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Summary

The first part of this course covers the design of the various parts of a

fairly basic compiler for a pretty minimal language. The second part of

the course considers various language features and concepts common

to many programming languages, together with an outline of the kind of

run-time data structures and operations they require.

The course is intended to study compilation of a range of languages

and accordingly syntax for example constructs will be taken from vari-

ous languages (with the intention that the particular choice of syntax is

reasonably clear).

The target language of a compiler is generally machine code for

some processor; this course will only use instructions common (modulo

spelling) to x86, ARM and MIPS—with MIPS being favoured because

of its use in the Part IB course “Computer Design”.

In terms of programming languages in which parts of compilers

themselves are to be written, the preference varies between pseudo-

code (as per the ‘Data Structures and Algorithms’ course) and language

features (essentially) common to C/C++/Java/ML.

The following books contain material relevant to the course.

Compilers—Principles, Techniques, and Tools

A.V.Aho, R.Sethi and J.D.Ullman

Addison-Wesley (1986)
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Ellis Horwood (1982)

Compiler Design in Java/C/ML (3 editions)

A.Appel

Cambridge University Press (1996)

Compiler Design

R.Wilhelm and D.Maurer

Addison Wesley (1995)

Introduction to Compiling Techniques

J.P.Bennett

McGraw-Hill (1990)

A Retargetable C Compiler: Design and Implementation

C.Frazer and D.Hanson

Benjamin Cummings (1995)

Compiler Construction

W.M.Waite and G.Goos

Springer-Verlag (1984)

High-Level Languages and Their Compilers

D.Watson

Addison Wesley (1989)
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is that antlr can output code for C, C++, Java and C♯. The notes

also contain various longer exercises.

If there is enough demand (ask Jennifer or your student representative)

then I will print copies.
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Teaching and Learning Guide

The lectures largely follow the syllabus for the course which is as fol-

lows.

• Survey of execution mechanisms. The spectrum of interpreters

and compilers; compile-time and run-time. Structure of a simple

compiler. Java virtual machine (JVM), JIT. Simple run-time struc-

tures (stacks). Structure of interpreters for result of each stage of

compilation (tokens, tree, bytecode). [3 lectures]

• Lexical analysis and syntax analysis. Recall regular expres-

sions and finite state machine acceptors. Lexical analysis: hand-

written and machine-generated. Recall context-free grammars.

Ambiguity, left- and right-associativity and operator precedence.

Parsing algorithms: recursive descent and machine-generated.

Abstract syntax tree; expressions, declarations and commands.

[2 lectures]

• Simple type-checking. Type of an expression determined by

type of subexpressions; inserting coercions. [1 lecture]

• Translation phase. Translation of expressions, commands and

declarations. [1 lecture]
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• Code generation. Typical machine codes. Code generation from

intermediate code. Simple peephole optimisation. [1 lecture]

• Object Modules and Linkers. Resolving external references.

Static and dynamic linking. [1 lecture]

• Non-local variable references. Lambda-calculus as prototype,

Landin’s principle of correspondence. Problems with rec and

class variables. Environments, function values are closures. Static

and Dynamic Binding (Scoping). [1 lecture]

• Machine implementation of a selection of interesting thing s.

Free variable treatment, static and dynamic chains, ML free vari-

ables. Compilation as source-to-source simplification, e.g. clo-

sure conversion. Argument passing mechanisms. Objects and

inheritance; implementation of methods. Labels, goto and excep-

tions. Dynamic and static typing, polymorphism. Storage alloca-

tion, garbage collection. [3 lectures]

• Parser Generators. A user-level view of Lex and Yacc. [1 lecture]

• Parsing theory and practice. Phrase Structured Grammars. Chom-

sky classification. LL(k) and LR(k) parsing. How tools like Yacc

generate parsers, and their error messages. [2 lectures]
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A good source of exercises is the past 20 or 30 years’ (sic) Tripos

questions in that most of the basic concepts of block-structured lan-

guages and their compilation to stack-oriented code were developed in

the 1960s. The course ‘Optimising Compilation’ in CST (part II) con-

siders more sophisticated techniques for the later stages of compilation

and the course ‘Comparative Programming Languages’ considers pro-

gramming language concepts in rather more details.

Note: the course and these notes are in the process of being re-

structured. I would be grateful for comments identifying errors or read-

ability problems.
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1 Introduction and Overview

Never put off till run-time what you can do at compile-time.

[David Gries]

A compiler is a program which translates the source form of a program

into a semantically equivalent target form. Traditionally this was ma-

chine code or relocatable binary form, but nowadays the target form

may be a virtual machine (e.g. JVM) or indeed another language such

as C.

For many CST students, the idea of writing a compiler is liable to be

rather daunting. Indeed to be able to do so requires total understanding

of all the dark corners of the programming language (for example refer-

ences to outer method arguments from methods defined in a Java inner

class, or exactly which ML programs type-check). Moreover, a compiler

writer needs to know how best to exploit instructions, registers and id-

ioms in the target machine—after all we often judge a compiler by how

quickly compiled programs run. Compilers can therefore be very large.

In 20041 the Gnu Compiler Collection (GCC) was noted to “[consist] of

about 2.1 million lines of code and has been in development for over 15

years”.

On the other hand, the core principles and concepts of compilation

are fairly simple (when seen in the correct light!) so the first part of
1 http://www.redhat.com/magazine/002dec04/features/gcc/.
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this course explains how to construct a simple compiler for a simple

language—here essentially just the features common to all three of C,

Java and ML. This need not require significantly more than 1000–2000

lines of code. The standard conceptual problem is “where do I even

start?”. For example, deciding which version of an overloaded operator

to use is hard enough, but doing it alongside determining when an inner

expression finishes and choosing the appropriate x86, ARM or MIPS

instruction to implement it seems at first require a brain the size of a

planet. The (time-established) solution is to break down a compiler into

phases or passes. Each pass does a relatively simple transformation

on its input to yield its output, and the composition of the passes is

the desired compiler (even GCC follows this model). This solution is

called a multi-pass compiler and is ubiquitous nowadays. An analogy:

juggling 5 balls for 1 minute is seriously hard, but juggling one ball for

one minute, followed by another for one minute, and so on until all 5

balls have been juggled is much easier.

As an aside, note that many modern languages require a multi-pass

compiler: in both the two programs below, it is rather hard to emit code

for function f() until the definition of g() is found. In Java

class A {

public int f() { return g(1); } // i.e. g(1.0)

// ... many lines before we find ...

public int g(double x) { ... }

15



}

or in ML:

val g = 3;

fun f(x) = ... g ...

and g(x) = ...;

1.1 The structure of a typical multi-pass compiler

We will take as an example a compiler with four passes.

�
�

�
�

character
stream

-

lex

�
�

�
�

token
stream

-

syn

�
�

�
�

parse
tree

-

trans

�
�

�
�

intermediate
code

-

cg

�
�

�
�

target
code

1.2 The lexical analyser

The lexical analyser reads the characters of the source program and

recognises the basic syntactic components that they represent. It will

recognise identifiers, reserved words, numbers, string constants and all

other basic symbols (or tokens) and throw away all other ignorable text

such as spaces, newlines and comments. For example, the result of

lexical analysis of the following program phrase:
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{ let x = 1;

x := x + y;

}

might be:

LBRACE LET ID/x EQ NUM/1 SEMIC ID/x ASS ID/x PLUS ID/y

SEMIC RBRACE

Lexical tokens are often represented in a compiler by small integers;

for composite tokens such as identifiers, numbers, etc. additional in-

formation is passed by means of pointers into appropriate tables; for

example calling a routine lex() might return the next token while set-

ting a global variable lex aux string to the string form of an identifier

when ID is returned, similarly lex aux int might be set to the binary

representation of an integer when NUM is returned.

This is perhaps a rather old-fashioned and non-modular approach

to returning multiple values from a function (return one and leave the

additional values lying around), but it is often used in C and forms the

model used by lex and yacc—see later. Of course, if you prefer a

functional style, then an ML datatype for tokens is just what is required,

or in Java a class Token which is extended to give classes Token_Id

or Token_Int as required.
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1.3 The syntax analyser

This will recognise the syntactic structure of the sequence of tokens

delivered by the lexical analyser. The result of syntax analysis is often

a tree representing the syntactic structure of the program. This tree is

sometime called an abstract syntax tree. The syntax analyser would

recognise that the above example parses as follows:

id exp exp exp exp

definition exp

declaration command

block

LBRACE LET ID/x EQ NUM/1 SEMIC ID/x ASS ID/x PLUS ID/y SEMIC RBRACE

and it might be represented within the compiler by the following tree

structure:
LET EQDEF

ASS

NUMB

ID

PLUS

ID

1

x

y

where the tree operators (e.g. LET and EQDEF) are represented as small

integers.

In order that the tree produced is not unnecessarily large it is usually

constructed in a condensed form as above with only essential syntactic

features included. It is, for instance, unnecessary to represent the ex-

pression x occurring as part of x+y as an <exp> which is a <factor>
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which is a <primary> which is an <identifier>. This would take more

tree space and would also make later processing less convenient. Simi-

larly, nodes representing identifiers are often best stored uniquely—this

saves store and reduces the problem of comparing whether identifiers

are equal to simple pointer equality. The phrase ‘abstract syntax tree’

refers to the fact the only semantically important items are incorporated

into the tree; thus a+b and ((a)+(((b))) might have the same repre-

sentation, as might while (e) C and for(;e;) C.

1.4 The translation phase

The translation pass/phase flattens the tree into a linear sequence of

intermediate object code. At the same time it can deal with

1. the scopes of identifiers,

2. declaration and allocation of storage,

3. selection of overloaded operators and the insertion of automatic

type transfers.

However, nowadays often a separate ‘type-checking’ phase is run on

the syntax tree before translation. This phase at least conceptually

modifies the syntax tree to indicate which version of an overloaded op-

erator is required. We will say a little more about this in Section 5.

The intermediate object code for the statement:
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y := x<=3 ? -x : x

might be as follows (using for JVM as an example intermediate code):

iload 4 load x (4th load variable, say)

iconst 3 load 3

if_icmpgt L36 if greater (i.e. condition false) then jump

iload 4 load x

ineg negate it

goto L37 jump to L37

label L36

iload 4 load x

label L37

istore 7 store y (7th local variable, say)

Alternatively, the intermediate object code could be represented within

the compiler as a directed graph2 as follows:

iload 4iconst 3if icmpgt�
�

A
A

iload 4

iload 4

ineg
A

A

�
�
istore 7-

1.5 The code generator

The code generation pass converts the intermediate object code into

machine instructions and outputs them in either assembly language
2 The Part II course on optimising compilers will take this approach but here it would merely add to

the weight of concepts for no clear gain.
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or relocatable binary form in so-called object files. The code genera-

tor is mainly concerned with local optimisation, the allocation of target-

machine registers and the selection of machine instructions. Using the

above intermediate code form of

y := x<=3 ? -x : x

we can easily produce (simple if inefficient) MIPS code of the form using

the traditional downwards-growing MIPS stack:3

lw $a0,-4-16($fp) load x (4th local variable)

ori $a1,$zero,3 load 3

slt $t0,$a1,$a0 swap args for <= instead of <

bne $t0,$zero,L36 if greater then jump to L36

lw $a0,-4-16($fp) load x

sub $a0,$zero,$a0 negate it

addi $sp,$sp,-4 first part of PUSH...

sw $a0,0($sp) ... PUSH r0 (to local stack)

B L37 jump to L37

L36: lw $a0,-4-16($fp) load x

addi $sp,$sp,-4 first part of PUSH...

sw $a0,0($sp) ... PUSH r0 (to local stack)

L37: lw $a0,0($sp) i.e. POP r0 (from local stack)...

3 Why does ‘4’ turn into ‘-4-16’? Well iload counts from zero, the MIPS is byte addressed, and so

‘iload 0’ corresponds to ‘-4($fp)’.
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addi $sp,$sp,4 ... 2nd part of POP

sw $a0,-4-28($sp) store y (7th local variable)

Or on ARM

LDR r0,[fp,#-4-16] load x (4th local variable)

MOV r1,#3 load 3

CMP r0,r1

BGT L36 if greater then jump to L36

LDR r0,[fp,#-4-16] load x

RSB r0,r0,#0 negate it

STMDB sp!,{r0} i.e. PUSH r0 (to local stack)

B L37 jump to L37

L36: LDR r0,[fp,#-4-16] load x

STMDB sp!,{r0} i.e. PUSH r0 (to local stack)

L37: LDMIA sp!,{r0} i.e. POP r0 (from local stack)

STR r0,[fp,#-4-28] store y (7th local variable)

(x86 code would be very similar, if spelt differently—see Section 7.)

This code has the property that it can simply be generated from the

above JVM code on an instruction-by-instruction basis (which explains

why I have not hand-optimised the PUSHes and POPs away).

When compilers produce textual output in a file (for example gcc) it

is necessary to have a separate program (usually called an assembler)

to convert this into an object file. An assembler is effectively a simple
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compiler which reads an instruction at a time from the input stream

and writes the binary representation of these into the object file output.

One might well argue that this is a separate pass, which separates the

formatting of the binary file from the issue of deciding which code to

generate.

1.6 Compiler Summary

The four passes just described form a clear-cut logical division of a

compiler, but are not necessarily applied in sequence. It is, for in-

stance, common for the lexical analyser to be a subroutine of the syntax

analyser and for it to be called whenever the syntax analyser requires

another lexical token. Similarly the translation and code generation

phases could be combined for an ultra-simple compiler producing code

of similar quality to our structure (they are left separate for the peda-

gogic gain of explaining stack code, JIT compilation, etc. as part of this

course). Some compilers have additional passes, particularly for com-

plex language features or if a high degree of optimisation is required.

Examples might be separating the type-checking phase from the trans-

lation phase (for example as code which replaces source-level types

in the syntax tree with more machine-oriented type information), or by

adding additional phases to optimise the intermediate code structures

(e.g. common sub-expression elimination which reworks code to avoid
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re-calculating common subexpressions).

The advantages of the multi-pass approach can be summarised as:

1. It breaks a large and complicated task into smaller, more man-

ageable pieces. [Anyone can juggle with one ball at a time, but

juggling four balls at once is much harder.]

2. Modifications to the compiler (e.g. the addition of a synonym for

a reserved word, or a minor improvement in compiler code) often

require changes to one pass only and are thus simple to make.

3. A multi-pass compiler tends to be easier to describe and under-

stand.

4. More of the design of the compiler is language independent. It is

sometimes possible to arrange that all language dependent parts

are in the lexical and syntax analysis (and type-checking) phases.

5. More of the design of the compiler is machine independent. It is

sometimes possible to arrange that all machine dependent parts

are in the code generator.

6. The job of writing the compiler can be shared between a number

of programmers each working on separate passes. The interface

between the passes is easy to specify precisely.
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1.7 The linker

Most programs written in high-level languages are not self-contained.

In particular they may be written in several modules which are sepa-

rately compiled, or they may merely use library routines which have

been separately compiled. With the exception of Java (or at least the

current implementations of Java), the task of combining all these sep-

arate units is performed by a linker (on Linux the linker is called ld

for ‘loader’ for rather historical reasons). A linker concatenates its pro-

vided object files, determines which library object files are necessary

to complete the program and concatenates all these to form a single

executable output file. Thus classically there is a total separation be-

tween the idea of compile-time (compiling and linking commands) and

run-time (actual execution of a program).

In Java, the tendency is to write out what is logically the intermedi-

ate language form (i.e. JVM instructions) into a .class file. This is then

dynamically loaded (i.e. read at run-time) into the running application.

Because (most) processors do not execute JVM code directly, the JVM

code must be interpreted (i.e. simulated by a program implementing the

JVM virtual machine). An alternative approach is to use a so-called just

in time (JIT) compiler in which the above code-generator phase of the

compiler is invoked to convert the loaded JVM code into native machine

instructions (selected to match the hardware on which the Java program
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is running). This idea forms part of the “write once, compile once, run

anywhere” model which propelled Java into prominence when the inter-

net enabled .class files (applets) to be down-loaded to execute inside

an Internet browser.

1.8 Compilers and Interpreters

The above discussion on Java execution mechanism highlights one fi-

nal point: traditionally user-written code is translated to machine code

appropriate to its execution environment where it is executed directly by

the hardware. The JVM virtual machine above is an alternative of an

interpreter-based system. Other languages which are often interpreted

are Basic, various scripting languages (for shells, spreadsheets and the

like), perl, Ruby, Python etc. The common thread of these languages

is that traditional compilation as above is not completed and some data

structure analogous to the input data-structure of one of the above com-

piler phases. For example, some Basic interpreters will decode lexical

items whenever a statement is executed (thus syntax errors will only

be seen at run-time); others will represent each Basic statement as a

parse tree and refuse to accept syntactically invalid programs (so that

run-time never starts). What perhaps enables Java to claim to be a

compiled language is that compilation proceeds far enough that all er-

roneous programs are rejected at compile-time. Remaining run-time
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problems (e.g. de-referencing a NULL pointer) are treated as excep-

tions which can be handled within the language.

I will present a rather revisionist view on compilers and interpreters

at the end of the course (§11.3).

1.9 Machine code

A compiler generally compiles to some form of machine code, so it is

hard to understand what a compiler does unless we understand its out-

put. While modern processors (particularly the x86 family) are compli-

cated, there is a common (RISC-like) subset to most typical processors,

and certainly for the x86, MIPS, ARM and SPARC.

All that this course really needs are target instructions which:

• load a constant to a register (possibly in multiple instructions)

[MIPS movhi/ori].

• do arithmetic/logical/comparison operators on two registers and

leaving the result in a register (possibly one of the source regis-

ters) [MIPS add, or etc.].

• load and store register-sized values to and from memory; these

need to support two addressing modes—(i) absolute addressing

(accessing a fixed location in memory) and (ii) indexed addressing

(add a fixed offset to a register and use that as the address to
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access). Note that many instruction sets effectively achieve (i) by

first loading a constant representing an address into a register and

then use (ii) to complete the operation. [MIPS lw, sw].

• perform conditional branches, jump (possibly saving a return ad-

dress) to fixed locations (or to a location specified in a register).

[MIPS beq/bne, j/jal,jr/jalr].

Students are reminded of last term’s ‘Computer Design’ course which

introduced both MIPS and JVM code.

Reminder: the MIPS has 32 registers; registers $a0–$a3 are used

for arguments and local temporaries in a procedure; $zero always holds

zero; $fp holds a pointer (“stack frame”) in which the local variables can

be found. Global variables are allocated to fixed memory locations. The

exact locations (absolute addresses for global variables, offsets from

$fp for locals) have been selected by the compiler (see later in these

notes as to how this can be done).

Instructions are fetched from pc; this is not a user-visible regis-

ter (unlike ARM), but is stored in $ra by subroutine jump instructions

jal/jalr, a return from a subroutine can be effected by jr $ra.

So, for simple primitives

• constants are just loaded into a register, e.g. 0x12345678 by

movhi $a0,0x1234
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ori $a0,$a0,0x5678

• local variables at offset <nn> are loaded/stored by

lw $a0,<nn>($fp)

sw $a0,<nn>($fp)

• global variables at address (say) 0x00be3f04 are loaded/stored

with

movhi $a3,0x00be

lw $a0,0x3f04($a3)

sw $a0,0x3f04($a3)

• operations like plus just use the corresponding machine opera-

tion:

add $a2,$a0,$a1

• function calling is again more complicated (particularly on the MIPS

or ARM where the first four arguments to a function are passed

in registers $a0–$a3 and subsequent ones left at the top of the

callers’ stack). We will ignore this here and assume a JVM-like

convention: a caller pushes the arguments to a function on the

stack and leaves register $sp pointing to the most recently pushed.

