Turing Machines

Computation Theory , L 6 69/171

Algorithms, informally

No precise definition of “algorithm™ at the time Hilbert
posed the Entscheidungsproblem, just examples.

Common features of the examples:

» finite description of the procedure in terms of
elementary operations

» deterministic (next step/uniquely determined if there
is one)

» procedure may not ferminate on some input data,
but we can recognize when it does terminate and

what the result/is.

e.g. multiply two decimal digits by
looking up their product in a table

Computation Theory , L 6 0/171

Register Machine computation abstracts away from any
particular, concrete representation of numbers (e.g. as
bit strings) and the associated elementary operations of
increment/decrement/zero-test.

Turing's original model of computation (now called a
Turing machine) is more concrete: even numbers have to
be represented in terms of a fixed finite alphabet of
symbols and increment/decrement/zero-test
programmed in terms of more elementary
symbol-manipulating operations.

Computation Theory , L 6 71/171

Register Machine computation abstracts away from any
particular, concrete representation of numbers (e.g. as
bit strings) and the associated elementary operations of
increment/decrement/zero-test.

Turing's original model of computation (now called a
Turing machine) is more concrete: even numbers have to
be represented in terms of a fixed finite alphabet of
symbols and increment/decrement/zero-test
programmed in terms of more elementary
symbol-manipulating operations.

Computation Theory , L 6 71/171

Turing machines, informally

Computation Theory , L 6 72/171

Turing machines, informally

machine is in one of
a finite set of states

tape symbol

>

0

g

being scanned by
/ tape head

|

special left endmarker symbol

special blank symbol

linear tape, unbounded to right, divided into cells
containing a symbol from a finite alphabet of
tape symbols. Only finitely many cells contain

non-blank symbols.

Computation Theory , L 6

72/171

Turing machines, informally

>IO|u(1/0/1 |, |1 (Ll

» Machine starts with tape head pointing to the special left
endmarker >.

Computation Theory , L 6 73/171

Turing machines, informally

%
5100 1101010 o]

» Machine starts with tape head pointing to the special left
endmarker D>.

» Machine computes in discrete steps, each of which depends
only on current state (g) and symbol being scanned by tape
head (0).

Computation Theory , L 6 73/171

Turing machines, informally

¥
5100 11010100

» Machine starts with tape head pointing to the special left
endmarker D>.

» Machine computes in discrete steps, each of which depends
only on current state (g) and symbol being scanned by tape
head (0).

» Action at each step is to overwrite the current tape cell with a
symbol, move left or right one cell, or stay stationary, and
change state.

Computation Theory , L 6 73/171

Turing Machines
are specified by:

» Q, finite set of machine states

» X, finite set of tape symbols (disjoint from Q) containing
distinguished symbols > (left endmarker) and , (blank)

» s € Q, an initial state

» € (QXX)»(QU{acc,rej}) X X x {L,R,S}, a
transition function—specifies for each state and symbol a next
state (or accept acc or reject rej), a symbol to overwrite the
current symbol, and a direction for the tape head to move
(L=left, R=right, S=stationary).

Computation Theory , L 6 74/171

Turing Machines
are specified by:

» @, finite set of machine states

» X, finite set of tape symbols (disjoint from Q) containing
distinguished symbols > (left endmarker) and , (blank)

» s € Q, an initial state

» € (QxX)-(QU{acc,rej}) XL x {L,R,S}, a
transition function, satisfying:

for all g € Q, there exists g’ € Q U {acc,rej}
with §(g,>) = (4’,>, R)

(i.e. left endmarker is never overwritten and machine always
moves to the right when scanning it)

Computation Theory , L 6 74/171

Example Turing Machine

M = (Q,%L,s,) where

states Q = {s, 4,4’} (s initial)
symbols £ = {1,,0,1}
transition function

€ (QxX)»(QU{acc,rej}) XL X {L,R,S}:

J | > U 0 1

s| (ss>R) (9,,,R) (rej0,s) (rej,1,s)
q | (rej,>,R) (q,0,L) (q,1,R) (q,1,R)
q | (rej,>,R) (acc,,S) (rej,0,S) (4',1,L)

Computation Theory , L 6 75/171

Turing machine computation

Turing machine configuration: (g, w, u)

where

» g € QU {acc,rej} = current state

» w = non-empty string (w = va) of tape symbols under and
to the left of tape head, whose last element (a) is contents of
cell under tape head

» u = (possibly empty) string of tape symbols to the right of
tape head (up to some point beyond which all symbols are |})

(So wu € L* represents the current tape contents.)

Computation Theory , L 6 76/171

Turing machine computation

Turing machine configuration: (g, w, u)
where

» g € QU {acc,rej} = current state

» w = non-empty string (w = va) of tape symbols under and
to the left of tape head, whose last element (a) is contents of
cell under tape head

» u = (possibly empty) string of tape symbols to the right of
tape head (up to some point beyond which all symbols are |})

Initial configurations: (s, >, u)

Computation Theory , L 6 76/171

Turing machine computation
Givena TM M = (Q,L%,s,d), we write

(qr w, u) —M (q,r w’, u,)

to mean q # acc,rej, w = va (for some v, a) and

either 8(g,a) = (q’,a’,L), w' = v, and u’ = a’u

or 6(g,a) = (q’,a’,S), w’ =va’ andu’ =u
or d(g,a) = (q',a’,R), u = a""u" is non-empty,

w' = va’a” and v’ = u”

or 6(q,a) = (q’, a’,R), u = ¢ is empty, w = va’,,
and 1’ = e.

