and machine always

moves to the right when scanning it)

Computation Theory , L 6 74/171

Example Turing Machine

M = (Q, Σ, s, δ) where

states Q = {s, q, q′} (s initial)

symbols Σ = {., , 0, 1}

transition function

δ ∈ (Q× Σ)�(Q∪ {acc, rej})× Σ×{L, R, S}:

δ . 0 1
s (s, ., R) (q, , R) (rej, 0, s) (rej, 1, s)
q (rej, ., R) (q′, 0, L) (q, 1, R) (q, 1, R)
q′ (rej, ., R) (acc, , S) (rej, 0, S) (q′, 1, L)

Computation Theory , L 6 75/171

Turing machine computation

Turing machine configuration: (q, w, u)

where

I q ∈ Q∪ {acc, rej} = current state

I w = non-empty string (w = va) of tape symbols under and
to the left of tape head, whose last element (a) is contents of
cell under tape head

I u = (possibly empty) string of tape symbols to the right of
tape head (up to some point beyond which all symbols are)

(So wu ∈ Σ
∗ represents the current tape contents.)

Computation Theory , L 6 76/171

Turing machine computation

Turing machine configuration: (q, w, u)

where

I q ∈ Q∪ {acc, rej} = current state

I w = non-empty string (w = va) of tape symbols under and
to the left of tape head, whose last element (a) is contents of
cell under tape head

I u = (possibly empty) string of tape symbols to the right of
tape head (up to some point beyond which all symbols are)

Initial configurations: (s, ., u)

Computation Theory , L 6 76/171

Turing machine computation

Given a TM M = (Q, Σ, s, δ), we write

(q, w, u)→M (q′, w′, u′)

to mean q 6= acc, rej, w = va (for some v, a) and

either δ(q, a) = (q′, a′, L), w′ = v, and u′ = a′u

or δ(q, a) = (q′, a′, S), w′ = va′ and u′ = u

or δ(q, a) = (q′, a′, R), u = a′′u′′ is non-empty,
w′ = va′a′′ and u′ = u′′

or δ(q, a) = (q′, a′, R), u = ε is empty, w′ = va′␣
and u′ = ε.

Computation Theory , L 6 76/169

Turing machine computation

A computation of a TM M is a (finite or infinite)
sequence of configurations c0, c1, c2, . . .

where

I c0 = (s, ., u) is an initial configuration

I ci→M ci+1 holds for each i = 0, 1,

The computation

I does not halt if the sequence is infinite

I halts if the sequence is finite and its last element is
of the form (acc, w, u) or (rej, w, u).

Computation Theory , L 6 78/171

Example Turing Machine

M = (Q, Σ, s, δ) where

states Q = {s, q, q′} (s initial)

symbols Σ = {., , 0, 1}

transition function

δ ∈ (Q× Σ)�(Q∪ {acc, rej})× Σ×{L, R, S}:

δ . 0 1
s (s, ., R) (q, , R) (rej, 0, s) (rej, 1, s)
q (rej, ., R) (q′, 0, L) (q, 1, R) (q, 1, R)
q′ (rej, ., R) (acc, , S) (rej, 0, S) (q′, 1, L)

Claim: the computation of M starting from configuration
(s, ., 1n0) halts in configuration (acc, . , 1n+10).

Computation Theory , L 6 79/171

Example Turing Machine

M = (Q, Σ, s, δ) where

states Q = {s, q, q′} (s initial)

symbols Σ = {., , 0, 1}

transition function

δ ∈ (Q× Σ)�(Q∪ {acc, rej})× Σ×{L, R, S}:

δ . 0 1
s (s, ., R) (q, , R) (rej, 0, s) (rej, 1, s)
q (rej, ., R) (q′, 0, L) (q, 1, R) (q, 1, R)
q′ (rej, ., R) (acc, , S) (rej, 0, S) (q′, 1, L)

Claim: the computation of M starting from configuration
(s, ., 1n0) halts in configuration (acc, . , 1n+10).

a string of n 1s

Computation Theory , L 6 79/171

The computation of M starting from configuration
(s , . , 1n0):

(s , . , 1n0) →M (s , . , 1n0)
→M (q , . 1 , 1n−10)
...
→M (q , . 1n , 0)
→M (q , . 1n0 , ε)
→M (q , . 1n+1 , ε)
→M (q′ , . 1n+1 , 0)
...
→M (q′ , . , 1n+10)
→M (acc , . , 1n+10)

Computation Theory , L 6 80/171

Theorem. The computation of a Turing machine M
can be implemented by a register machine.

Proof (sketch).

Step 1: fix a numerical encoding of M’s states, tape
symbols, tape contents and configurations.

Step 2: implement M’s transition function (finite
table) using RM instructions on codes.

Step 3: implement a RM program to repeatedly carry
out→M.

Computation Theory , L 6 81/171

Step 1

I Identify states and tape symbols with particular
numbers:

acc = 0 = 0
rej = 1 . = 1

Q = {2, 3, . . . , n} Σ = {0, 1, . . . , m}

I Code configurations c = (q, w, u) by:

pcq = p[q, p[an, . . . , a1]q, p[b1, . . . , bm]q]q

where w = a1 · · · an (n > 0) and u = b1 · · · bm

(m ≥ 0) say.

Computation Theory , L 6 82/171

Step 1

I Code configurations c = (q, w, u) by:

pcq = p[q, p[an, . . . , a1]q, p[b1, . . . , bm]q]q

where w = a1 · · · an (n > 0) and u = b1 · · · bm

(m ≥ 0) say.

reversal of w makes it easier to
use our RM programs for list
manipulation

Computation Theory , L 6 82/171

Step 2

Using registers

Q = current state

A = current tape symbol

D = current direction of tape head
(with L = 0, R = 1 and S = 2, say)

one can turn the finite table of (argument,result)-pairs
specifying δ into a RM program→ (Q, A, D) ::= δ(Q, A)→
so that starting the program with Q = q, A = a, D = d
(and all other registers zeroed), it halts with Q = q′,
A = a′, D = d′, where (q′, a′, d′) = δ(q, a).

Computation Theory , L 6 83/171

Step 3

The next slide specifies a RM to carry out M’s
computation. It uses registers

C = code of current configuration

W = code of tape symbols at and left of tape head
(reading right-to-left)

U = code of tape symbols right of tape head (reading
left-to-right)

Starting with C containing the code of an initial
configuration (and all other registers zeroed), the RM
program halts if and only if M halts; and in that case C

holds the code of the final configuration.
Computation Theory , L 6 84/171

START HALT

p[Q,W,U]q::=C Q<2?

yes

no pop W

to A
(Q,A,D)::=δ(Q,A)

C::=p[Q,W,U]q push A

to W
Q<2?yes

no

push A

to U D−

push B

to W

pop U

to B D−
push A

to W

Computation Theory , L 6 85/171