29



The callee then makes a new stack frame by pushing the old value

of $fp (and the return address—pc following caller) on the stack

and then setting $fp to $sp to form the new stack frame.

• function return is largely the opposite of function call; on the MIPS

place the result in $v0 then de-allocate the locals by copying $fp

into $sp, finally pop the caller’s FP into $fp and pop the return

address and branch (jr on MIPS) to it. On the MIPS there is

a caller-removes-arguments convention (unlike the JVM) where

the caller is responsible for popping arguments immediately after

return.

1.10 Typical JVM instructions

The full JVM instruction set is quite daunting at first. However, because

of our choice of a simple programming language, we need very few

JVM instructions to express all its concepts. These are:

iconst 〈n〉 push integer n onto the stack. Because the JVM was de-

signed to be interpreted, there are special opcodes iconst 0,

iconst 1 and variants taking 8-bit, 16-bit and 32-bit operands

(widened to 32 bits). These make only efficiency differences and

we will treat them as a single instruction.

iload 〈k〉 push the kth local variable onto the stack. This is also used
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to push arguments—for a n argument function when 0 ≤ k <

n − 1 then an argument is pushed, for n > k a local.

istore 〈k〉 pop the stack into the kth local variable.

getstatic 〈class:field 〉 push a static field (logically a global variable)

onto the stack. One might wonder why it is not igetstatic; the

answer is that the type ‘int’ is encoded in the 〈class:field〉 descrip-

tor.

putstatic 〈class:field 〉 pop the stack into a static field (logically a

global variable).

iadd, isub, ineg etc. arithmetic on top of stack.

invokestatic call a function.

ireturn return (from a function) with value at top of stack

if icmpeq ℓ, also if icmpgt, etc. pop two stack items, compare them

and perform a conditional branch on the result.

goto unconditional branch.

label ℓ not an instruction: just declares a label. In assembly code

form (human readable) labels ℓ are strings, but in the binary form

conditional branches have numeric offsets and label pseudo-

instructions are not represented.
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One of the reasons for selecting JVM code as intermediate code in

our simple compiler is the simple way the above subset may be trans-

lated to MIPS code. The Microsoft language C# has a very close re-

semblance to Java and their .NET (or CLR) virtual machine code a sim-

ilar relationship to JVM code. Their divergence owes more to commer-

cial reasons than to technological ones (one person’s “minimal change

to keep this side of IPR law” is another person’s “doing it properly after

failing to agree commercial terms”!)

1.11 Variables, Stacks and Stack Frames

For simple programming languages (and hence the first part of this

course), there are only two forms of variables—local variables defined

within a function, and global (or top-level) variables which are accessi-

ble from multiple functions.

Global variables will be allocated to a fixed location in memory and

typically accessed by ‘absolute addressing’. Local variables are more

tricky: when a function calls itself recursively a local variable, v, will

need to be stored in a different memory location in the callee from

where it is stored in the caller. This is resolved by using a stack.4

4 Note that the word ‘stack’ is used with subtly different meanings—all have the notion of LIFO (last-

in first-out), but sometimes as here (and Operating Systems) it abbreviates ‘stack segment’ and means

a block of memory in which stack frames are allocated and sometimes (JVM) it abbreviates ‘operand

stack’ which is used to evaluate expressions within a stack frame.
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A stack is a block of memory in which stack frames are allocated.

They will be de-allocated in the reverse order.5 When a function is

called, a new stack frame is allocated and a machine register, the frame

pointer ($fp on the MIPS), is set up to point to it. When a function

returns, its stack frame is deallocated and $fp restored to point to the

stack frame of the caller. Just as a global variable is held in a fixed

location in memory, a local variable is held at a fixed offset from $fp; i.e.

local variables are accessed using indexed addressing. Thus loading

the 5th local variable on the MIPS will map to something like

lw $a0,-20($fp)

given integers are 4 bytes wide, and also assuming which direction

variables are allocated (I have followed the MIPS convention that local

variables live below $fp). Suppose main() calls f() which then calls

f() recursively, then during the recursive call to f() the stack will look

like:6

stack

frame for mainframe for fframe for f

$fp
6

� direction of growth

〈unused〉

Thus, the local variables of f() will be allocated twice (once for each

active call), those of main() once, and those of all other functions zero
5Unlike the heap, introduced later, where there is no expectation at compile time of when the store

will become free.
6 This is a downward-growing stack in which the stack grows from higher addresses to lower ad-

dresses.
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times (as they are not currently being invoked). Note that from this

diagram, it is apparent that the only variables which can be accessed

are global variables, and those in the currently active function—doing

more than this is an issue for Part C of these notes.

First we must return to more pressing issues: we have said nothing

yet about how stack frames are allocated and de-allocated (particularly

mysterious above is how $fp is restored on return) and we have made

no mention of passing parameters between procedures. If we adopt the

conventional FP/SP model, then both of these problems can be solved

together. In the FP/SP model, an additional machine register (called

$sp on the MIPS) is reserved for stack management. Confusingly at

first, this is the called stack pointer.7 The stack pointer always points

to the lowest-allocated location in the entire stack (which is also the

lowest-allocated location in the most recently allocated stack frame).

Hence, on a procedure call, allocating a new stack frame is simply a

matter of copying $sp into $fp. But, we need to be able to return from

the procedure too. Hence, before we corrupt $fp, we first need to save

the old value of $fp and also the return address—$pc value immedi-

ately after the call site (on the MIPS this is stored in $31, also known as

$ra, by the jal instruction). Together, this pair (old FP, RA) constitute

the linkage information which now forms part of a stack frame. So, on

7 Arguably, ‘stack fringe pointer’ might be a better name but sadly both ‘fringe’ and ‘frame’ begin

with ‘f’!
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entry to a procedure, we expect to see instructions such as

foo: sw $ra,-4(sp) ; save $ra in new stack location

sw $fp,-8(sp) ; save $fp in new stack location

addi $sp,$sp,-8 ; make space for what we stored

addi $fp,$sp,0 ; $fp points to this new frame

To return from a procedure we expect to see code to invert this:

fooxit: addi $sp,$fp,8 ; restore $sp at time of call

lw $ra,-4(sp) ; load return address

lw $fp,-8(sp) ; restore $fp to be caller’s stack

jr $ra ; branch back to caller

There are many ways to achieve a similar effect: I have chosen one

which draws nicely pictorially ($fp points to linkage information).8 Lo-

cal variables are allocated by decrementing $sp, and deallocated by

incrementing $sp. A frame now looks like:

local vars

FP
6

FP′ RA

A stack now looks like:
8 In practice, debuggers will expect to see stack frames laid out in a particular manner (and the de-

fined layout for the MIPS has a few quaintnesses), but to achieve maximum compatibility it is necessary

to follow the tool-chain’s ABI (application binary interface), part of the API (application programming

interface).
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stack

frame for mainframe for fframe for f

$fp
6

FPRA FPRA FPRAlocals locals locals
HHH 6HHH 6

$sp
6

〈unused〉

Finally, we need to deal with parameter passing. Because passing

parameters in registers is much faster than passing them in memory,

the MIPS procedure calling standard mandates that first first four argu-

ments to a procedure are passing in registers $a0–$a3. For simplicity in

this course (and also compatibility with JVM and traditional x86 calling

standards) we ignore this and pass all parameters on the stack. The

mechanism works like this: to call a procedure:

• the caller and callee agree that the parameters are left in memory

cells at $sp, $sp+4, etc. This is achieved by:

• the caller evaluates each argument in turn,9 pushing it onto $sp—

i.e. decrementing $sp and storing the argument value at the newly

allocated cell.

• the callee stores the linkage information contiguous with the re-

ceived parameters, and so they can be addressed as $fp+8, $fp+12,

etc. (assuming 2-word linkage information pointed at by $fp).

9In Java this is done left-to-right; in C (and indeed for the MIPS calling standard) the convention

(which will ignore in this course, but which is useful if you have real MIPS code to read) is that the

arguments are pushed right-to-left which means, with a downward-growing stack, that they appear

first-argument in lowest memory.
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In a sense the caller allocates arguments to a call in memory in its

stack frame but the callee regards this memory as being part of its

stack frame. So here are the two views (both valid!):

local vars

FP+8
6

FP
6

FP′ RAarguments

arguments local vars

SP
6

FP
6

FP′ RA

With this setup, local variables and (received) parameters are both ad-

dressed as local variables—parameters as positive offsets from $fp,

and locally declared variables as negative offsets. Argument lists being

formed are evaluated and pushed on $sp.

There remains one significant issue: a dichotomy as what to do on

return from a procedure—is the callee or caller responsible for removing

the arguments from the stack? For MIPS, the caller is responsible, on

the JVM the callee.

1.12 Overall address space use

It is useful to remind ourselves that programs typically occupy various

locations in a modern 0..232 − 1 address space map:

0x00000000 0xffffffff
. . . code. . .static data. . .stack. . .heap. . .
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The items listed above are often called segments: thus the code seg-

ment or the stack segment. We will only discuss the heap segment in

Part C of these notes.

1.13 Stack frames in Java

The use of JVM instructions can be illustrated by considering the fol-

lowing Java program fragment:

class fntest {

public static void main(String args[]) {

System.out.println("Hello World!" + f(f(1,2),f(3,4)));

}

static int f(int a, int b) { int y = a+b; return y*a; }

}

The JVM code generated for the function f might be:

f:

iload 0 ; load a

iload 1 ; load b

iadd

istore 2 ; store result to y

iload 2 ; re-load y

iload 0 ; re-load a
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imul

ireturn ; return from fn with top-of-stack value as

and the series of calls in the println in main as:

iconst 1

iconst 2

invokestatic f

iconst 3

iconst 4

invokestatic f

invokestatic f

Note how two-argument function calls just behave like binary operators

in that they remove two items from the stack and replace them with

one; the instructions invokestatic and ireturn both play their part in

the conspiracy to make this happen. You really must work through the

above code step-by-step to understand the function call/return protocol.

I have omitted some subtleties here—such fine detail represents ‘ac-

cidental’ implementation artifacts and is neither examinable nor helpful

to understanding (unless you actually need to build a JVM implementa-

tion following Sun’s standard). These include:

• There is no stack management code shown at entry to f; this is

stored as meta-data in the JVM file, in particularly there are two
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magic numbers associated with f: these are (np, nv). The meta-

data np is the number of parameters to f (this is used by ireturn

to remove parameters and at entry to setup fp. The meta-data nv

is the number of local variables of f and is used on entry to decre-

ment SP to make space for local variables (on JVM these are all

allocated on entry, even if this “wastes space” for local variable

only in-scope for part of the function body). Note also that know-

ing nv at entry makes for simple convenient checking the stack

has not overflowed the space allocated.

• Local variable access and parameter access both use iload with

operand (0..np+nv−1); when its operand is (0..np−1) it references

parameters and when it is (np..np + nv − 1) it references locals—

hence in the interpreter fp points to an offset from where it would

be placed on the MIPS.

• As a consequence, the JVM linkage information cannot obviously

be placed between parameters and locals (as done on most sys-

tems including MIPS). In an interpreter this can easily be resolved

by placing linkage information on a separate (parallel) stack held

in the interpreter; on a JIT compiler then the k in “iload 〈k〉” can

be adjusted (according to whether or not k < np) to leave a gap

for linkage information.
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1.14 Reading compiler output

Reading assembly-level output is often useful to aid understanding of

how language features are implemented; if the compiler can produce

assembly code directly then use this feature, for example

gcc -S foo.c

will write a file foo.s containing assembly instructions. Otherwise, use

a disassembler to convert the object file back into assembler level form,

e.g. in Java

javac foo.java

javap -c foo

Using .net languages on linux, the mondis tool can be applied to

an executable bytecode file to generate a disassembly of the contents.
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Part A: A simple language and
interpreters for it

2 A simple language and its execution struc-

tures

This course attempts to be language neutral (both source language and

implementation language). As said before, a compiler can be written in

a language of your choice, e.g. Java, C or ML. However, as we will

see in Part C of the course, certain language features pose significant

implementation problems, or at least require significant implementation

effort in representing these features in terms of the simpler features we

use here (examples are function definitions nested within other func-

tions, non-static methods—dealing with the this pointer, exceptions

and the like).

Accordingly for the first part of the course we consider a source

language with

• only 32-bit integer variables (declared with int), constants and

operators;

• no nested function definitions, but recursion is allowed.
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Although we do not introduce the formal notation used below until

later in the course, our source language has: expressions, declarations

and commands of the following form.

<expr> ::= <number>

| <var>

| <expr> <binop> <expr> ;; e.g. + - * / & | ^

| <monop> <expr> ;; unary operators: - ~

| <fnname>(<expr>*)

| <expr> ? <expr> : <expr>

<cmd> ::= <var> = <expr>;

| if (<expr>) <cmd> else <cmd>

| while (<expr>) <cmd>

| return <expr>;

| { <decl>* <cmd>* }

<decl> ::= int <var> = <expr>;

| int <fnname>(int <var> ... int <var>) <cmd>

<program> ::= <decl>*

We will assume many things normally specified in detail in a language

manual, e.g. that <var> and <fnname> are distinct, that the <cmd> of

a function body must be a ({}-enclosed) ‘block’ and that <decl>s ap-

pearing within a <cmd> may not define functions. (When you come to

re-read these notes, you’ll realise that this specifies the abstract syntax
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of our language, and the concrete syntax can be used to enforce many

of these requirements as well as specifying operator precedence.)

The language given above is already a subset of C. Moreover, it is

also a subset of ML modulo spelling.10 It can also be considered as a

subset of Java (wrap the program within a single class with all functions

declared static). Note that static class members are the nearest thing

Java has to a ‘global’ or ‘top-level’ variable—one accessible from all

functions and typically created before any function is called.

Sometimes, even such a modest language is rather big for conve-

nient discussion in lectures. It can then help to look at a functional

‘subset’: we skip the need to consider <cmd> and <decl> by requiring

the <cmd> forming a function body to be of the form { return e; }.

Because this makes the language rather too small (we have lost the

ability to define local variables) it is then useful to include an ‘let’ form

declaring a variable local to an <expr> as in ML:

<expr> ::= <number>

| ...

| let <var> = <expr> in <expr>

For the moment, we’re going to assume that we already have a com-

piler and to consider how the various intermediate outputs from stages

10Care needs to be taken with variables; a <var> declaration needs to use ML’s ‘ref’, the <var> at

the left of an assignment is unchanged and all <var>s in <expr>s need an explicit ‘!’ to dereference.
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in the compiler may be evaluated. This is called interpretation. Direct

interpretation by hardware is usually called execution. But of course, it

is possible that our compiler has generated code for an obsolete ma-

chine, and we wish to interpret that on our shiny new machine. So, let

us consider interpreting a program in:

character-stream form: while early Basic interpreters would have hap-

pily re-lexed and re-parsed a statement in Basic whenever it was

encountered, the runtime overhead of doing so (even for our min-

imal language) makes this no longer sensible;

token-stream form: again this is very slow, memory is now so abun-

dant and parsing so fast that it can be done when a program is

read; historically BBC Basic stored programs in tokenised form,

rather than storing the syntax tree (this was for space reasons)

syntax-tree form: this is a natural and simple form to interpret (the

next section gives an example for our language). It is noteworthy

(linking ideas between courses) to note that operational seman-

tics are merely a form of interpreter. Syntax tree interpreters are

commonly used for PHP or Python.

intermediate-code form the suitability of this for interpretation depends

on the choice of intermediate language; in this course we have

chosen JVM as the intermediate code—and historically JVM code
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was downloaded and interpreted. See subsequent sections for

how to write a JVM interpreter.

target-code form if the target code is identical to our hardware then (in

principle) we just load it and branch to it! Otherwise we can write

an interpreter (normally interpreters for another physical machine

are called instruction set simulators or emulators) in the same

manner as we might write a JVM interpreter.

2.1 A syntax-tree interpreter

While writing a full interpreter for these notes is rather excessive, let us

focus on the core aspects. We will have type definitions in the imple-

mentation language for the constructs in the tree. Expressing these in

ML, then for our language11 this might be:

datatype Expr = Num of int

| Var of string

| Add of Expr * Expr

| Times of Expr * Expr

| Apply of string * (Expr list)

| Cond of Expr * Expr * Expr

| Let of string * Expr * Expr;

11 I’ve cheated a little by introducing let, but at this point I do not wish to spell out an interpreter for

Cmd and Decl so let provides an easy way of showing how local variables can be dealt with.

46



datatype Cmd = ...

datatype Decl =...

(a fuller set of type definitions are given in Section 6.2). To evaluate an

expression we need to be able to get the values of variables it uses (its

environment). We will simply use a list of (name,value) pairs. Because

our language only has integer values, it suffices to use the ML type env

with interpreter function lookup:

type env = (string * int) list

fun lookup(s:string, []) = raise UseOfUndeclaredVar

| lookup(s, (t,v)::rest) = if s=t then v else lookup(s,rest);

Now the interpreter for Expr (interpreters for expressions are tradition-

ally called eval even if Interpret Expr would be more appropriate for

large-scale software engineering) is:

(* eval : Expr * env -> int *)

fun eval(Num(n), r) = n

| eval(Var(s), r) = lookup(s,r)

| eval(Add(e,e’), r) = eval(e,r) + eval(e’,r)

| eval(Times(e,e’), r) = eval(e,r) * eval(e’,r)

| eval(Cond(e,e’,e’’), r) = if eval(e,r)=0 then eval(e’’,r)

else eval(e’,r)

| eval(Let(s,e,e’), r) = let val v = eval(e,r) in
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eval(e’, (s,v)::r)

end

You’ll see I have skipped the apply case. This is partly because func-

tion call with parameters is one of the more complicated operations in

a compiler or interpreter, and partly because (as we’ll see later) there

are subtleties with nested functions. In our mini-language, we only have

two forms of variables: global (defined at top level), and local (and these

are local to the procedure being executed).12 Parameters and local vari-

ables treated equivalently—a good understanding for execution models

(and indeed for many languages) is that a parameter is just a local vari-

able initialised by the caller, rather than explicitly within a function body.

For understanding function calls in such simple language (and indeed

for understanding local versus global variables), it is convenient to think

of the interpreter having two environments—one (rg) holding the name

and values of global variables, the other (rl) of local variables. Then

the code for apply might be (assuming zip takes a pair of lists and

forms a list of pairs—here a new environment):

(* eval : Expr * env * env -> int *)

fun eval(Num(n), rg,rl) = n

| eval(Var(s), rg,rl) = if member(s,rl) then lookup(s,rl)

12 Subtleties later include access to local variables other than those in the procedure being executed,

and access to instance variables in object-oriented languages
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else lookup(s,rg)

| ...

| eval(Apply(s,el), rg,rl) =

let val vl = <evaluate all members of el> (* e.g. using

val (params,body) = lookupfun(s)

val rlnew = zip(params,vl) (* new local

in eval(body, rg,rlnew)

end

Again, I have cheated—I’ve assumed the function body is just an Expr

whereas for my mini-language it should be a Cmd—and hence the call to

eval should really be a call to Interpret Cmd. However, I did warn in

the introduction that for simplicity I will sometimes only consider the

functional subset of our mini-language (where the Cmd in a function

is of the form { return e; } and lookupfun() now merely returns

e and the function’s parameter list. Extending to Interpret Cmd and

Interpret Decl opens additional cans of worms, in that Interpret Cmd

needs to be able to assign to variables, so (at least in ML) environments

now need to have modifiable values:

type env = (string * int ref) list

These notes have attempted to keep the structure clear; see the course

web page for a full interpreter.
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At this point it is appropriate to compare (non-

examinably) this idea of a “syntax tree interpreter” for

a given language with that of an “operational seman-

tics” for the same language (as per the Part IB course

of the same name).