Computation Theory , L 6 76/169

Turing machine computation

A computation of a TM M is a (finite or infinite)
sequence of configurations ¢y, ¢y, C3, . . .

where

» co = (s,D,u) is an initial configuration
» ¢; — Cit1 holds for each i =0,1,....

The computation

» does not halt if the sequence is infinite

» halts if the sequence is finite and its last element is
of the form (acc, w, u) or (rej, w,u).

Computation Theory , L 6 78/171

Example Turing Machine

M = (Q,%L,s,) where

states Q = {s, 4,4’} (s initial)
symbols £ = {1,,0,1}
transition function

€ (QxX)»(QU{acc,rej}) XL X {L,R,S}:

J | > U 0 1

s| (ss>R) (9,,,R) (rej0,s) (rej,1,s)
q | (rej,>,R) (q,0,L) (q,1,R) (q,1,R)
q | (rej,>,R) (acc,,S) (rej,0,S) (4',1,L)

Claim: the computation of M starting from configuration
(s,>,1"0) halts in configuration (acc, >, 1"110).

Computation Theory , L 6 79/171

Example Turing Machine

M = (Q,%L,s,) where

states Q = {s, 4,4’} (s initial)
symbols £ = {1,,0,1}
transition function

€ (QxX)»(QU{acc,rej}) XL X {L,R,S}:

J | > U 0 1
s| (ss>R) (9,,,R) (rej0,s) (rej,1,s)
q | (e3> R) (q,0,L) (4,1L,R) (q,1R)

(ns ’S, R) (aCC/ Ly S) (rej’O’ S) (q,’ 1’ L)
|a string of n 1s

Claim: the computation of M starting from configuration
(s,>,1"0) halts in configuration (acc, >, 1"110).

Computation Theory , L 6

79/171

The computation of M starting from configuration
(s, >, u1"0):
(s, >, u1"0) —u (s, >y, 1"0))
—m (q,001,1"770) Hape head
: vawi»\? rijW‘C
—M (6], > 1", 0) j

—m (g,>u1"0, €)
—M (l]; [>I_l1n+li_ll 8) W
—u (g, 1", 0) Tape head

—M (q/, >y, 1n+10) MWW\? LQ'IQt
—um (acc, >y, 17110)

Computation Theory , L 6 80/171

Theorem. The computation of a Turing machine M

can be implemented by a register machine.

Proof (sketch).

Step 1: fix a numerical encoding of M's states, tape
symbols, tape contents and configurations.

Step 2: implement M's transition function (finite
table) using RM instructions on codes.

Step 3: implement a RM program to repeatedly carry
out — .

Computation Theory , L 6 81/171

Step 1

» Identify states and tape symbols with particular
numbers:

acc
rej

Q

0 L
1 >
{2,3,...,n} | L

0
1

{0,1,...,m}

» Code configurations ¢ = (g, w, u) by:

L— '_[q,'_[an,...,al]—l,r[blr---rbm]_l]—l

where w = ay+--a, (n >0)and u =by---by,
(m > 0) say.

Computation Theory , L 6

82/171

Step 1

reversal of w makes it easier to
use our RM programs for list
manipulation

» Code configiixations ¢ #= (g, w, u) by:

Nl '_[q, [un,...,al]—l,'—[bll-“rbm]_l]—l

where w = ay---a, (n>0)and u =by--- by,
(m > 0) say.

Computation Theory , L 6 82/171

Step 2
Using registers

Q = current state
A = current tape symbol

D = current direction of tape head
(with L=10, R=1and S = 2, say)

one can turn the finite table of (argument,result)-pairs
specifying § into a RM program —|(Q,4,D) :=6(Q,A) |—
so that starting the program with Q =g, A=a,D=d
(and all other registers zeroed), it halts with Q = ¢/,
A=a',D=d' where (q/,a’,d") = 5(q,a).

Computation Theory , L 6 83/171

The next slide specifies a RM to carry out M's
computation. It uses registers

C = code of current configuration

W = code of tape symbols at and left of tape head
(reading right-to-left)

U = code of tape symbols right of tape head (reading
left-to-right)

Starting with C containing the code of an initial
configuration (and all other registers zeroed), the RM
program halts if and only if M halts; and in that case C
holds the code of the final configuration.

Computation Theory , L 6 84/171

START HALT

r - pop W —_
[QW,U] ::=C ? s — (QAD)==5(Q,4) |

push A Z -
to U D

< Rmain S\‘p\ﬂonm\j'

push B=<———pop U D- push A
tow ~—— toB | 7% to W

move i 3[«-‘-

Computation Theory , L 6 85/171