At some level an interpreter is exactly an operational

semantics (and vice versa). Both are written in a for-

mal language (a program in one case and mathematical

rules in the other) and precisely specify the meaning of

a program (beware: care needs to be taken here if the

source language contains non-deterministic constructs,

such as race conditions, which an interpreter might re-

solve by always taking one possible choice of the many

possible allowed by the semantics).

The essential difference in usage is that: an interpreter

is written for program execution (and typically for effi-

cient execution, but sometimes also for semantic ex-

planation), while an operational semantics aims at sim-

plicity in explanation and ability to reason about pro-

grams without necessarily being executable. This differ-

ence often leads to divergence in style; for example the

simplest operational semantics for the lambda-calculus

uses substitution of one term for a variable within an-

other. However, our eval function uses an environ-

ment which effectively eliminates the need to do substi-

tution on syntax trees by deferring it to variable access

where it is a trivial lookup operation. Substitution is of-

ten relatively expensive and creates new syntax trees
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2.2 A JVM Interpreter

This section illustrates the structure of an interpreter for JVM code. It

is useful to help familiarisation with the JVM instruction set, but also

stands as an example of a byte-code interpreter.

The JVM is an example of a “byte-code” interpreter. Each instruction

on the JVM consists of a single byte specifying the opcode, followed by

one or more operands depending on this opcode.

First we define enumeration constants, one for each virtual machine

operation: for example (using the barbarous Java syntax13 for this)

static final int OP_iload = 1;

static final int OP_istore = 2;

static final int OP_iadd = 3;

static final int OP_isub = 4;

static final int OP_itimes = 5;

The structure of a JVM interpreter is of the form (note that here we

use a downwards growing stack):

void interpret()

{ byte [] imem; // instruction memory

int [] dmem; // data memory

int PC, SP, FP; // JVM registers

13 Java post-version 1.5 now supports type-safe enum types.
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int T; // a temporary

...

for (;;) switch (imem[PC++])

{

case OP_iconst_0: dmem[--SP] = 0; break;

case OP_iconst_1: dmem[--SP] = 1; break;

case OP_iconst_B: dmem[--SP] = imem[PC++]; break;

case OP_iconst_W: T = imem[PC++]; dmem[--SP] = T<<8 | imem[PC++];

/* Note use of FP-k below because we use a downwards growing

/* see also below */

case OP_iload_0: dmem[--SP] = dmem[FP]; break;

case OP_iload_1: dmem[--SP] = dmem[FP-1]; break;

case OP_iload_B: dmem[--SP] = dmem[FP-imem[PC++]]; break;

case OP_iadd: dmem[SP+1] = dmem[SP+1]+dmem[SP]; SP++;

case OP_istore_0: dmem[FP] = dmem[SP++]; break;

case OP_istore_1: dmem[FP-1] = dmem[SP++]; break;

case OP_istore_B: dmem[FP-imem[PC++]] = dmem[SP++]; break;

case OP_goto_B: PC += imem[PC++]; break;

/* etc etc etc */
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}

}

Note that, for efficiency, many JVM instructions come in various forms,

thus while iconst w is perfectly able to load the constant zero to the

stack (taking 3 bytes of instruction), a JVM compiler will prefer to use

the 1-byte form iconst 0.

Java bytecode can be compiled to real machine code at execution

time by a JIT-ing virtual machine. This might compile the whole pro-

gram to native machine code before commencing execution, but such

an approach would give a start-up delay. Instead, a lightweight profiling

system can detect frequently-executed subroutines or basic blocks and

selectively compile them. On a modern multicore machine, the com-

pilation need not slow down the interpreting stage since it is done by

another core.

2.3 Interpreting ‘real’ machine code

Sometimes we have a compiler for an obsolete machine (or even just

an executable file from an architecture other than that of our current

machine). This can be executed using an instruction set simulator that

emulates a real architecture.
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Part B: A Simple Compiler

3 Lexical analysis

Lexical analysis, also known as lexing or tokenisation is an important

part of a simple compiler since it can account for more than 50% of the

compile time. While this is almost irrelevant for a compiler on a modern

machine, the painful wait for many a program to read XML-formatted

input data shows that lessons are not always learnt! The reason lexing

can be slow is because:

1. character handling tends to be expensive, and

2. there are a large number of characters in a program compared

with the number of lexical tokens.

Nowadays it is pretty universally the case that programming lan-

guage tokens are defined as regular expressions on the input character

set. Lexical tokens are amenable to definition with regular expressions

since they have no long-range or nested structure. This compares with

general syntax analysis that requires parenthesis matching and so on.
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3.1 Regular expressions

When all the lexical tokens of a language can be described by regular

expressions it follows that the recognition can be performed by a finite

state algorithm.

A regular expression is composed of characters, operators for con-

catenation (juxtaposition), alternation (|) and repetition *, and paren-

theses are used for grouping. For example, (a b | c)* d is a regular

expression. It can be regarded as a specification of a potentially infinite

set of strings, in this case:

d

abd cd

ababd abcd cabd ccd

etc.

Given any regular expression, there is a finite state automaton which

will accept exactly those strings generated by the regular expression. A

(deterministic) finite state automaton is a 5-tuple (A, Q, q0, δ, F ) where

A is a alphabet (a set of symbols), Q is a set of states, q0 ∈ Q is

the start state, δ : Q × A → Q is a transition function and F ⊆ Q

is the set of accepting states. It is often simpler first to construct a

non-deterministic finite automaton which is as above, but the transition

function is replaced by a transition relation δ ⊆ Q × A × Q.
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=> E

=>

=>

E1

E2

E1 E2

E

E1|E2

E*

=>

E1 E2

(E)

Figure 1: Re-write rules converting a regular expression to an automa-

ton

When such an automaton is drawn diagrammatically we often refer

to it as a transition diagram. Constructing the finite state automaton

from a regular expression can be then seen as starting with a single

transition labelled (rather illegally for our definition of finite state au-

tomaton) with the regular expression; and then repeatedly applying the

re-write rules in Fig. 1 to the transition diagram (this gives a FSA, not

necessarily the minimal one!): The transition diagram for the expression

“(a b | c)* d” is:

a b

d

c

A finite state automaton can be regarded as a generator of strings by

applying the following algorithm:

1. Follow any path from the starting point to any accessible box.
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2. Output the character in the box.

3. Follow any path from that box to another box (possibly the same)

and continue from step (2). The process stops when an exit point

is reached (exit points correspond to accepting states).

We can also use the transition diagram as the basis of a recogniser

algorithm. For example, an analyser to recognise :=, :, <numb> and

<id> might have the following transition diagram:
: =

letter

digit

letter

digit digit

COLON

ID
etc

yes
ASS

NUMB

yes

no

no

no

no

no
yes

yes

no

no

Optimisation is possible (and needed) in the organisation of the

tests. This method is only satisfactory if one can arrange that only

one point in the diagram is active at any one time (i.e. the finite state

automaton is deterministic).

Note that finite state automata are alternatively (and more usually)

written as a directed graph with nodes representing states and labelled

edges representing the transition function or relation. For example, the

graph for the expression “(a b | c)* d” can also be drawn as follows:

1

2

3
d

b

a

c
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With state 3 designated an accepting state, this graph is a finite state

automaton for the given regular expression. The automaton is easily

implemented using a transition matrix to represent the graph.

3.2 Example: floating point tokens

We will demonstrate the method by expressing one (slightly unusual)

possible syntax of floating point numbers as a regular expression. Rather

than use a single regular expression, we will allow (non-recursively!)

named regular expressions to be defined and used (this is harmless

as they can be thought of as macros to be expanded away, but it does

help human readability). First, some named regular expressions for

basic constructs:

s = + | − sign

e = E exponent symbol

p = . decimal point

d = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 digit

I’ve used lower case here not for any strong formal reason, but be-

cause s, e, p, d all represent exactly one character and hence when

hand-implementing a lexer it is often convenient to see them as a char-

acter class (cf. isdigit()). So, now let’s define a floating point number
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F step by step:

J = d d∗ unsigned integer

I = s J | J signed integer

H = J | p J | J p J digits maybe with ‘.’

G = H | e I | H e I H maybe with exponent

F = G | s G G optionally signed

Note that some of the complexity is due to expressing things precisely,

e.g. H allows three cases: a digit string, a digit string preceded a point,

or a point with digits either side, but disallows things like “3.”.14

With some thought we can represent regular expression F as the

following deterministic finite-state automaton (this can be automated

but requires significant effort to get this minimal FSA):

1 2 3 87654

p p

d

d

d

e s

dd

d ee e

dd ps

with states S3, S5 and S8 being accepting states. Formally, the need

to recognise the longest string matching the input (e.g. ‘3.1416’ rather

than ‘3.1’ leaving ‘416’ unread; since 3.1416 and 3.1 both result in state

8) means that we only accept when we find a character other than one

14There are other oddities in the syntax given, such as an integer without ‘.’ or ‘E’ being allowed, and

a string like ‘E42’ being allowed. Exercise 1: give a better syntax.
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which can form part of the number. The corresponding matrix is as

follows:

s d p e other

S1 S2 S3 S4 S6 .

S2 . S3 S4 S6 .

S3 . S3 S4 S6 acc

S4 . S5 . . .

S5 . S5 . S6 acc

S6 S7 S8 . . .

S7 . S8 . . .

S8 . S8 . . acc

In a program that uses this technique each matrix entry might also spec-

ify the address of some code to deal with the transition15 and note the

next matrix row to be used. The entry acc would point to the code that

processes a complete floating point number. Blank entries correspond

to syntactic error conditions.

In general, this technique is fast and efficient, but if used on a large

scale it requires some effort to keep the size of the matrix under control

(note for example that treating characters {+,−, E, ·, 0, . . . , 9} as sep-

arate entries rather than character groups {s, e, p, d} would have made

the table several times larger.

15 E.g. multiply the current total by 10 and add on the current digit
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As an aside, it is worth noting that for human-engineering reasons

we rely on having names for regular expressions: while theoretically

these can just be macro-expanded to give a large regular expression

(you should note that none of my names, like F , I or d were recursively

used), in practice this regular expression is exponentially larger than

using named regular expressions and a good deal harder for humans

to understand.

Later we will look at an automated tool (lex) for producing such ta-

bles from regular expressions.

4 Syntax analysis

Programming languages have evolved by-and-large to have syntax de-

scribable with a context-free grammar (introduced in the Part IA course

Regular Languages and Finite Automata).

A context-free grammar is a four-tuple (N, T, S, R) where T and N

are disjoint sets of respectively terminal and non-terminal symbols16,

S ∈ N is the start (or sentence) symbol, and R is a finite set of pro-

ductions. The unqualified word symbol is used to mean any member of

N ∪ T . In a context-free grammar the productions are of the form

U −→ A1 A2 · · · Ak

16 In the context of this course terminal symbols are simply tokens resulting from lexing.
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where the U is a non-terminal and A1 A2 · · · Ak (k ≥ 0) are (terminal or

non-terminal) symbols. We use letters like S, U, V, X, Y to range over

non-terminal symbols and letters like A, B, C to range over (terminal

and non-terminal) symbols.

A grammar generates a set of symbol strings called sentential forms:

• S is a sentential form;

• if B1 · · · Bm U C1 · · · Cn is a sentential form then so is B1 · · · Bm A1 · · ·

A sentential form is a sentence if it contains no non-terminal. The se-

quence of re-writes using production rules to produce a sentence is

called its derivation. The language generated by a grammar is the set

of its sentences.

Informally a grammar has additional symbols (non-terminals) which

are not part of the language we wish to describe (whose phrases only

contain terminals). The ‘rule’ for determining which strings are part of

the language is then a two-part process: strings containing such non-

terminals can be re-written to other strings (perhaps also containing

other non-terminals) using production rules; the language defined by

the grammar is merely the set of strings containing no non-terminal

symbols. For example suppose we have a grammar for Java expres-

sions, with start symbol being the non-terminal <expr>, then the gen-

erated language would include 1, 2, 1+2, 1+1+1, (1+1)+1 but not

12+, nor <expr>+3 (the latter is only a sentential form, not a sentence).
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In simple examples of grammars, a convention of “upper-case means

non-terminal and everything else is terminal” suffices. For use in pro-

gramming languages (which generally allow most ASCII symbols as to-

kens) it is important to have a clearer separation between non-terminals

and terminals. Two important (and opposite) variations of this are:

• Backus-Naur Form (BNF): non-terminals are written between an-

gle brackets (e.g. <expr>) while everything else stands for a ter-

minal. (Informally: “non-terminals are quoted”.) The text ‘::=’ is

used instead of ‘−→’

• Parser generators like yacc assume the convention were all termi-

nal symbols are written within quotes (”) or otherwise named, and

alphanumeric sequences are used for non-terminals. (Informally:

“terminals are quoted”.)

These differences are inessential to understanding, but vital to writing

machine-readable grammars. Because context-free grammars typically

have several productions having the same terminal on the left-hand

side, the notation

U −→ A1 A2 · · · Ak | · · · | B1 B2 · · · Bℓ

is used to abbreviate

U −→ A1 A2 · · · Ak
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· · ·

U −→ B1 B2 · · · Bℓ.

But beware when counting: there are still multiple productions for U ,

not one.

Practical tools which read grammars often include additional meta-

characters to represent shorthands in specifying grammars (such as

the ‘*’ used for repetition in in Section 2). For further information see

BNF and EBNF (‘extended’) e.g. via

http://en.wikipedia.org/wiki/Backus-Naur_form.

While the definition of grammars focusses on generating sentences,

a far more important use in compiler technology is that of recognising

whether a given symbol string is a sentence of a given grammar. More

importantly still, we wish to know what derivation (sequence of re-writes

using production-rules) resulted in the string. It turns out that this cor-

responds to a parse tree of the string. This process of taking a symbol

string and returning a parse term corresponding to it if it is a sentence

of a given grammar and otherwise rejecting it is unsurprisingly called

syntax analysis or parsing.

Before explaining how to make parsers from a grammar we first

need to understand them a little more.
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4.1 Grammar engineering

A grammar is ambiguous if there are two or more ways of generating

the same sentence. Convince yourself that the follow three grammars

are ambiguous:

a) S −→ A B

A −→ a | a c

B −→ b | c b

b) S −→ a T b | T T

T −→ a b | b a

c) C −→ if E then C else C | if E then C

Clearly every grammar is either ambiguous or it is not. However, it turns

out that it is undecidable (not possible to write a program to determine)

whether a given context-free grammar is ambiguous or not. It is sur-

prisingly difficult for humans to tell whether a grammar is ambiguous.

One example of this is that the productions in (c) above appeared in the

original Algol 60 published specification.

It is very easy to write an ambiguous grammar. A good example is

one with two production rules:

E −→ 1 | E-E
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[Question: what are the terminals? Non-terminals? Start symbol?]

Now consider the input 1-1-1. Assuming this to be a sentence gener-

ated by the grammar, clearly it must match E-E as it does not match

1. But which ‘-’ should match? The answer is either—one derivation is

E ⇒ E-E ⇒ 1-E ⇒ 1-E-E ⇒ 1-1-E ⇒ 1-1-1

and another is

E ⇒ E-E ⇒ E-1 ⇒ E-E-1 ⇒ 1-E-1 ⇒ 1-1-1

This may appear academic, but the derivation determines the grouping

and the former corresponds to 1-(1-1) while the latter corresponds to

(1-1)-1. Note these have different values when interpreted as ordinary

mathematics.

To avoid this we re-write the grammar to ensure there is only one

derivation17 for each sentence. Two possibilities are:

E −→ 1 | E-1

which yields a left-associative ‘-’ operator (i.e. 1-1-1 parses as (1 −

1) − 1); and

E −→ 1 | 1-E

which yields a right-associative ‘-’ operator (i.e. 1-1-1 parses as 1 −

(1 − 1)).

17 Technically I need to say ignoring permuting independent uses of production rules here.
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Note in these cases the parentheses are used to show grouping

in the parse tree; they are not themselves part of the grammar or the

language yet.

Finally, if we wish to allow 1-1, but disallow 1-1-1 then we might

code the grammar as

E −→ 1 | 1-1

thereby yielding a non-associative ‘-’ operator (i.e. 1-1-1 is forbidden).

Additionally, grammars can conveniently express operator prece-

dence, i.e. whether 2 + 3 ∗4 should be treated as (2 + 3) ∗4 or 2 + (3 ∗4)

(note that this is independent of whether + and ∗ are separately left-

right- or non-associative. Assuming start symbol E, then the grammar

E −→ E + F | F

F −→ F ∗ P | P

P −→ 2 | 3 | 4

gives ‘*’ higher precedence than ‘+’, whereas

E −→ E ∗ F | F

F −→ F + P | P

P −→ 2 | 3 | 4

gives ‘+’ higher precedence than ‘*’. Exercise 2: are + and ∗ left- or

right- associative in these examples? Can you change them individu-

ally?
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4.2 Forms of parser

There are two main ways to write a parser. One is for a human to

read the grammar, understand it and to encode the its requirements as

program code. This naturally leads to having one procedure to read

each non-terminal. These procedures tend to be mutually recursive,

leading to the name recursive descent parser. As we will see, often

there is a need for some ingenuity in writing code which corresponds to

a given grammar; we consider this more in the next section.

The alternative is to avoid writing code by using an existing tool

(common tools are: yacc, mlyacc, CUP). These take a grammar in text

form as input and output a parser as program code. Typically they op-

erate by encoding the grammar (which has to satisfy restrictions placed

on its form by the tool—so again in principle ingenuity is needed to

write the grammar in this form) as a table and then appending a fixed

interpreter. The interpreter takes an input string together with this ta-

ble and constructs a parse tree. Section 12.2 exemplifies their use and

Section 14 explains how they work.

4.3 Recursive descent

In this method the syntax is converted into transition diagrams for some

or all of the syntactic categories of the grammar and these are then

implemented by means of recursive functions. Consider, for example,
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the following syntax:

P −→ ( T ) | n

F −→ F * P | F / P | P

T −→ T + F | T - F | F

where the terminal symbol n represents name or number token from

the lexer. The corresponding transition diagrams are:

P

P*

/

F P

FT + F

- F

( T )

n

P

Notice that the original grammar has been modified to avoid left recur-

sion18 to avoid the possibility of a recursive loop in the parser. The

recursive descent parsing functions are outlined below (implemented in

C):

void RdP()

{ switch (token)

18By effectively replacing the production F −→F * P | F / P | P with

F −→P * F | P / F | P which has no effect on the strings accepted, although it does affect

their parse tree—see later.
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{ case ’(’: lex(); RdT();

if (token != ’)’) error("expected ’)’");

lex(); return;

case ’n’: lex(); return;

default: error("unexpected token");

}

}

void RdF()

{ RdP();

for (;;) switch (token)

{ case ’*’: lex(); RdP(); continue;

case ’/’: lex(); RdP(); continue;

default: return;

}

}

void RdT()

{ RdF();

for (;;) switch (token)

{ case ’+’: lex(); RdF(); continue;

case ’-’: lex(); RdF(); continue;

default: return;
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}

}

4.4 Data structures for parse trees

It is usually best to use a data structure for a parse tree which corre-

sponds closely to the abstract syntax for the language in question rather

than the concrete syntax. The abstract syntax for the above language

is

E −→ E + E | E - E | E * E | E / E | ( E ) |

This is clearly ambiguous seen as a grammar on strings, but it specifies

parse trees precisely and corresponds directly to ML’s

datatype E = Add of E * E | Sub of E * E |

Mult of E * E | Div of E * E |

Paren of E | Num of int;

Indeed one can go further and ignore the ( E ) construct in the com-

mon case parentheses often have no semantic import beyond specify-

ing grouping.

In C, the construct tends to look like:

struct E {

enum { E_Add, E_Sub, E_Mult, E_Div, E_Paren, E_Numb }
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union { struct { struct E *left, *right; } diad;

// selected by E_Add, E_Sub, E_Mult, E_Div.

struct { struct E *child; } monad;

// selected by E_Paren.

int num;

// selected by E_Numb.

} u;

};

In Java and C♯, where there is no union or variant record construct,

a parent class must be multiply extended for each construct, resulting

in a much more verbose defintion.

It is not generally helpful to reliability and maintainability to make a

single datatype which can represent all sub-structures of a parse tree.

For parsing C, for example, one might well expect to have separate

abstract parse trees for Expr, Cmd and Decl.

It is easy to augment a recursive descent parser so that it builds

a parse tree while doing syntax analysis. The ML datatype definition

defines constructor functions, e.g. Mult which maps two expression

trees into one tree which represents multiplying their operands. In C

one needs to work a little by defining such functions by hand:

struct E *mkE_Mult(E *a, E *b)

{ struct E *result = (struct E*)malloc(sizeof (struct
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result->flavour = E_Mult;

result->u.diad.left = a;

result->u.diad.right = b;

return result;

}

A recursive descent parser which builds a parse tree for the parsed

expression is given in Figure 2.

When there are many such operators like +, -, *, / with similar syn-

tax it can often simplify the code to associate a binding power (or prece-

dence) with each operator and to define a single routine RdE(int n)

which will read an expression which binds at least as tightly as n. In this

case RdT() might correspond to RdE(0), RdF() to RdE(1) and RdP()

to RdE(2).

4.5 Automated parser generation

Tools which generate parsers (and lexers) are covered later in the course:

Section 12.2 explains their practical use and Section 14 explains how

they work and how their tables are constructed.

In general, almost all modern programming languages have their

syntax structured in a two-level fashion: characters are first lexed into

tokens—defined by regular expressions—and then tokens are then parsed

into trees—defined by context-free grammars. Sometimes there are
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struct E *RdP()

{ struct E *a;

switch (token)

{ case ’(’: lex(); a = RdT();

if (token != ’)’) error("expected ’)’");

lex(); return a;

case ’n’: a = mkE_Numb(lex_aux_int); lex(); return

/* do names by

** case ’i’: a = mkE_Name(lex_aux_string): lex(); return

*/

default: error("unexpected token");

}

}

/* This example code includes a right associative ’^’ operator

/* ’^’ binds more tightly than ’*’ or ’/’. For this example, The

/* F ::= P | F * P | F / P

/* has been changed into the two rules

/* F ::= G | F * G | F / G G ::= P | P ^ G

struct E *RdG()

{ struct E *a = RdP();

switch (token)

{ case ’^’: lex(); a = mkE_Pow(a, RdG()); return a;

default: return a;

}

}

struct E *RdF()
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warts on this structure, e.g. C’s typedef can make an identifier be-

have like a keyword. Sticking rigidly to the two-level pattern is there-

fore over-constraining, and allowing decl ::= <id> <id>; instead of

decl ::= <type> <id>; could introduce significant parsing difficulties

(even for the advanced, mechanically-generated parsers introduced in

§12.2). Therefore it is common to cheat, in that output from the syntax

analyser that has noted a user-defined type, or similar construct, is fed

backwards into the lexical analyser to alter the token returned next time

that identifier is encountered. This works if the lexer is a subroutine of

the syntax analyser so that is has not already run ahead in the input

stream.

4.6 A note on XML

Markup languages (HTML, XML, etc. based on SGML) do not fall quite

so simply into this two-level pattern. Firstly, there is no very obvious

separation between lexical and syntactic structure apart from the lexical

escape & and the lexical <, > tag delimiters. Secondly, the syntactic con-

straints required by XML (e.g. that a <foo> construct cannot be closed

by a </bar>) are not simply expressible as context-free grammars—

there are an unbounded number of bracketing symbols. Thirdly, in addi-

tion to the XML syntactic constraints, an input form is typically required

to respect semantic constraints, e.g. that a <zoo>...</zoo> might have
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a <content>elephant</content> attribute, but only the latter might

have a <height> attribute. These constraints are typically expressed

by XML schemas (which generalise the original DTD—Document Type

Definition—form in XML 1.0) and are best though of as a form of type

checking: a schema processor takes in an XML document and an XML

schema and either rejects it or normalises the XML document to fully

conform to the scheme.

A more human-engineering point is that, in general, we are happy

if a syntactically invalid program is rejected, but less happy when our

browser says “refusing to display a web page due to markup bracket

mismatch”—so being able to recover from an error is more important.

A consequence of all this (and the desirability of rapid XML reading)

is that writing a good XML parser is non-trivial.

5 Type checking

Our simple language from Section 2 requires no type checking at all;

we have arranged that all variables and expressions are of type int

and arranged that variable name <var> and function names <fnname>

are syntactically distinguished—at worst we just need to check the con-

straint that the number of arguments in a function call match its defini-

tion. As such the lex/syn/trans/cg phase structure made no provision

for type-checking.
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However, in a real compiler, type-checking generally has to take

place after syntax analysis—consider the examples on page 15. For

a typed intermediate code like JVM code which has separate fadd and

iadd operations, then type information has to be resolved before trans-

lation to intermediate code. In Java code like

float g(int i, float f) { return (i+1)*(f+2); }

the two addition operations must compile into different operations; more-

over, the integer result of i+1 must be converted to a floating value with

the i2f JVM opcode—the Java code has a implicit conversion which

the compiler must make explicit as if the code were:

float g(int i, float f) { return ((float)(i+1))*(f+2);

In a production compiler one would therefore expect to see a typecheck

phase between syn and trans which takes an (abstract) syntax tree

and either rejects it (“ill-typed”) or produces an adjusted syntax tree

(typically annotated with types and with implicit operations mapped into

explicit tree nodes). Some compiler-writers prefer to see type-checking

as re-writing the parse tree in-place (e.g. writing to fields left initialised

when the tree was created), while others prefer to have separate data-

types for “parse tree” and “typed parse tree” (this is largely a matter of

taste). Note that, by consideration of the program above, type-checking

must include determining which identifier use (e.g. f in f+2) is associ-
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ated with each identifier declaration (e.g. f in (int i, float f) rather

than any other declaration of the name f).

Nevertheless, under the minimalist philosophy of this course, these

notes will incorporate the type-checking phase (including name resolu-

tion) phase as part of the translation phase, which we now turn to.

6 Translation to intermediate code

The translation phase of a compiler normally converts the abstract syn-

tax tree representation of a program into intermediate object code which

is usually either a linear sequence of statements or an internal repre-

sentation of a flowchart. We will assume that the translation phase

deals with (1) the scope and allocation of variables, (2) determining the

type of all expressions, (3) the selection of overloaded operators, and

(4) generating the intermediate code.

We choose to use the JVM instruction set as intermediate code for

this course (and its structures have been discussed in Part A of these

notes).

6.1 Interface to trans

Instructions, such the first few instructions of f from Part A

static int f(int a, int b) { int y = a+b; ... }
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are generated by translation phase of the compiler invoking a series of

calls such as:

gen2(OP_iload, 0);

gen2(OP_iload, 1);

gen1(OP_iadd);

gen2(OP_istore, 2);

The enumeration constants (OP iload etc.) can correspond directly to

the bit patterns in a .class file, or can be decoded in the geni rou-

tines into readable strings. Alternatively successive instructions can be

stored in memory ready to be translated into native machine instruc-

tions in the CG phase.

6.2 Example tree form used in this section

In this section we will use a simple (but real-feeling) example language

reflecting a subset of Java without types or classes. It has the following

abstract syntax tree structure (expressed in ML for conciseness):

datatype Expr = Num of int

| Var of string

| Neg of Expr | Not of Expr

| Add of Expr * Expr | Sub of Expr * Expr

| Mul of Expr * Expr | Div of Expr * Expr
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| Eq of Expr * Expr | Ne of Expr * Expr (* etc

| And of Expr * Expr | Or of Expr * Expr (* for

| Apply of string * (Expr list)

| Cond of Expr * Expr * Expr;

datatype Cmd = Assign of string * Expr

| If3 of Expr * Cmd * Cmd

| While of Expr * Cmd

| Block of Decl list * Cmd list

| Seq of Cmd * Cmd (* redundant special case

(* (useful for exercises)

| Return of Expr;

datatype Decl = Vardef of string * Expr

| Fndef of string * (string list) * Cmd;

type Prog = Decl list; (* shorthand for ’program’

A program in this language essentially consists of an interleaved se-

quence of initialised variable definitions let x = e and function defini-

tions let f(x1, . . . , xk) {c}.

We will translate programs in this language using routines

void trexp(Expr e) translate an expression

void trcmd(Cmd c) translate a command

void trdecl(Decl d) translate a declaration
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which have the side-effect of emitting JVM code which, when executed,

causes the expression (or command, or declaration) to be computed.

6.3 Dealing with names and scoping

To generate the appropriate instruction for a variable or function refer-

ence (e.g. iload 7 instead of y) we require the compiler to maintain

a table (often called a symbol table although beware that this term is

sometimes is used for other things). This table keeps a record of which

variables are currently in scope and how the compiler may access them.

For example, in Java

class A {

public static int g;

public int n,m;

public int f(int x) { int y = x+1; return foo(g,n,m,x,y);

}

the variables x and y will be accessed via the iload and istore as

above, but there will be another pair of instructions to access a variable

like g which is logically a global variable that can live in a fixed position

in memory and be addressed using absolute addressing. Accessing

per-instance variables, such as n above, is really beyond the scope of

this part of the course which deals with a simple language lacking heap-

81



allocated variables, but how a translation might work will be covered in

a later part of the course (§9.5).

Essentially, the routine trdecl will (i) save the current state of the

symbol table and add the new declared names to the table, (ii) translate

expressions and commands within this scope and (iii) finally restore old

state of the symbol table (as any new variables are now going out of

scope).

It is convenient to implement a routine trname which is used by

trexp and trcmd and which consults the symbol table to determine

the access path.19 Because the access path is identical for loads and

stores, it is convenient give trname the type

void trname(int op, String s)

where op is a flag indicating load, store, or call (or loadaddress if our

language has pointers and one wants to take the addresses of variables

and so on) because these are the only things one does with a name.

As an example for the above the table might contain

"g" static variable

"n" class variable 0

"m" class variable 1

19 For the purposes of these notes, this is just an offset in stack frame for a local variable, or the

address of a static variable, but clearly further variations are needed when objects are introduced in

part C.
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"f" method

"x" local variable 0

"y" local variable 1

when compiling the call to foo, but just the first four items when merely

in the scope of A. In more detail, the symbol table will be extended by

the entry (x, loc, 0) when f’s parameters (x) are scanned, and then by

(y, loc, 1) when the local definition of y is encountered.

6.4 Translation of expressions

As mentioned above we use trexp to translate expressions; its argu-

ment is the tree for the expression being translated; it returns no re-

sult,20 instead merely outputting the generated code to a data structure

(or file) for later use. The routine gen1 is used to output a JVM opcode

without an operand, and gen2 to output one with a single operand.

An outline of its definition is as follows:21

fun trexp(Num(k)) = gen2(OP_iconst, k);

20If type checking is integrated into this phase/pass then trexp may return the type of the expression

is has just manipulated. If the optimisations mentioned at the end of §7 are implemented it may also

return the storage class of the expression (e.g. compile-time constant, in a register, in run-time memory,

etc.).
21 We have adopted an ML-like syntax to describe this code since we can exploit pattern matching to

make the code more concise than C or Java would be. For ML experts there are still things left undone,

like defining the ++ and -- operators of type int ref -> int.
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| trexp(Id(s)) = trname(OP_iload,s);

| trexp(Add(x,y)) = (trexp(x); trexp(y); gen1(OP_iadd))

| trexp(Sub(x,y)) = (trexp(x); trexp(y); gen1(OP_isub))

| trexp(Mul(x,y)) = (trexp(x); trexp(y); gen1(OP_imul))

| trexp(Div(x,y)) = (trexp(x); trexp(y); gen1(OP_idiv))

| trexp(Neg(x)) = (trexp(x); gen1(OP_ineg))

| trexp(Apply(f, el)) =

( trexplist(el); // translate args (16

trname(OP_invokestatic, f)) // Compile call

| trexp(Cond(b,x,y)) =

let val p = ++label; // Allocate two labels

val q = ++label in

trexp(b); // eval the test

gen2(OP_iconst, 0); // put zero on stack...

gen2(OP_if_icmpeq, p); // ... so branch if

trexp(x); // code to put x on

gen2(OP_goto,q); // jump to common point

gen2(OP_Lab,p);

trexp(y); // code to put y on

gen2(OP_Lab,q) // common point; result

end;

etc...
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fun trexplist[] = ()

| trexplist(e::es) = (trexp(e); trexplist(es));

6.5 Translation of short-circuit and other boolean ex-

pressions

In Java, the operators && and || are required not to evaluate their sec-

ond operand if the result of the expression is determined by the value

of their first operand. For example, consider code like

if (i>=0 && A[i]==42) { ... }

If i>=0 is false then we are forbidden to evaluate A[i] as it may give

rise to an exception. Therefore we cannot extend the above code for

trexp for And and Or by

| trexp(Or(x,y)) = (trexp(x); trexp(y); gen1(<something>))

| trexp(And(x,y)) = (trexp(x); trexp(y); gen1(<something>))

Instead we have to treat e||e′ as e?1:(e′?1:0) and e&&e′ as e?(e′?1:0):0.

One lazy way to do this is just to call trexp recursively with the equiva-

lent code above (which does not use And and Or):

| trexp(Or(x,y)) = trexp(Cond(x, Num(1), Cond(y,Num(1),Num(0))))

| trexp(And(x,y)) = trexp(Cond(x, Cond(y,Num(1),Num(0)), Num(0)))
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Translation of relational operators (Eq, Ne, Lt, Gt, Le, Ge) is also

slightly tricky. The ‘obvious’ and otherwise correct code (and this is

acceptable for exams on this course) is just to do:

| trexp(Eq(x,y)) = (trexp(x); trexp(y); gen1(OP_EQ))

etc. But the JVM does not have an eq operation—instead it has condi-

tional branches if icmpeq and the like. So similar code to that for Cond

in trexp is needed:

// note we reverse the sense e.g. Eq -> CmpNe etc for trboolop:

| trexp(Eq(x,y)) = trboolop(OP_if_icmpne, x, y)

| trexp(Ne(x,y)) = trboolop(OP_if_icmpeq, x, y)

| trexp(Le(x,y)) = trboolop(OP_if_icmpgt, x, y)

| trexp(Lt(x,y)) = trboolop(OP_if_icmpge, x, y)

| trexp(Ge(x,y)) = trboolop(OP_if_icmplt, x, y)

| trexp(Gt(x,y)) = trboolop(OP_if_icmple, x, y);

fun trboolop(brop,x,y) =

let val p = ++label; // Allocate two labels

val q = ++label in

trexp(x); // load operand 1

trexp(y); // load operand 2

gen2(brop, p); // do conditional branch

trexp(Num(1)); // code to put true
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gen2(OP_goto,q); // jump to common point

gen2(OP_Lab,p);

trexp(Num(0)); // code to put false

gen2(OP_Lab,q) // common point; result

end;

The interested reader might note that this technique produces dread-

ful (but correct) code for:

if (x>0 && y<9) foo();

because it computes booleans corresponding to x>0 and y<9, then

computes a boolean representing whether both are true, and finally

compares that with zero. To do things better, it would help if the Cond

case of trexp peeked inside its operand to see if it was a case like And,

Or, Eq, . . . Ge and generated special case code if so. This is very easy

to implement using the pattern-matching constructs of ML, but cum-

bersome in other languages. It is left as an exercise to the interested

reader (beyond the scope of the taught and examinable) course).

6.6 Translation of declarations and commands

Again this is left as an exercise, but one which you are encouraged to

sketch out, as it uses simple variants of ideas occurring in trexp and is

therefore not necessarily beyond the scope of examinations.
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Hint: start with

fun trcmd(Assign(s,e)) = (trexp(e); trname(OP_istore,s))

| trcmd(Return e) = (trexp(e); gen1(OP_ireturn))

| trcmd(Seq(c,c’)) = (trcmd(c); trcmd(c’))

| trcmd(If3(e,c,c’’)) = ...

6.7 Assembly:converting labels to addresses

In the above explanation, given a Java procedure

static int f(int x, int y) { return x<y ? 1:0; }

I have happily generated ‘JVM’ code like

iload 0

iload 1

if_icmpge label6

iconst 1

goto label7

label6: // this was written "Lab 6" earlier

iconst 0

label7: // this was written "Lab 7" earlier

ireturn

but when looking at the JVM code using javap -c I get
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0: iload_0

1: iload_1

2: if_icmpge 9

5: iconst_1

6: goto 10

9: iconst_0

10: ireturn

So, my explanation was wrong? No, but I did elide a few details. The ac-

tual JVM code has numeric addresses for instructions (printed to the left

by javap -c) and if icmpge and goto use the address of destination

instructions as their operands instead of a label. A separate pass of the

compiler determines the size of each JVM instruction—to calculate the

address of each instruction (relative to the start of the procedure) which

then determines the numeric address for each of the labels. Each use

of a label in a if icmpge and goto instruction can now be substituted

by a numeric offset and the labels deleted.

This process (of converting symbolic JVM code to binary JVM code)

is called assembly and the program which does it an assembler. A

corresponding pass (either as part of the compiler or as a stand-along

assembler program) is used to convert data structures (often strings)

representing target instructions into their binary form in an object file.

Assembly needs to be performed at the end of compilation—if we

are intending to use the JVM code to generate further code (as we do
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in subsequent sections below) then we will want to keep the symbolic

‘label nnn’ form. Indeed, if we download a Java .class file which con-

tains binary JVM code with the intention of JIT’ing it (compiling it to

native binary code), the first thing we need to do is to identify all binary

branch offsets and turn them to symbolic labels.

6.8 Type checking revisited

So far in this section we have ignored type information (or rather, just

assumed every variable and operator is of type int—hence the integer

operators iadd, ineg, iload etc).

In ML, type checking is performed by a large-scale unification algo-

rithm that infers a most general type for the subroutine at large. In

most other languages, types are inferred locally and the type of an

expression is determined compositionally from the types of its sub-

expressions. Current thinking is that it is most convenient if typing is

fully-automatic at a fine grain, such as within expressions or sequences

of statements/commands, but explict at large module boundaries.

In a language like Java, every variable and function name is given

an explicit type when it is declared. This can be added to the symbol

table along with other (location and name) attributes. The language

specification then gives a way of determining the type of each sub-

expression of the program. For example, the language would typically
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specify that e + e′ would have type float if e had type int and e′ had

type float.

This is implemented as follows. Internally, we have a data type rep-

resenting language types (e.g. Java types), with elements like T float

and T int (and more structured values representing things like func-

tion and class types which we will not discuss further here). A function

typeof gives the type of an expression. It might be coded:

fun typeof(Num(k)) = T_int

| typeof(Float(f)) = T_float

| typeof(Id(s)) = lookuptype(s) // looks in symbol

| typeof(Add(x,y)) = arith(typeof(x), typeof(y));

| typeof(Sub(x,y)) = arith(typeof(x), typeof(y));

...

fun arith(T_int, T_int ) = T_int

| arith(T_int, T_float) = T_float

| arith(T_float, T_int) = T_float

| arith(T_float, T_float) = T_float

| arith(t, t’) = raise type_error("invalid types for arithmetic");

So, when presented with an expression like e + e′, the compiler first

determines (using typeof) the type t of e and t′ of e′. The function

arith tells us the type of e + e′. Knowing this latter type enables us

to output either an iadd or a fadd JVM operation. Now consider an
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expression x+y, say, with x of type int and y of type float. It can

be seen that the type of x differs from the type of x+y; hence a coer-

cion, represented by a cast in Java, is applied to x. Thus the compiler

(typically in trexp or in an earlier phase which only does type analy-

sis) effectively treats x+y as ((float)x)+y. These type coercions are

also elementary instructions in intermediate code, for example in Java,

float f(int x, float y) { return x+y; } generates

iload 0

i2f

fload 1

fadd

freturn

Overloading (having two simultaneous active definitions for the same

name, but distinguished by type) of user defined names can require

careful language design and specification. Consider the C++ class

definition

class A

{ int f(int, int) { ... }

float f(float, char) { ... }

void main() { ... f(1,’a’); ... }

}
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The C++ rules say (roughly) that, because the call (with arguments

of type char and int) does not match any declaration of f exactly,

the closest in type variant of f is selected and appropriate coercions

are inserted, thus the definition of main() corresponds to one of the

following:

void main() { ... f(1, (int)’a’); ... }

void main() { ... f((float)1, ’a’); ... }

Which is a matter of fine language explanation, and to avoid subtle

errors I would suggest that you do not make your programs depend on

such fine details.
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7 Code Generation for Target Machine

Note: The part II course, ‘Optimising Compilers’, will cover code gen-

eration in an alternative manner dispensing with the stack-based inter-

mediate code. However, let us note that translating JVM code to native

code is exactly what a browser using JIT compilation technology does

when an applet .class file is downloaded.

In fitting with our cheap-and-cheerful approach to compilation let us

for now merely observe that each intermediate instruction listed above

can be mapped into a small number of MIPS, ARM or x86 instructions,

essentially treating JVM instructions as a macro for a sequence of x86

instructions. Doing this naı̈vely will produce very unpleasant code, for

example recalling the

y := x<=3 ? -x : x

example and its intermediate code with

iload 4 load x (4th load variable)

iconst 3 load 3

if_icmpgt L36 if greater (i.e. condition false) then jump

iload 4 load x

ineg negate it

goto L37 jump to L37

label L36
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iload 4 load x

label L37

istore 7 store y (7th local variable)

could expand to the following x8622 code (note that x86 conventionally

uses %ebp for FP):

movl %eax,-4-16(%ebp) ; iload 4

pushl %eax ; iload 4

movl %eax,#3 ; iconst 3

pushl %eax ; iconst 3

popl %ebx ; if icmpgt

popl %eax ; if icmpgt

cmpl %eax,%ebx ; if icmpgt

bgt L36 ; if icmpgt

movl %eax,-4-16(%ebp) ; iload 4

...

However, delaying output of PUSHes to stack by caching values in reg-

isters and having the compiler hold a table representing the state of the

cache can improve the code significantly:

22It is part of the general philosophy of this course that the exact language and exact target machine

do not matter for presentation; a good exercise for the reader is to rephrase this in MIPS machine

code—this is not a difficult task, requiring little more than replacing %eax and %ebx with $a0 and $a1

and adjusting opcode names.
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movl %eax,-4-16(%ebp) ; iload 4 stackpend=[%eax]

movl %ebx,#3 ; iconst 3 stackpend=[%eax,%ebx]

cmpl %eax,%ebx ; if icmpgt stackpend=[]

bgt L36 ; if icmpgt stackpend=[]

movl %eax,-4-16(%ebp) ; iload 4 stackpend=[%eax]

negl %eax ; ineg stackpend=[%eax]

pushl %eax ; (flush/goto) stackpend=[]

b L37 ; goto stackpend=[]

L36: movl %eax,-4-16(%ebp) ; iload 4 stackpend=[%eax]

pushl %eax ; (flush/label) stackpend=[]

L37: popl %eax ; istore 7 stackpend=[]

movl -4-28(%ebp),%eax ; istore 7 stackpend=[]

I would claim that this code is near enough to code one might write

by hand, especially when we are required to keep to the JVM alloca-

tion of local variables to %fp-address storage locations. The generation

process is sufficiently simple to be understandable in an introductory

course such as this one; but in general we would not seek to produce

‘optimised’ code by small adjustments to the instruction-by-instruction

algorithm we used as a basis. (For more powerful techniques see the

Part II course “Optimising Compilers”).

However, were one to seek to improve this scheme a little, then the

code could be extended to include the concept that the top of stack
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cache can represent integer constants as well as registers. This would

mean that the movl #3 could fold into the cmpl. Another extension is to

check jumps and labels sufficiently to allow the cache to be preserved

over a jump or label (this is quite an effort, by the way). Register values

could also be remembered until the register was used for something

else (we have to be careful about this for variables accessible by an-

other thread or volatile in C). These techniques would jointly give

code like:

; stackpend=[], regmem=[]

movl %eax,-4-16(%ebp) ; iload 4 stackpend=[%eax], regmem=[%eax=local4]

; iconst 3 stackpend=[%eax,3], regmem=[%eax=local4]

cmpl %eax,#3 ; if icmpgt stackpend=[], regmem=[%eax=local4]

bgt L36 ; if icmpgt stackpend=[], regmem=[%eax=local4]

; iload 4 stackpend=[%eax], regmem=[%eax=local4]

negl %eax ; ineg stackpend=[%eax], regmem=[]

b L37 ; goto stackpend=[%eax], regmem=[]

L36: ; (label) stackpend=[], regmem=[%eax=local4]

; iload 4 stackpend=[%eax], regmem=[%eax=local4]

L37: ; (label) stackpend=[%eax], regmem=[]

movl -4-28(%ebp),%eax ; istore 7 stackpend=[], regmem=[%eax=local7]

This is now about as good as one can do with this strategy.
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7.1 Table-Driven Translation to Target Code

Having shown how parser-generator tools often made it easier to pro-

duce a parser than hand-writing a recursive-descent parser, you might

expect this part of the course to suggest a corresponding replacement

of the translation and code-generation phases by a simple table-driven

tool—just feed in a description of the target architecture get a module

to perform translation directly from parse-tree to target code.23

In practice it is not so simple—machine instructions have detailed ef-

fects and moreover there are often idiomatic way of achieving certain ef-

fects (e.g. generating bool y=(x<0); as if it were bool y=(x>>>31);

(assuming bool values are stored as 0 or 1 and x is a 32-bit value)

or code optimisations based on information about the code which it is

hard to represent in such tables. There are very many instruction se-

quences that achieve the same effect. Choosing the optimal (provably

shortest) sequence for any basic block would involve an excessively-

expensive search algorithm that is only used for specialist applications.

The search for near-perfect code leads to the tables becoming more

and more complicated until they become a programming language, in

which case we may as well (instead of writing code for this language)

23 If you are interested (i.e. non-examinable) in knowing more, then a technique for generating CISC-

like code directly from a tree based on tree matching and rewriting techniques is given in:

Aho, A.V., Ganapathi, M. and Tjiang, S.W.K. Code Generation Using tree matching and Dynamic

programming”. ACM Transactions on Programming Languages and Systems, Vol 11, No 4, October

1989.
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write in some more mainstream language!).

An additional reason is that modern optimising compilers tend to

have many more phases and the tree is first translated to an interme-

diate code which is then repeatedly hit with optimisations before being

finally translated into target-specific code.
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8 Object Modules and Linkers

We have shown how to generate assembly-style code for a typical pro-

gramming language using relatively simple techniques. What we have

still omitted is how this code might be converted into a state suitable

for execution. Usually a compiler (or an assembler, which after all is

only the word used to describe the direct translation of each assembler

instruction into machine code) takes a source language and produces

an object file or object module (.o on Unix and .OBJ on Windows).

These object files are linked (together with other object files from pro-

gram libraries) to produce an executable file (.EXE on Windows) which

can then be loaded directly into memory for execution. Here we sketch

briefly how this process works.

Consider the C source file:

int m = 37;

extern int h(void);

int f(int x) { return x+1; }

int g(int x) { return x+m+h(); }

Such a file will produce a code segment (called a text segment on Unix)

here containing code for the functions f and g and a data segment

containing static data (here m only).

The data segment will contain 4 bytes probably [0x25 00 00 00].
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The code for f will be fairly straightforward containing a few bytes

containing bit-patterns for the instruction to add one to the argument

(maybe passed in a register like %eax) and return the value as result

(maybe also passed in %eax). The code for g is more problematic.

Firstly it invokes the procedure h() whose final location in memory is

not known to g so how can we compile the call? The answer is that

we compile a ‘branch subroutine’ instruction with a dummy 32-bit ad-

dress as its target; we also output a relocation entry in a relocation

table noting that before the module can be executed, it must be linked

with another module which gives a definition to h().

Of course this means that the compilation of f() (and g()) cannot

simply output the code corresponding to f; it must also register that f

has been defined by placing an entry to the effect that f was defined at

(say) offset 0 in the code segment for this module.

It turns out that even though the reference to m within g() is defined

locally, we will still need the linker to assist by filling in its final location.

Hence a relocation entry will be made for the ‘add m’ instruction within

g() like that for ‘call h’ but for ‘offset 0 of the current data segment’

instead of ‘undefined symbol h’.

A typical format of an object module is shown in Figure 3. This is for

the format ELF (we only summarise the essential features of ELF).
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Header information; positions and sizes of sections

.text segment (code segment): binary data

.data segment: binary data

.rela.text code segment relocation table:

list of (offset,symbol) pairs showing which offset within

.text is to be relocated by which symbol (described

as an offset in .symtab)

.rela.data data segment relocation table:

list of (offset,symbol) pairs showing which offset within

.data is to be relocated by which symbol (described

as an offset in .symtab)

.symtab symbol table:

List of external symbols used by the module:

each is listed together with attribute

1. undef: externally defined;

2. defined in code segment (with offset of definition);

3. defined in data segment (with offset of definition).

Symbol names are given as offsets within .strtab

to keep table entries of the same size.

.strtab string table:

the string form of all external names used in the module

Figure 3: Basic Structure of a common object file in ELF format.
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8.1 The linker

Using a comprehensive object module format such as ELF, the job of

the linker is relatively straight-forward. All code segments from all input

modules are concatenated as are all data segments. These form the

code and data segments of the executable file.

Now the relocation entries for the input files are scanned and any

symbols required, but not yet defined, are searched for in (the symbol

tables of) the library modules. (If they still cannot be found an error is

reported and linking fails.)

Now we have simply to update all the dummy locations inserted in

the code and data segments to reflect their position of their definitions

in the concatenated code or data segment. This is achieved by scan-

ning all the relocation entries and using their definitions of ‘offset-within-

segment’ together with the (now know) absolute positioning of the seg-

ment in the resultant image to replace the dummy value references with

the address specified by the relocation entry.

(On some systems exact locations for code and data are selected

now by simply concatenating code and data, possibly aligning to page

boundaries to fit in with virtual memory; we want code to be read-only

but data can be read-write.24) The result is a file which can be immedi-

24On some systems, certain data is read-only, such as when it is placed in ROM or if the high-level

language does not allow it to be changed, such as character strings in some versions C/C++. Read

only data can be mapped to its own segment. On Unix systems, static variables that are initialised to
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ately executed by program fetch; this is the process by which the code

and data segments are read into virtual memory at their predetermined

locations and branching to the entry point which will also have been

marked in the executable module.

8.2 Dynamic linking

Consider a situation in which a user has many small programs (maybe

50k bytes each in terms of object files) each of which uses a graph-

ics library which is several megabytes big. The classical idea of linking

(static linking) presented above would lead to each executable file be-

ing megabytes big too. In the end the user’s disc space would fill up

essentially because multiple copies of library code rather than because

of his/her programs. Another disadvantage of static linking is the follow-

ing. Suppose a bug is found in a graphics library. Fixing it in the library

(.OBJ) file will only fix it in my program when I re-link it, so the bug

will linger in the system in all programs which have not been re-linked—

possibly for years. A third advantage is that occupancy of physical RAM

on a multi-tasking operating system can be minimised, since (the text

segment of) shared libraries can be only loaded once and shared over

active programs.

An alternative to static linking is dynamic linking. We create a library

zero are also placed in their own segment as a form of file compression.
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which defines stub procedures for every name in the full library. The

procedures have forms like the following for (say) sin():

static double (*realsin)(double) = 0; /* pointer to fn */

double sin(double x)

{ if (realsin == 0)

{ FILE *f = fopen("SIN.DLL"); /* find object file

int n = readword(f); /* size of code to load

char *p = malloc(n); /* get new program space

fread(p, n, 1, f); /* read code */

realsin = (double (*)(double))p; /* remember code

}

return (*realsin)(x);

}

Essentially, the first time the sin stub is called, it allocates space and

loads the current version of the object file (SIN.DLL here) into memory.

The loaded code is then called. Subsequent calls essentially are only

delayed by two or three instructions.

In this scheme we need to distinguish the stub file (SIN.OBJ) which

is small and statically linked to the user’s code and the dynamically

loaded file (SIN.DLL) which is loaded in and referenced at run-time.

(Some systems try to hide these issues by using different parts of the

same file or generating stubs automatically, but it is important to under-
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stand the principle that (a) the linker does some work resolving external

symbols and (b) the actual code for the library is loaded (or possibly

shared with another application—given a sensible virtual memory sys-

tem!) at run-time.)

Dynamic libraries have extension .DLL (dynamic link library) on Mi-

crosoft Windows and .so (shared object file) on Linux. Note that they

should incorporate a version number so that an out-of-date DLL file can-

not be picked up accidentally by a program which relies on the features

of a later version.

The principal disadvantage of dynamic libraries is the management

problem of ensuring that a program has access to acceptable versions

of all DLL’s which it uses. It is sadly not rare to try to run a Windows .EXE

file only to be told that given DLL’s are missing or out-of-date because

the distributor forgot to provide them or assumed that you kept your

system up to date by loading newer versions of DLL’s from web sites!

Linux gives even less helpful messages and the ldd command must be

used to find the name of the missing library. Probably static linking is

more reliable for executables which you wish still to work in 10 years’

time—even if you cannot find the a hardware form of the processor you

may be able to find an emulator.
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Part C: Implementing Language
Features

In earlier sections of the course we showed how to translate a sub-

set of Java into both JVM-style code and to native machine code and

how such latter code can be linked to form an executable. The subset

of Java considered was a single class containing static methods and

variables—this is very similar in expressiveness to the language C.

In this part of the course we will try to crystallise various notions

which appeared informally in the first part into formal concepts. We

break this into two main aspects: first investigate some of the interac-

tions or equivalences which occur in a simple language and how these

are reflected in a simple interpreter. Then we consider how other as-

pects of programming languages might be implemented on a computer,

in particular we focus on: how free variables (used by a function but not

defined in it) are accessed, how exceptions and inheritance are imple-

mented, and how types and storage allocation interact.
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9 Foundations

First we look at foundational issues and how these are important for

properly understanding the fine details of a programming language.

Although everyone is familiar with ML and Java (and learning C/C++),

it helps first to explore the idea of assignment and aliasing in a language-

neutral manner.

Given an assignment e = e′ we:

1. evaluate e to give an address; [see below re ordering here]

2. evaluate e′ to give a value;

3. update the addressed cell with the value.

To avoid the overtones and confusion that go with the terms address

and value we will use the more neutral words Lvalue and Rvalue (first

coined by C. Strachey); this is useful for languages like C where ad-

dresses are just one particular form of value. An Lvalue (left hand value)

is the address (or location) of an area of store capable of holding the

Rvalue. An Rvalue (right hand value) is a bit pattern used to represent

an object (such as an integer, a floating point number, a function, etc.).

In general, both Lvalues and Rvalues require work to be done when

they are being evaluated, consider A[f()] = B[g()];.

Note that in Java, the above description of e:=e′; is precise, but

other languages (such as C and C++) say that the exact ordering and
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possible interleaving of evaluation of e and e′ is left to the implementa-

tion; this matters if expressions contain side-effects, e.g.

A[x] = f();

where the call to f updates x.

Warning: many inscrutable errors in C and C++ occur because the

compiler, as permitted by the ISO language standards, chooses (for effi-

ciency reasons) to evaluate an expression in a different order from what

the programmer intended. If the order does matter then it is clearer

(even in Java and ML) and better for maintenance to break down a

single complicated expression by using assignments, executed in se-

quence, to temporary variables.

9.1 Aliasing

We see situations where multiple names refer to the same variable or

storage location—this is called aliasing. In C and C++, there are obvi-

ous sources of aliases arising from the support of unrestricted pointers

and unions. In a language with call-by-reference, aliasing commonly

occurs when the same variable is passed twice into the same function.

Consider the following C/C++/Java code:

float p = 3.4;

float q = p;
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This causes a new storage cell to be allocated, initialised with the value

3.4 and associated with the name p. Then a second new storage cell

(identified by q) is initialised with the (Rvalue) contents of p (clearly

also 3.4). Here the defining operator = is said to define by value. One

can also imagine language constructs permitting definition by reference

(also called aliasing) where the defining expression is evaluated to give

an Lvalue which is then associated with the identifier instead of a new

storage cell being allocated, e.g.

float r ≃ p;

Since p and r have the same Lvalue they share the same storage cell

and so the assignments: p := 1.63 and r := 1.63 will have the same

effect, whereas assignments to q happen without affecting p and r. In

C/C++, definition by reference is written:

float &r = p;

whereas in ML mutable storage cells are defined explicitly so the above

example would be expressed:

val p = ref 3.4;

val q = ref (!p);

val r = p;

One reason for making such a fuss about this is to be able to discuss

the effects of Java (and C♯) inner classes.
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class A {

void f(int x) {

class B {

int get() { return x; }

// void inc() { x++; } // should this be allowed?

}

B p = new(B);

x++;

B q = new(B);

if (p.get() != q.get()) println("x != x??");

};

The question is whether x is copied or a whether a single storage cell

is used for it is often best thought of as whether x’s Lvalue or Rvalue is

used in class B. The choice is a matter of language design.

Finally, note that defining a new variable is quite different from as-

signing to a pre-existing variable. Consider the Java programs:

int a = 1; int a = 1;

int f() { return a; } int f() { return a; }

void g() { a = 2; println(f()); } void g() { int a = 2;

One adds a new entry to the environment while the other modifies a cell

already present in the environment.
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9.2 Lambda calculus

The main concept of the lambda calculus is embodied in the anony-

mous functions of ML, denoted with fn <bv> => <body>.

We revisit this briefly for two reasons: firstly it exemplifies the idea of

source-to-source translation whereby a larger language (here ML) can

be explained in terms of a subset (here the lambda-calculus subset of

ML); The second, related reason, is that it provides the archetypical

notion of variable binding—which we need to understand well to write

an interpreter for a language like ML.

Let’s first recall that the ML let and fun (non-recursive—see below

for how to fix this) forms are expressible just using lambda.

let f x = e ⇒ let f = λx.e

let y = e in e′ ⇒ (λy.e′) e

So, for example,

let f(y) = y*2

in let x = 3

in f(x+1)

can be simplified to

(λf. (λx. f(x+1)) (3)) (λy. y*2)
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This translation does not encode recursion (ML’s fun f x = e im-

plicitly expands to let rec f = λx.e) and the above simplifying trans-

lation does not say how to represent rec. For example, without rec

let f(n) = n=0 ? 1 : n*f(n-1) in f(4)

translates to

(λf. f(4)) (λn. n=0 ? 1 : n*f(n-1) )

in which the right-most use of f is unbound rather than recursive.

One might think that recursion must inevitably require an additional

keyword, but note that it is possible to call a function recursively without

defining it recursively:

let f(g,n) = ... g(g,n-1) ... // f does not appear in

in f(f, 5)

Here the call g(g,n-1) makes a recursive call of (non-recursive) f!

Exercise 3: complete the body of f so that the call yields 5! = 120.

By generalising this idea it is possible to represent a recursive def-

inition let rec f = e as the non-recursive form let f = Y (λf.e)

which at least binds all the variables to the right places. The question is

whether Y needs to be a piece of magic built in to the system or whether

it can itself be a term (expression) of the lambda-calculus. For instance,
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in computation theory, one learns that the primitive recursive functions

need to be extended with the µ operator to become Turing powerful.

The remarkable answer is that Y can be expressed purely in lambda-

calculus. It is called the fixed-point combinator.

One can write25

Y = λf. (λg. (f (λa. (gg)a)))(λg. (f (λa. (gg)a))).

(Please note that learning this lambda-definition for Y is not examinable

for this course!) For those entertained by the “Computation Theory”

course, this (and a bit more argument) means that the lambda-calculus

is “Turing powerful”.

Finally, an alternative implementation of Y (there seen as a primitive

rather as the above arcane lambda-term) suitable for an interpreter is

given in Section 9.4. This is also useful since neither form for Y (nor

indeed the f(f,5) trick) passes the ML type system even though they

are well formed in most other senses.
25 The alternate form

Y = λf. (λg. gg)(λg. f (gg))

is usually quoted, but (for reasons involving the fact that our lambda-evaluator uses call-by-value and

the above definition requires call-by-name) will not work on the lambda-evaluator presented in the

course supplemental material.
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9.3 Object-oriented languages

The view that lambda-calculus provides a fairly complete model for

binding constructs in programming languages has generally been well-

accepted. However, notions of inheritance in object-oriented languages

seem to require a generalised notion of binding. Consider the following

C++ program:

const int i = 1;

class A { const int i = 2; };

class B : A { int f(); };

int B::f() { return i; }

There are two i variables visible to f(): one being i=1 by lexical scop-

ing, the other i=2 visible via inheritance. Which should win? C++ de-

fines that the latter is visible (because the definition of f() essentially

happens in the scope of B which is effectively nested within A). The

i=1 is only found if the inheritance hierarchy has no i. Note this argu-

ment still applies if the const int i=1; were moved two lines down the

page. The following program amplifies that the definition of the order of

visibility of variables is delicate:

const int i = 1;

class A { const int j = 2; };

void g()
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{ const int i = 2;

class B : A { int f() { return i; }; }

// which i does f() see?

}

For years, the lambda-calculus provided a neat understanding of scop-

ing that language designers could follow simply; now such standards

committees have to use their (not generally reliable!) powers of deci-

sion.

Note that here we have merely talked about (scope) visibility of iden-

tifiers; languages like C/Java also have declaration qualifiers concern-

ing accessibility (public, private, etc.). It is for standards bodies to

determine whether, in the first example above, changing the declara-

tion of i in A to be private should invalidate the program or merely

cause the private i to become invisible so that the i=1 declaration

becomes visible within B::f(). (Actually ISO C++ checks accessibility

after determining scoping.)

We will later return to implementation of objects and methods in

terms of data and procedures using source-to-source translations.
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9.4 Mechanical evaluation of lambda expressions

We will now describe a simple way in which lambda expressions may be

evaluated in a computer.26 The reason for exploring lambda-calculus

evaluation here is to better understand references to non-local/non-

global variables. It is also useful for exploring untyped languages where

we do not know whether an expression returns an integer or a function.

We will represent the expression as a parse tree and evaluate it

in an environment that is initially empty. As above there will be tree

nodes representing variables, constants, addition, function abstraction

and function application. In ML this can be written concisely:

datatype Expr = Name of string |

Numb of int |

Plus of Expr * Expr |

Fn of string * Expr |

Apply of Expr * Expr;

The expression: (λx. (λn. n+x)(4)) (3) would be written in ML

(or C, assuming appropriate (constructor) functions like Apply, Fn etc.

were defined to allocated and initialise structures) as:

26 We do not do the evaluation by textual re-writing (as in Part 1B Operational Semantics course)

because we later wish to translate the programs into machine code and this is only possible if we

have a fixed set of expressions rather than dynamically re-writing potentially new expressions during

evaluation.
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Apply(Fn("x", Apply(Fn("n", Plus(Name("n"), Name("x"))),

Numb(4))),

Numb(3))

and be represented as follows:

Apply

Fn

Apply

Name

n

NumbNumb

3 4

Fn

Name

x

Plus

When we evaluate such an Expr we expect to get a value which

is either an integer or a function (note this is an example of dynamic

typing—see Section 10.13). In ML we write this concisely as

datatype Val = IntVal of int | FnVal of string * Expr

(the justification for why functions consist of more than simply their text

will become apparent when we study the evaluator ‘eval’ below). In

languages without disjoint union types (such as Java) we have again to

write it cumbersomely as an abstract parent class with two instantiable

extensions.

We will represent the environment of defined names (names in scope)

as a linked list with the following structure:

datatype Env = Empty | Defn of string * Val * Env;
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(I.e. an Env value is either Empty or is a 3-tuple giving the most recent

binding of a name to a value and the rest of the environment.) The

function to look up a name in an environment27 could be defined in ML

as follows.

fun lookup(n, Defn(s, v, r)) =

if s=n then v else lookup(n, r);

| lookup(n, Empty) = raise oddity("unbound name");

We are now ready to define the evaluation function itself:

fun eval(Name(s), r) = lookup(s, r)

| eval(Numb(n), r) = IntVal(n)

| eval(Plus(e, e’), r) =

let val v = eval(e,r);

val v’ = eval(e’,r)

in case (v,v’) of (IntVal(i), IntVal(i’)) => IntVal(i+i’)

| (v, v’) => raise oddity("plus of

end

| eval(Fn(s, e), r) = FnVal(s, e, r)

| eval(Apply(e, e’), r) =

case eval(e, r)

of IntVal(i) => raise oddity("apply of non-function")

27 There is a tradition of using letters like r or ρ for ‘environment’ to avoid clashing with the natural

use of e for ‘expression’.
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| FnVal(bv, body, r_fromdef) =>

let val arg = eval(e’, r)

in eval(body, Defn(bv, arg, r_fromdef))

end;

The immediate action of eval depends on the leading operator of the

expression it is evaluating. If it is Name, the bound variable is looked

up in the current environment using the function lookup. If it is Numb,

the value can be obtained directly from the node (and tagged as an

IntVal). If it is Plus, the two operands are evaluated by (recursive)

calls of eval using the current environment and their values summed

(note the slightly tedious code to check both values correspond to num-

bers else to report an error). The value of a lambda expression (tagged

as a FnVal) is called a closure and consists of three parts: the bound

variable, the body and the current environment. These three compo-

nents are all needed at the time the closure is eventually applied to

an argument. To evaluate a function application we first evaluate both

operands in the current environment to produce (hopefully) a closure

(FnVal(bv, body, r_fromdef)) and a suitable argument value (arg).

Finally, the body is evaluated in an environment composed of the envi-

ronment held in the closure (r fromdef) augmented by (bv, arg), the

bound variable and the argument of the call.

At this point it is appropriate to mention that recursion via the Y op-

erator can be simply incorporated into the interpreter. Instead of using
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the gory definition in terms of λ, we can implement the recursion directly

by

| eval(Y(Fn(f,e)), r) =

let val fv = IntVal(999);

val r’ = Defn(f, fv, r);

val v = eval(e, r’)

in

fv := v; (* updates value stored in r’ *)

v

end;

This first creates an extended closure r’ for evaluating e which is r

extended by the (false) assumption that f is bound to 999. e (which

should really be an expression of the form λx. e′ to ensure that the false

value of f is not used) is then evaluated to yield a closure, which serves

as result, but only after the value for f stored in the closure environment

has been updated to its proper, recursive, value fv. This construction

is sometimes known as “tying the knot [in the environment]” since the

closure for f is circular in that its environment contains the closure itself

(under name f).

Note that, in ML, the assignment to fv requires it to actually be a

ref cell or for some other mechanism to be really used. A more detailed

working evaluator including Y and let) can be found in the supplemental
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material.

9.5 Static and dynamic scoping

This final point is worth a small section on its own; the normal state

in modern programming languages is that free variables are looked up

in the environment existing at the time the function was defined rather

than when it is called. This is called static scoping or static binding or

even lexical scoping; the alternative of using the calling environment

is called dynamic binding (or dynamic scoping) and was used in old

dialects of Lisp. It is still used (unfortunately) in The difference is most

easily seen in the following example:

let a = 1;

let f() = a;

let g(a) = f();

print g(2);

Exercise 4: Check your understanding of static and dynamic scoping

by observing that this prints 1 under the former and 2 under the latter.

You might be tempted to believe that rebinding a variable like ‘a’ in

dynamic scoping is equivalent to assigning to ‘a’. This is untrue, since

when the scope ends (in the above by g being exited) the previous bind-

ing of ‘a’ (of value one) again becomes visible, whereas assignments

are not undone on procedure exit.
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9.6 A more efficient implementation of the environ-

ment

The previous lambda evaluator (we’ll use the word interpreter inter-

changeably) is particularly inefficient in its treatment of names since

it searches a potentially long environment chain every time a name is

used.

There are two reasons the inefficiency. Firstly, the lookup function

searches for a given name, when for at a given point in the program

and for a given name we can see statically how many names have

been bound since the given name, and hence how many steps down

the list-form environment we need to make before finding the name.

Hence, instead of representing names in the form Name(s) where s

is a string, we could first translate the program into one in which

Name(s) constructs have been replaced by NameIndex(k) where k is

an int; Lam("x",Name("x")) becomes Lam("x",NameIndex(1)) or

even Lam(NameIndex(1)) as the "x" is no longer needed for the Lam

construct either. This transformation—which could be thought of as a

compiler phase—logically encodes the binding of variable references

to the bindings of those variables (“never put off till run-time what you

can do at compile-time”) and formally goes under the name “De Bruijn

indices”—see http://en.wikipedia.org/wiki/De_Bruijn_index for

a wider story. Note that replacing variables by indices can only be done
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with static binding—Lisp-like dynamic binding needs a run-time search.

However, replacing list search by list indexing make no asymptotic

difference to cost; stepping n steps down a list takes O(n) time as does

finding an item n steps down a list. Alternatively we could use an ar-

ray instead of lists to represent environments, but then while variable

access would be O(1), the cost of environment manipulation would be

excessive (adding to the environment would involve copying an array,

whereas it only involves a CONS when using lists). So, we need a

better representation of environment which reduces the sum of these

costs.

Dijkstra observed (in the context of Algol60 implementation) essen-

tially that while environments can be long, they interleave variables

bound by lambda (function arguments) and those bound by let (local

variables). We can arrange (as in the JVM) that local variable live next

to each other as if in an array. Hence he proposed a 2D approach

to variable access which goes under the name “Dijkstra display”. We

see an environment as being an array of arrays: a variable access is

replaced by a 2D (i, j) co-ordinate meaning the jth variable in the ith

array. Array 0 holds values of variables inside the currently active pro-

cedure28; array 1 holds values of variable one lexical nesting level out

28You might conveniently think of this as its stack frame and this works for many languages, but

environment allocation and deallocation does not follow a stack discipline for languages like ML, so to

make the lambda-evaluator work these need to be heap-allocated—see later.
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and so on. This gives O(1) access time with the cost of a call (estab-

lishing a new environment) being that of copying an array of size of the

number of outer-nested functions to the one being entered.

Nowadays (see later), rather than using an array of pointers to stack

frames, we chain through the stack frames themselves, the so-called

static link method and use absolute addressing to refer to top-level vari-

ables (which would otherwise involve O(d) access time for a procedure

at nesting depth d). [The beauty of displays is that every free variable

is accessible from any procedure (no matter how deeply nested) in two

instructions. However, in practice, even in languages which permit such

procedure nesting, we find that only about 3% of variable accesses are

to variables which are neither local (addressable from FP) nor top-level

(addressable using absolute addressing). Therefore the cost of setting

them up on procedure entry can easily outweigh the saving over the

alternative scheme (the ‘static link’ method) which we consider later as

a sensible implementation for modern machines.]

For an example of this 2D addressing, consider variables bound in

the following contrived program (we ignore function names f, g, h, k for

simplicity):

let f(a,b,c) =

( let g(x,y,z) = (let h(t) = E in ...)

in g((let k(u,v) = E ′ in ...), 12, 63)

)
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in f(1,6,3)

and suppose the environments (here just variable names, we will not

know values until run-time) at the start of the bodies of f, g, h, k are re-

spectively ρ1, ρ2, ρ3, ρ4. The environment structure can be represented

as a tree as follows (note that here the tree is in some sense backwards

from usual in that each node has a single edge to its parent, rather than

each node having an edge to its children):

�
��

6

Q
QQk

ρ1:(a,b,c)

ρ3:(t)

ρ2:(x,y,z)ρ4:(u,v)

We can associate with any name used an ‘address’ consisting of a pair

of numbers, namely, a level number and a position within that level. For

example:

ρ1 a:(1,1) b:(1,2) c:(1,3) level 1

ρ2 x:(2,1) y:(2,2) z:(2,3) level 2

ρ3 t:(3,1) level 3

ρ4 u:(2,1) v:(2,2) also level 2

Note that from E only the first lines’ variables are visible, while from

E ′ only the first and last lines’ variable are visible—hence the fact that

(e.g.) x and u have the same 2D-address is unimportant.
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Now, given an access to a variable x (with 2D address (i, j) from

a point at function nesting level d, instead of accessing x by name we

can instead use 2D index (relative address) of (d − i, j). For example,

access to c (whose 2D address (1, 3)) is (2, 3) in E (in environment ρ3

of depth 3) is (2, 3), whereas access to the same variable in E ′ (in ρ4 of

depth 2) is (1, 3).

Exercise 5: replace all variables in the above sample code by their

indices (relative 2D addresses).

Logically, the move from environments as a list of name-value pairs

to environments as chained arrays is just a matter of changing the ab-

stract data-type for environments. It is a good exercise to code this for

the lambda evaluator; however the full benefit is only achieved when

the tree is more fully adjusted to make a single allocation site (at pro-

cedure entry) for all the let bindings within a procedure rather than an

interpreter coming across let statements one at a time.

Note particularly that the idea of “function values are closures” is

unaffected by this change of representation of environment; a compiled

form of function value will be a pair consisting of a pointer to the code for

the function together with an environment (a pointer to array of arrays

holding variable values or a pointer to the stack frame of its definer).
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9.7 Closure Conversion

Closure Conversion, also known as lambda-lifting, is an alternative way

of implementing free variables—we do a source-to-source translation

on the program to turn them into additional parameters. For example

(say more):

fun f(x) {

let a = ...;

fun h(y) {

let b = ...;

fun g(w) {

let c = ...;

if ...

then return a;

else return h(c)

}

return b + g(y);

}

return x + h(a);

}

fun main() { return f(17); }

is transformed into

fun g’(w, x, a, y, b) {
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let c = ...;

if ...

then return a;

else return h’(c, x, a )

}

fun h’(y, x, a) {

let b = ...;

return b + g’(y, x, a, y, b);

}

fun f’(x) {

let a = ...;

return x + h(a, x, a);

}

fun main() { return f’(17); }

This example only shows the case where functions are called directly;

representing function variables which may point to one of several func-

tions requires more work.

Another issue is that simple closure conversion replaces references

to variables with variable (Rvalue) copies; if the source language sup-

ports variable update then the copies should instead be aliases (i.e.

Lvalue copies).
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Exercise 6: update the above example so that (e.g.) instead of hav-

ing three separate variables named ‘a’ all alias the original one, for ex-

ample by use of C’s address-of and dereference operators.

9.8 Landin’s Principle of Correspondence Non-examinable

09/10

Landin first emphasised the connection between declarations (e.g. let

a=3 in e and argument passing f(3) where f(a)=e which, in this

form arises naturally for call-by-value in the λ-calculus. He suggested

that well-designed languages would extend this to other situations: so

if a language can pass a parameter by reference then it should have a

let-construct to alias two variables, similarly, if it can define a proce-

dure in a declaration it should be passable as a parameter. ML embod-

ies much of this principle for values.

However, many languages break it for types; we often allow a type

or class to be defined locally to a procedure, but do not have constructs

like

f(int, fn x=>x+1) where f(t: type, g: t->t) = ...

Even if the principle is often violated, it often gives a good perspec-

tive to ask ‘what if’ questions about programming languages.
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10 Machine Implementation of Various Inter-

esting Things

In this section we address how various concepts in high-level languages

can be implemented in terms of data structures and instructions of on

a typical modern CPU, e.g. MIPS, ARM or x86.

10.1 Evaluation Using a Stack—Static Link Method

We saw in the first part of the notes how the JVM uses a stack to eval-

uate expressions and function calls. Essentially, two registers (FP and

SP) respectively point to the current stack frame and its fringe.

Evaluation on a stack is more efficient than in the lambda-interpreter

presented above in that no search happens for variables, they are just

extracted from their location. However, the JVM as defined only pro-

vides instructions which can access local variables (i.e. those on the lo-

cal stack frame accessed by FP) and static variables (often called global

or top-level variables in other languages) which are allocated once at a

fixed location.

Indeed Java forbids the textual nesting of one function within an-

other, so the question of how to access the local variables of the outer

function from within the inner function does not need to be addressed

in the JVM. However, for more general languages we need to address
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this issue, and Java inner classes (a relatively recent addition) do allow

a method to be nested inside a class inside a method which produces

a variant of the problem.

The usual answer is to extend the linkage information so that in ad-

dition to holding the return address RA and the old frame pointer FP′,

also known as the dynamic link as it points to the frame of its caller, it

also holds a pointer S, the static link29 which points to the frame of its

definer.

Because the definer also has its static link, access to a non-local

variable (say the ith local variable in the routine nested j levels out

from my current nesting) can be achieved by following the static link

pointer j times to give a frame pointer from which the ith local can be

extracted. In the example in Section 9.6, the environment for E was ρ3

with accessible variables as follows:

ρ1 a:(1,1) b:(1,2) c:(1,3) level 1

ρ2 x:(2,1) y:(2,2) z:(2,3) level 2

ρ3 t:(3,1) level 3

Thus t is accessed relative to FP in one instruction, access to variables

in ρ2 first load the S field from the linkage information and then access

x, y or z from that (two instructions), and variables in ρ1 use three in-

structions first chaining twice down the S chain and then accessing the

variable.
29 Note that the similarity to static linking is totally accidental.
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Hence the instruction effecting a call to a closure (now represented

by a pair of the function entry point and the stack frame pointer in which

it was defined) now merely copies this latter environment pointer from

the closure to the S field in the linkage information in addition to the

work detailed for the JVM.

Exercise 7: give a simple example in which S and FP’ pointers differ.

An example

Consider the following function (we wrap all example code in this sec-

tion within a main function to ensure variables are not seen as top-level

variables which use absolute addressing):

let main() =

( let a, b = 1, 2

let f(x, y) = a*x + b*y

let c = 3

c := f(4,5)

...

)

At the moment when f is just about to be entered the stack frame for

main is as follows (in this and subsequent diagrams I have labelled

the linkage information FP1 FP2 etc. instead of confusingly using FP’

several times):
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arguments
45

c
3

f b
2

a
1 FP1RA1S1

6
FP

?

-Code for f

At the moment just after f has been entered (when a*x+b*y is about to

be evaluated) the state is as follows (SP points to the same location as

FP as f has not (yet) allocated any local variables):

-�
RA2S2FP2

6
FP frame for f

y x
45

-�

c
3

f b
2

a
1

frame for main

FP1RA1S1
???

-Code for f

We see that f can now access x and y from FP (at offsets +4 and

+3, recall parameters appear higher in memory than a frame, and lo-

cals below a frame), and a and b from the definer’s stack frame (offsets

−1 and −2) which is available as S2. Beware: we cannot access a and

b as a constant offset from FP since f may be called twice (or more)

from within main (or even from a further function to which it was passed

as a parameter) and so the stack frame for main() may or may not

be contiguous with x as it is in the example. Similarly, it is vital to fol-

low the static chain (S2 here) rather than the dynamic chain (FP2 here)

even though in the example these point to the same place; a general

explanation was given earlier, but here just consider what happens if f

calls itself recursively—the FP3, FP4 (etc.) pointers chain down the stack

each to the next previous frame, while the S3 and S4 (etc.) pointers all
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point to the frame for f.

You might wonder why we allocated f, or more properly its closure,

to a local variable when we knew that it was constant. The answer was

that we treated the local definition of f as if it were

let f = λ(x,y). a*x + b*y

and further that f was an updatable variable. This can help you see how

first-class function-valued variables can be represented. In practice,

if we knew that the call to f was calling a given piece of code—here

λ(x, y).a ∗ x + b ∗ y—with a given environment pointer—here the FP of

the caller—then the calling sequence can be simplified.

10.2 Situations where a stack does not work

If the language allows the manipulation of pointers then erroneous sit-

uations are possible. Suppose we have the “address of” operator &

which is defined so that &x yields the address of (or pointer to) the stor-

age cell for x. Suppose we also have “contents of” operator * which

takes a pointer as operand and yields the contents of the cell to which

it refers. Naturally we expect *(&x)=x. Consider the program:

let main() =

( let f() = { let a = 0

in &a
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}

let p = f()

...

)

The result of f is a pointer to the local variable a but unfortunately when

we return from the call this variable no longer exists and p is initialised

to hold a pointer which is no longer valid and if used may cause an

extremely obscure runtime error. Many languages (e.g. Pascal, Java)

avoid this problem by only allowing pointers into the heap.

Some other objects such as functions and arrays contain implicit

pointers to the stack and so have to be restricted if a stack implemen-

tation is to work. Consider:

let main() = {

let f(x) = let g(t) = x+t // i.e. g = λt.x+t

in g

let add1 = f(1)

...

}

The result of f(1) should be a function which will add one to its argu-

ment. Thus one might hope that add1(23) would yield 24. It would,

however, fail if implemented using a simple stack. We can demonstrate
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this by giving the state of the stack at various stages of the evaluation.

Just after the f has been declared the stack (for main) is as follows:

?

(((((
-Code for f

f 6
FP

FP0RA0S0

At the time when g has just been declared in the evaluation of f(1) the

stack (for main and f) is as follows (SLIGHT ERROR: In the next two

diagrams I’ve put x, an argument to f, on the ‘wrong’ side of FP1,RA1,S1

as if x were a local variable of f—this is not quite consistent with the

JVM model I presented, but the story is unchanged, so don’t worry):

A
AA 6

? ?f
FP0RA0S0FP1RA1S1

x
1

g

(((((
-Code for g(((((

-Code for f

6
FP

6
SP

After the deallocation of the frame for f and declaration of add1 in the

stack frame of main the stack would be as follows:

?

6

f
FP0RA0S0

add1
6

Code for g
?

where x used to be
(((((

-Code for f

6
FP

6
SP

Thus if we now try to use add1 it will fail since its implicit reference to

x will not work (note its dangling pointer to a de-allocated frame). If g

had free variables which were also free variables of f then failure would
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also result since the static chain for g is liable to be overwritten (and has

been in this example–by add1).

The simple safe rule that many high-level languages adopt to make

a stack implementation possible is that no object with implicit pointers

into the stack (functions, arrays or labels) may be assigned or returned

as the result of a procedure call. Algol-60 first coined these restrictions

(functions, stack-allocated arrays etc. can be passed into functions but

not returned from them) as enabling a stack-based implementation to

work and they still echo in many current languages. Languages like

Java avoid this issue at the cost of heap-allocating all objects.

ML clearly does allow function values to be returned from function

calls. We can see that the problem in such languages is that the above

implementation would forbid stack frames from being deallocated on re-

turn from a function, instead we have to wait until the last use of any of

its bound variables.30 This implementation is called a “Spaghetti stack”

and stack-frame deallocation is handled by a garbage collector. How-

ever, the overhead of keeping a whole stack-frame for possibly a single

variable might seem excessive (but see Appel’s “Compiling with Contin-

uations” book) and we now turn to a common, efficient implementation.

30More precisely, using static links, to the last use of any free variable of the called function.
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10.3 Implementing ML free variables

In ML programs like

val a = 1;

fun g(b) = (let fun f(x) = x + a + b in f end);

val p = g 2;

val q = g 3;

we have seen that an implementation which permanently allocates b to

the stack location where it is passed will not work.

A mechanism originally proposed by Strachey is as follows. To de-

clare a function such as

let f(x) = x + a + b

a tuple is constructed (called the free variable list) which contains the

values (Lvalues or Rvalues whichever is appropriate) of the free vari-

ables. A pointer to this list is sufficient environment information for the

closure. For f defined above the list would be as follows:

- a
b

FV

During the evaluation of a function call, two pointers are needed: the

FP pointer, as before, to address the arguments and local variables,

and a pointer FV to point to the free variable list (although note that

the FV pointer could be treated as an additional hidden argument to
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functions—this would be appropriate for expressing the translation as

C code rather than machine code).

This mechanism requires more work at function definition time but

less work within the call since all free variables can be accessed via a

simple indirection. It is used in the Edinburgh SML implementation. (An

additional trick is to store a pointer to the function code in offset 0 of the

free variable list as if it were the first free variable. A pointer to the free

variable list can then represent the whole closure as a single word.)

Note that this works most effectively when free variables are Rvalues

and hence can be copied freely. When free variables are Lvalues we

need to enter a pointer to the actual aliased location in the free variable

list of each function which references it. It is then necessary also to

allocate the location itself on the heap. (For ML experts: because of

standard ML’s use of ref, there are no updatable variables in ML—only

updateable ref cells. Therefore the values (ordinary values or (pointers

to) ref cells can be copied without unaliasing anything.)

10.4 Parameter passing mechanisms

Strachey [Fundamental Concepts in Programming Languages. Oxford

University Press, 1967] described the “Principle of Correspondence” in

which, motivated by the lambda-calculus equivalence, he argued that

simple declaration forms (e.g. of an initialised variable) and parameter
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passing mechanisms were two sides of the same coin.31

Thus if a simple variable may be defined (see Section 9.1) to be

either a copy or an alias of an existing variable, then so should a pa-

rameter passing mechanism. To put this another way, should parame-

ter passing communicate the Lvalue of a parameter (if it exists) or the

Rvalue?

Many languages (e.g. Pascal, Ada) allow the user to specify which

is to be used. For example:

let f(VALUE x) = ...

might declare a function whose argument is an Rvalue. The parameter

is said to be called by value. Alternatively, the declaration:

let f(REF x) = ...

might declare a function whose argument is an Lvalue. The parameter

is said to be called by reference. The difference in the effect of these

two modes of calling is demonstrated by the following example.

let r(REF x) = { x := x+1 } let r(VALUE x) = { x := x+1 }

let a = 10 let a = 10

r(a) r(a)

// a now equals 11 // a now equals 10

31 You might care to note that even ML falls down here—you can declare a new type in a simple

declaration, but not pass a type as an argument to a function!
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10.5 Algol call-by-name and laziness

Algol 60 is a language that attempted to be mathematically clean and

was influenced by the simple calling-as-substitution-of-argument-expression-

into-function-body mechanism of lambda calculus. In the standard re-

port on Algol 60 the procedure calling mechanism is described in terms

of textually replacing a call by a copy of the appropriate procedure body.

Systematic renaming of identifiers (α-conversion) is used to avoid prob-

lems with the scope of names. With this approach the natural treatment

for an actual parameter of a procedure was to use it as a textual re-

placement for every occurrence of the corresponding formal parameter.

This is precisely the effect of the lambda calculus evaluation rules and

in the absence of the assignment command it is indistinguishable from

call-by-value or call-by-reference.32

When an actual parameter in Algol is called by name it is not evalu-

ated to give an Lvalue or Rvalue but is passed to the procedure as an

unevaluated expression. Whenever this parameter is used within the

procedure, the expression is evaluated. Hence the expression may be

evaluated many times (possibly yielding a different value each time).

Consider the following Algol program.

INTEGER a,i,b;

32Well, there is a slight difference in that an unused call-by-name parameter will never be evaluated!

This is exploited in so-called ‘lazy’ languages and the Part II course looks at optimisations which select

the most appropriate calling mechanism for each definition in such languages.
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PROCEDURE f(x) INTEGER;

BEGIN a := x;

i := i+1;

b := x

END;

a:=i:=b:=10;

f(i+2);

COMMENT a=12, i=11 and b=13;

ML and C/C++ have no call-by-name mechanism, but the same effect

can be achieved by passing a suitable function by value. The following

convention works:

1. Declare the parameter as a parameterless function (a ‘thunk’).

2. Replace all occurrences of it in the body by parameterless calls.

3. Replace the actual parameter expression by a parameterless func-

tion whose body is that expression.

The above Algol example then transforms into the following C program:

int a = 10, i = 10, b = 10;

int pointlessname() { return i+2;}

void f(int x(void)) { a = x();

i = i+1;
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b = x();

}

f(pointlessname);

[C experts might care to note that this trick only works for C when all

variables free to the thunk are declared at top level; Java cannot even

express passing a function as a parameter to another function.]

10.6 A source-to-source view of argument passing

Many modern languages only provide call-by-value. This invites us to

explain, as we did above, other calling mechanisms in terms of call-by-

value (indeed such translations, and languages capable of expressing

them, have probably had much to do with the disappearance of such

mechanisms!).

For example, values passed by reference (or by result—Ada’s and

C♯’s out parameter) typically have to be Lvalues. Therefore they can

be address-taken in C. Hence we can represent:

void f1(REF int x) { ... x ... }

void f2(IN OUT int x) { ... x ... } // Ada-style

void f3(OUT int x) { ... x ... } // Ada-style

void f4(NAME int x) { ... x ... }

... f1(e) ...
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... f2(e) ...

... f3(e) ...

... f4(e) ...

as

void f1’(int *xp) { ... *xp ... }

void f2’(int *xp) { int x = *xp; { ... x ... } *xp = x; }

void f3’(int *xp) { int x; { ... x ... } *xp = x; }

void f4’(int xf()) { ... xf() ... }

... f1’(&e) ...

... f2’(&e) ...

... f3’(&e) ...

... f4’(fn () => e) ...

It is a good exercise (and a frequent source of Tripos questions) to write

a program which prints different numbers based on which (unknown)

parameter passing mechanism a sample language uses.

Incidentally while call-by-value-result (IN OUT) parameter passing

fell out of favour after Ada, it has significant advantages for a concur-

rent call to another processor on a shared-memory multi-core proces-

sor compared to using aliasing. Each write to a common location from

a given processor invalidates the corresponding cache line in other pro-

cessors, hence taking a copy and writing back can be significantly more

efficient.
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10.7 Labels and jumps

Many languages, like C and Java, provide the ability to label a state-

ment. In C one can branch to such statements from anywhere in the

current routine using a ‘goto’ statement. (In Java this is achieved by

the ‘break’ statement which has rather more restrictions on its place-

ment). In such situations the branch only involves a simple transfer of

control (the goto instruction in JVM); note that because only goto is a

statement and one can only label statements, the JVM operand stack

will be empty at both source and destination of the goto—this rather

implicitly depends on the fact that statements cannot be nested within

expressions.

However, if the destination is in a outermore procedure (either by

static nesting or passing a label-valued variable) then the branch will

cause an exit from one or more procedures. Consider:

{ let r(lab) = { ...

... goto lab;

...

}

...

r(M);

...

M: ...
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}

In terms of the stack implementation it is necessary to reset the FP

pointer to the value it had at the moment when execution entered the

body of M. Notice that, at the time when the jump is about to be made,

the current FP pointer may differ. One way to implement this kind of

jump is to represent the value of a label as a pair of pointers—a pointer

to compiled code and a FP pointer (note the similarity to a function

closure—we need to get to the correct code location and also to have

the correct environment when we arrive). The action to take at the jump

is then:

1. reset the FP pointer,

2. transfer control.

Such a jump is called a long jump.

We should notice that the value of a label (like the value of a func-

tion) contains an implicit frame pointer and so some restrictions must

be imposed to avoid nonsensical situations. Typically labels (as in Al-

gol) may not be assigned or returned as results of functions. This will

ensure that all jumps are jumps to activations that dynamically enclose

the jump statement. (I.e. one cannot jump back into a previously exited

function!33)
33 When compiling Prolog (beyond this course), note that backtracking has a good deal in common

with branching back into a previously exited function!

147



10.8 Exceptions

ML and Java exceptions and their handlers are a form of long jump

where the destination depends on the program dynamics and that can

pass an argument.

This leads to the following implementation: a try (Java) or handle

(ML) construct effectively places a label on the handler code. Entering

the try block pushes the label value (recall a label/frame-pointer pair)

onto a stack (H) of handlers and successful execution of the try block

pops H. When an exception occurs its argument is stored in a reserved

variable (just like a procedure argument) and the label at the top of H

is popped and a goto executed to it. The handler code then checks

its argument to see if it matches the exceptions intended to be caught.

If there is no match the exception is re-raised therefore invoking the

next (dynamically) outermore handler. If the match succeeds the code

continues in the handler and then with the statement following the try-

except block.

For example given exception foo; we would implement

try C1 except foo => C2 end; C3

as

push(H, L2);

C1
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pop(H);

goto L3:

L2: if (raised_exc != foo) doraise(raised_exc);

C2;

L3: C3;

and the doraise() function looks like

void doraise(exc)

{ raised_exc = exc;

goto pop(H);

}

An alternative implementation of ‘active exception handlers’, which avoids

using a separate exception stack, is to implement H as a linked list of

handlers (label-value, next) and keep a pointer to its top item. This

has the advantage that each element can be stored in the stack frame

which is active when the try block is entered; thus a single stack suf-

fices for function calls and exception handlers.

Finally, sadly ISO C labels cannot be used as values as indicated

above, and so code shown above would have to be implemented using

the library function setjmp() instead.
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10.9 Arrays

When an array is declared space must be allocated for its elements.

In most languages the lifetime of an array is the same as that of a

simple variable declared at the same point, and so it would be natural

to allocate space for the array on the runtime stack. This is indeed

what many implementations do. However, this is not always convenient

for various reasons. Consider, for example, the following function with

‘obvious’ storage layout on a descending stack:

void f()

{ int x=1, y=2;

int v[n]; // an array from 0 to n-1

int a=3, b=4;

...

}

Within its body its stack frame might look like the following:

6 6

FPRA
??

elements of v
y x

0 1 n-1

b a
4 3 2 1

subscriptsSP FP

In this example, n may be large and so the variables a and b may be

a great distance from FP. On some machines access to such variables

is less efficient. Moreover, if n is not a compile-time constant,34 the
34C requires n to be a compile-time constant.
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position of a and b relative to FP will not be known until runtime, again

causing inefficiency.

For this reason, large or compile-time-unknown size arrays are nor-

mally allocated on the heap.35

10.10 Object-oriented language storage layout

Declarations (in C++) like

class A { int a1,a2; } x;

allocate storage for two integers and record the fact that a1 is at offset

zero, and a2 is at offset 4 (assuming ints are 4 bytes wide). Now after

class B : A { int b; };

objects of type B have 3 integer fields a1 and a2 (by inheritance) nor-

mally stored at offsets 0 and 4 so that (pointers to) objects of type B

can be passed to functions expecting objects of type A with no run-time

cost. The member b would then be at offset 8. The following definition

is similar.

class C : A { int c; };

35Experts might care to look at the (non-ISO) Linux C function alloca() for an interesting trick of

allocating such arrays in the current stack frame between the received formal parameters and the out-

going actual parameters. I am not recommending its use as not all implementations provide it and

there is the hidden cost of the waste of a register on many implementations.

151



[Note that Java uses the word ‘extends’ instead of ‘:’.]

The above details only dealt with ordinary members and inheritance.

Suppose we now add member functions (methods). Firstly consider the

implementation of a method like:

class C {

int a;

static int b;

int f(int x) { return a+b+x;}

};

How is f() to access its variables? Recall that a static variable is

per-class, and a non-static one per-instance. Hence the code could be

re-written as:

int unique_name_for_b_of_C;

class C {

int a;

int f(int x) { return a + unique_name_for_b_of_C + x;}

};

Now consider a call to f() such as c.f(x) where c is of type C. This is

typically implemented as an ordinary procedure call unique name for f of C(c,x)

and the definition of f() implemented as:

int unique_name_for_f_of_C(C hidden, int x)
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{ return hidden.a // fixed offset within

+ unique_name_for_b_of_C // global variable

+ x; // argument

};

Note that hidden is usually called this (modulo the fact that my hidden

is a value of type C while this is a pointer to a C)—the idea here is

merely to emphasis its implicit nature as a ‘hidden parameter’.

Let us now turn to how inheritance affects this model of functions,

say in Java:

class A { void f() { printf("I am an A"); }};

class B:A { void f() { printf("I am a B"); }};

A x;

B y;

void g(A p) { p.f(); }

main() { x.f(); // gives: I am an A

y.f(); // gives: I am a B

g(x); // gives I am an A

g(y); // gives what?

}

There are two cases to be made; should the fact that in the call p.f();

we have that p is of type A cause A::f(); to be activated, or should

the fact that the value of p, although now an A was originally a B cause
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B::f(); to be activated and hence “I am a B” to be printed? In Java

the latter happens; by default in C++ the former happens, to achieve

the arguably more useful Java effect it is necessary to use the virtual

keyword:

class A { virtual void f() { printf("I am an A"); }};

class B:A { virtual void f() { printf("I am a B"); }};

So how is this implemented? Although it appears that objects of type A

have no data, they need to represent that fact that one or other f is to be

called. This means that their underlying implementation is of a record

containing a storage cell containing the address of the function to be

called. Using C as a representation language, objects a of class A

and b of class B would be represented by:

void f_A(struct A *hidden) { printf("I am an A"); }

void f_B(struct A *hidden) { printf("I am a B"); }

struct A { void (*f()); } a = { f_A };

struct B { void (*f()); } b = { f_B };

(Aside: in practice, since there may be many virtual functions, in

practice a virtual function table is often used whereby a class which has

one or more virtual functions has a single additional cell which points

to a table of functions to be called when methods of this object are

invoked. This can be shared among all objects declared of that type,
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although each type inheriting the given type will in general need its own

table).

For more details on this topic the interested reader is referred to

Stroustrup “The C++ Programming Language (3rd Edition)” or to the

C++ standard (ISO/IEC 14882:2003 “Programming languages—C++”).

10.11 C++ multiple inheritance

Suppose one has multiple inheritance (as in C++) so we can inherit the

members and methods from two or more classes and write:

class A { int a1, a2; };

class B : A { int b; };

class C : A { int c; };

class D : B,C { int d; };

(Example, a car and a boat both inherit from class vehicle, so think

about an amphibious craft.)

Firstly there is the observation that passing an object of type D to a

routine expecting C must involve a run-time cost of an addition so that

element c still can be accessed at byte offset 8 in the received C. (This

assumes that B is stored at offset zero in D, and C follows contiguously.)

There is also the more fundamental question as to what are the

members of objects of type D. Does it have 7 (3 in both B and C and
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also d)? Or maybe 5 (a1, a2, b, c, d)? C++ by default has 7, i.e. the two

copies of A are separate. In C++ we can cause the two copies of A to

share by replacing the definitions for B and C by

class B : virtual A { int b; };

class C : virtual A { int c; };

class D : B,C { int d; };

But now the need to treat objects of type D as objects of type B or C

means that the storage layout for D is likely to be implemented in the

language C as

struct { A *__p, int b; // object of class B

A *__q, int c; // object of class C

int d;

A x; // the shared object in class

} s =

{ &s.x, 0, // the B object shares a pointer

&s.x, 0, // with the C object to the A

0, // the d

{ 0, 0 } // initialise A’s fields to zero.

};

I.e. there is a single A object (stored as ‘x’ above) and both the p

field of the logical B object (containing p and b) and the q field of
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the logical C object (containing q and c) point to it. This is necessary

so that a D object can be passed to routines which expect a B or a C

object—but note that is causes declarations like B x to be of 16 bytes: 8

for the A, 4 for the indirect pointer (after all, routines need to be compiled

which access the elements of a B not knowing whether is it a ‘true’ B or

actually a D).

Such arguments are one reason why Java omits multiple inheri-

tance. Its interface facility provides somewhat similar facilities, but

components of the interface must be freshly implemented, rather than

being inherited from a parent.

10.12 Heap Allocation and new

Languages like C++ and Java which provide an operator new to allocate

new storage generally allocate such storage from a heap. A heap36 is

a storage area from which storage blocks can be allocated for dynamic

data where the order of freeing need not be known in advance. Hence it

is separate from the stack and from statically allocated global variables.

Dynamic storage is used when the amount of date to be stored will

depend on the runtime input to the program.

(i.e. the heap data-structure also contains a record of which parts

36 Note this use of the word ‘heap’ is complete distinct from the meaning “implementation of a priority

queue within an array”.
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of it are in use and which parts are free to be allocated). You might

care to note that a heap is very similar to that part of a filing system

that records which blocks on disc are used and which are available for

allocation for new files.

The expression new C allocates enough storage for an object of type

C by making a request of the heap allocation function. In C++ we have

that the above request is very similar to malloc(sizeof(C)), although

note some calculation may be necessary for requests like new A[n+1]

to allocate an array of unknown size.

Systems may either have explicit de-allocation (C++ provides a delete

operator and a free() function which returns storage to the heap for

subsequent re-allocation) or may provide implicit de-allocation via a

Garbage Collector. In the latter case storage is simply allocated un-

til the area allocated for the heap is full. Then the garbage collector

is called. Its job is to first scan the global variables, the stack and the

heap, marking which allocated storage units are reachable from any fu-

ture execution of the program and flagging the rest as ‘available for allo-

cation’. It can then simply (logically) call the heap de-allocation function

on these before returning. If garbage collection did not free any storage

then you are out of memory!

This is how Sun’s JVM default Garbage Collector works; it is called a

conservative garbage collector in that it does not care whether a value

on the stack (say 0x001b3460) is a pointer, or an integer. All such items
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are presumed to point to (or into!) valid objects which are thus marked

as used (hence the name—it marks at least as much as it should). Note

that the above “de-allocate all unmarked heap items” is as good as one

can do with a conservative garbage collector. (Why?) Note also that a

conservative garbage collector may signal out-of-memory when there

is plenty of unused memory—in a 16MB heap, first allocate 1 million

16-byte objects, stop using every second one, and then ask for a 1MB

array allocation!

On the other hand, if the garbage collector has access to sufficient

type information to know which global variable, stack locations and

heap-allocated object offsets hold pointers and which hold non-pointer

data, then it is possible to move (contiguify, improving both cache and

virtual memory performance) used data so that after garbage collec-

tion the unused data forms a single block of store which can be allo-

cated sequentially. The moving process can be achieved by compaction

(squeezing in the same space, like a disc de-fragmenter), or by copying

from an old heap into a new heap (the rôles of these are reversed in

the next garbage collection). This latter process is called a two-space

garbage collector and generally works better than a conservative col-

lector with respect to cache and virtual memory.

There are many exotic types of garbage collectors, including gener-

ational garbage collectors (exploiting the fact that allocated data tends

to be quite short-lived or last for a significant time) and concurrent
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garbage collectors (these run in a separate thread, preferably using a

separate CPU and are a significantly challenge to program, especially

if minimising time wasted on locking concurrently accessed date is an

issue).

10.13 Data types

With a small exception in Section 5, the course so far has essentially

ignored the idea of data type. Indeed we have used ‘int x = 1’ and

‘let x = 1’ almost interchangeably. Now we come to look at the pos-

sibilities of typing. One possibility (adopted in Python, Lisp, Prolog and

the like) is to decree that types are part of an Rvalue and that the type

of a name (or storage cell) is the value last stored in it. This is a scheme

of dynamic types and in general each operation in the language needs

to check whether the value stored in the cell is of the correct type. (This

manifested itself in the lambda calculus evaluator in Section 9.4 where

errors occur if we apply an integer as a function or attempt to add a

function to a value).

Most mainstream languages associate the concept of data type with

that of an identifier. This is a scheme of static types and generally pro-

viding an explicit type for all identifiers leads to the data type of all ex-

pressions being known at compile time. The type of an expression can

be thought of as a constraint on the possible values that the expression
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may have. The type is used to determine the way in which the value is

represented and hence the amount of storage space required to hold it.

The types of variables are often declared explicitly, as in:

float x;

double d;

int i;

Knowing the type of a variable has the following advantages:

1. It helps the compiler to allocate space efficiently, (ints take less

space than doubles).

2. It allows for overloading. That is the ability to use the same symbol

(e.g. +) to mean different things depending on the types of the

operands. For instance, i+i performs integer addition while d+d

is a double operation.

3. Some type conversions can be inserted automatically. For in-

stance, x := i is converted to x := itof(i) where itof is the

conversion function from int to float. Similarly, i+x is converted

to itof(i)+x.

4. Automatic type checking is possible. This improves error diag-

nostics and, in many cases, helps the compiler to generate pro-

grams that are incapable of losing control. For example, goto L

161



will compile into a legal jump provided L is of type label. Nonsen-

sical jumps such as goto 42 cannot escape the check. Similar

considerations apply to procedure calls.

Overloading, automatic type conversions and type checking are all

available to a language with dynamic types but such operations must be

handled at runtime and this is likely to have a drastic effect on runtime

efficiency. A second inherent inefficiency of such languages is caused

by not knowing at compile time how much space is required to represent

the value of an expression. This leads to an implementation where

most values are represented by pointers to where the actual value is

stored. This mechanism is costly both because of the extra indirection

and the need for a garbage collecting space allocation package. In

implementation of this kind of language the type of a value is often

packed in with the pointer.

One advantage of dynamic typing over static typing is that it is easy

to write functions which take a list of any type of values and applies

a given function to it (usually called the map function). Many statically

typed languages render this impossible (one can see problems might

arise if lists of (say) characters were stored differently from lists of inte-

gers). Some languages (most notably ML) have polymorphic types

which are static types37 but which retain some flexibility expressed as

37One might note with some sadness that if functions like map are compiled to one piece of code for

all types then values will still need to have type-determining tags (like dynamic typing above) to allow
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parameterisation. For example the above map function has ML type

(α -> β) -> (α list) -> (β list)

If one wishes to emphasise that a statically typed system is not poly-

morphic one sometimes says it is a monomorphic type system.

Polymorphic type systems often allow for type inference, often called

nowadays type reconstruction in which types can be omitted by the user

and reconstructed by the system. Note that in a monomorphic type

system, there is no problem in reconstructing the type of λx. x+1 nor

λx. x ? false:true but the simpler λx. x causes problems, since a

wrong ‘guess’ by the type reconstructor may cause later parts of code

to fail to type-check.

We observe that overloading and polymorphism do not always fit

well together: consider writing in ML λx. x+x. The + function has both

type

(int * int -> int) and (real * real -> real)

so it is not immediately obvious how to reconstruct the type for this

expression (ML rejects it).

Finally, sometimes languages are described as typeless. BCPL (a

forerunner of C) is an example. The idea here is that we have a single

data type, the word (e.g. 32-bit bit-pattern), within which all values are

garbage collection.
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represented, be they integers, pointers or function entry points. Each

value is treated as required by the operator which is applied to it. E.g. in

f(x+1,y[z]) we treat the values in f, x, y, z as function entry point,

integer, pointer to array of words, and integer respectively. Although

such languages are not common today, one can see them as being in

the intersection of dynamically and statically type languages. Moreover,

they are often effectively used as intermediate languages for typed lan-

guages whose type information has been removed by a previous pass

(e.g. in intermediate code in a C compiler there is often no difference

between a pointer and an integer, whereas there is a fundamental dif-

ference in C itself).

10.14 Source-to-source translation

It is often convenient (and you will have seen it done several times

above in the notes) to explain a higher-level feature (e.g. exceptions or

method invocation) in terms of lower-level features (e.g. gotos or proce-

dure call with a hidden ‘object’ parameter).

This is often a convenient way to specify precisely how a feature be-

haves by expanding it into phrases in a ‘core’ subset language. Another

example is the definition of

while e do e′
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construct in Standard ML as being shorthand (syntactic sugar) for

let fun f() = if e then (e′; f()) else () in f() end

(provided that f is chosen to avoid clashes with free variables of e and

e′).

A related idea (becoming more and more popular) is that of compil-

ing a higher-level language (e.g. Java) into a lower-level language (e.g.

C) instead of directly to machine code. This has advantages of porta-

bility of the resultant system (i.e. it runs on any system which has a C

compiler) and allows one to address issues (e.g. of how to implement

Java synchronized methods) by translating them by inserting mutex

function calls into the C translation instead of worrying about this and

keeping the surrounding generated code in order.

11 Compilation Revisited and Debugging

11.1 Correctness

These notes have just presented compilation as a program which takes

source code and produces target code justified by “it looks plausible

and the lecturer says it’s OK”. But for more complicated languages, and

more sophisticated translation techniques, we can be left thinking “I

wonder if that trick works when features X and Y interact. . . ”. A nice
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example is static members in generic classes: when given

class List<Elt>

{ List <Elt> Cons(Elt x) { number_of_conses++; ... }

static int number_of_conses = 0;

}

then should there be one counter for each Elt type, or just one counter

of all conses? Entertainingly the languages Java and C♯ differ on this.

So writing a correct compiler demands complete understanding of source

and target languages.

Semantics courses provide a proper formal answer to the question

of compiler correctness. Suppose S, T are source and target languages

of a compiler f . For simplicity we assume f is a mathematical function

f : S → T (in practice f is implemented by a compiler program C

written in an implementation language L, but in order to avoid worry-

ing recursively about whether the implementation of L is correct and

whether C terminates, we will just think of f as a function).

Now we need semantics of S and T (semantics are just precise

language specifications which of course include explanation of whether

things like number_of_conses are one-per-system or one-per-class).

Let’s write these semantics as [[ · ]]S : S → M and [[ · ]]T : T → M for

some set of meanings M . To avoid nasty issues we will assume the

semantics give the “final value”, or output, of a program (of course we
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expect internal behaviour of evaluation of terms in S and T to differ) and

moreover M is something simple like an integer or string (to facilitate

comparison).

We can now say that f is a correct compiler provided that

(∀s ∈ S)[[f (s)]]T = [[s]]S.

There are two subtleties. One concerns non-determinism: if S has non-

deterministic features (like races), then is it acceptable for a compiler to

reduce this (making a run-time choice at compile time)? This course

has only considered deterministic languages, so we leave this issue to

others. A second is termination: either we need to see [[ · ]]S and [[ · ]]T as

partial functions (and equality to be “both yield the same value or both

are undefined”), or we need to introduce a distinguished element ⊥ to

the set M which explicitly represents non-termination (and let equality

be the natural operation on this larger set). The semantics courses here

explore some of these issues more.

11.2 Compiler composition, bootstrapping and Trojan

compilers

Non-examinable—just for fun (and only part-written).

As above, let L, S, T, U be languages. As we know, functions f :

S → T and g : T → U can be composed. But, exploring the differ-

ence between f and C in the previous section more, we can express
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a compiler C from S to T written in language L as C : S
L
 T . Note

that juxtaposing two compilers written in the same language (putting

the output of one as the input of another) gives a form of composition

having type:

(S
L
 T ) × (T

L
 U ) → (S

L
 U ).

A semantics for L now turns a program in L into a function, in partic-

ular it now also has type [[ · ]]L : (S
L
 T ) → (S → T ). We are now going

to consider the machine code of our host architecture as a language

H and, by some extent abuse of concepts, regard [[ · ]]H as meaning

“execute a program in language H”.

Clearly the only practically useful compilers are of the form S
H
 H,

since we need them to be both executable and to produce executable

code. But we can use composition to produce other compilers: we’ve

already seen how a compiler S
H
 T can be composed with one T

H
 H

to give a usable compiler S
H
 H. But these ‘compilation types’ can also

be ‘vertically’ composed: use a L
H
 H compiler to compile a S

L
 H

one to yield a usable compiler S
H
 H

One problem is that people typically write a compiler for a new lan-

guage U in the language itself (because it’s a great new perfect lan-

guage!). Suppose they are kind enough to make it generate H code, so

we have a compiler U
U
 H, but we still have the so-called ‘bootstrap-

ping problem’ that until we have a compiler or other execution mech-

anism for U we have no composition to make the compiler useful (i.e.
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of the form U
H
 H). The trick is to somehow make some sort of pro-

totype compiler of the form U
H
 H and then use that to compile the

U
U
 H compiler to produce (hopefully a better) compiler U

H
 H. This

bootstrapping processes can be repeated.

But, one might ask various interesting questions, such as: do the

sequence compilers eventually become equal? Can the original proto-

type compiler leave some form of footprint? In particular, if the U
U
 H

compiler is correct, does that mean that the bootstrapped compiler is

correct?

The latter question is answered in the negative, and has entertain-

ing security implications. It is possible to write a compiler which mis-

compiles one piece of code (e.g. the login program) but which cor-

rectly compiles every other piece of code apart from itself, because

it compiles this to a compiler which miscompiles the login program

and itself. Moreover this compiler is correct when seen as a program

U
U
 H (it compiles the login program correctly) but (of course) in-

correct as is the program in U
H
 H resulting from bootstrapping. So

the security attack cannot be discovered by source code inspection.

See http://cm.bell-labs.com/who/ken/trust.html for details (the

1984 Turing Award classic by Ken Thompson).
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11.3 Spectrum of Compilers and Interpreters

One might think that it is pretty clear whether a language is compiled

(like C say) or interpreted (like BASIC say). Even leaving aside issues

like microcoded machines (when the instruction set is actually executed

by a lower-level program at the hardware level “Big fleas have little fleas

upon their backs to bite them”) this question is more subtle than first

appears.

Consider Sun’s Java system. A Java program is indeed compiled to

instructions (for the Java Virtual Machine—JVM) which is then typically

interpreted by a C program. One comparatively-recent development

is that of Just-In-Time—JIT compilers for Java in which the ‘compiled’

JVM code is translated to native code just before execution.

If you think that there is a world of difference between emulating

JVM instructions and executing a native translation of them then con-

sider a simple JIT compiler which replaces each JVM instruction with a

procedure call, so instead of emulating

iload 3

we execute

iload(3);

where the procedure iload() merely performs the code that the inter-

preter would have performed.
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Similarly, does parsing our simple expression language into trees

before interpreting them cause us to have a compiler, and should we

reserve the word ‘interpreter’ for a system which interprets text (like

some BASIC systems)?

So, we conclude there is no line-in-the-sand difference between a

compiled system and and an interpreted system. Instead there is a

spectrum whose essential variable is how much work is done statically

(i.e. before input data is available and execution starts) and how much

is done during execution.

In typical implementations of Python and PHP, and in our simple

lambda evaluator earlier in the notes, we do assume that the program-

reading phase has arranged the expression as a tree and faulted any

mismatched brackets etc. However, we still arrange to search for names

(see lookup) and check type information (see the code for e1 + e2) at

run-time.

Designing a language (e.g. its type system) so that as much work as

possible can be done before execution starts clearly helps one to build

efficient implementations by allowing the compiler to generate good

code.
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11.4 Debugging

One aspect of debugging is to allow the user to set a ‘breakpoint’ to

stop execution when control reaches a particular point. This is often

achieved by replacing the instruction at the breakpointed instruction

with a special trap opcode.

Often extra information is stored the ELF object file and/or in a stack

frame to allow for improved runtime diagnostics. Similarly, in many lan-

guages it is possible to address all variables with respect to SP and not

use a FP register at all; however then giving a ‘back-trace’ of currently

active procedures at a debugger breakpoint can be difficult.

The design of debuggers involves a difficult compromise between

space efficiency, execution efficiency and the effectiveness of the de-

bugging aids. The unix utility strip and and the gcc option -g and

-fomit-frame-pointer reflect this. Exercise 8: Find out why.

11.5 The Debugging Illusion

Source-level debuggers (like gdb) attempt to give the user the impres-

sion that the source code is being interpreted. The more optimising the

compiler, the harder this is to achieve and the more information debug-

ger tables need to hold. (Do you want to be able to put a breakpoint

on a branch-to-a-branch which might have been optimised into a single

branch? What if user-code has been duplicated, e.g. loop unrolling, or
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shared, e.g. optimising several computations of a+b into a single one?).

12 Automated tools to write compilers

Automated tools to write compilers are often known as compiler com-

pilers (i.e. they compile a textual specification of part of your compiler

into regular, if sordid, source code instead of you having to write it your-

self). Automation has largely been applied to parts of a compiler not

directly related to run-time efficiency, i.e. lexing and parsing, but there

is increasing, if not yet common, interest in automated generation of

code generators from machine specifications.

Lex and Yacc are programs that run on Unix and provide a conve-

nient system for constructing lexical and syntax analysers. JLex and

CUP provide similar facilities in a Java environment. There are also

similar tools for ML.

12.1 Lex

Lex takes as input a file (e.g. calc.l) specifying the syntax of the

lexical tokens to be recognised and it outputs a C program (normally

lex.yy.c) to perform the recognition. The syntax of each token is spec-

ified by means of a regular expression and the corresponding action

when that token is found is supplied as a fragment of C program that
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%%

[ \t] /* ignore blanks and tabs */ ;

[0-9]+ { yylval = atoi(yytext); return NUMBER; }

"mod" return MOD;

"div" return DIV;

"sqr" return SQR;

\n|. return yytext[0]; /* return everything else */

Figure 4: calc.l

is incorporated into the resulting lexical analyser. Consider the lex pro-

gram calc.l in Figure 4. The regular expressions obey the usual Unix

conventions allowing, for instance, [0-9] to match any digit, the char-

acter + to denote repetition of one or more times, and dot (.) to match

any character other than newline. Next to each regular expression is the

fragment of C program for the specified token. This may use some pre-

defined variables and constants such as yylval, yytext and NUMBER.

yytext is a character vector that holds the characters of the current to-

ken (its length is held in yyleng). The fragment of code is placed in the

body of a synthesised function called lex, and thus a return statement

will cause a return from this function with a specified value. Certain to-
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kens such as NUMBER return auxiliary information in suitably declared

variables. For example, the converted value of a NUMBER is passed in

the variable lexlval. If a code fragment does not explicitly return from

lex then after processing the current token the lexical analyser will start

searching for the next token.

In more detail, a Lex program consists of three parts separated by

%%s.

declarations

%%

translation rules

%%

auxiliary C code

The declarations allows a fragment of C program to be placed near

the start of the resulting lexical analyser. This is a convenient place to

declare constants and variables used by the lexical analyser. One may

also make regular expression definitions in this section, for instance:

ws [ \t\n]+

letter [A-Za-z]

digit [0-9]

id {letter}({letter}|{digit})*

These named regular expressions may be used by enclosing them in

braces ({ or }) in later definitions or in the translation rules.
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The translation rules are as above and the auxiliary C code is just

treated as a text to be copied into the resulting lexical analyser.

12.2 Yacc

Yacc (yet another compiler compiler) is like Lex in that it takes an input

file (e.g. calc.y) specifying the syntax and translation rule of a lan-

guage and it output a C program (usually y.tab.c) to perform the syn-

tax analysis.

Like Lex, a Yacc program has three parts separated by %%s.

declarations

%%

translation rules

%%

auxiliary C code

Within the declaration one can specify fragments of C code (enclosed

within special brackets %{ and %}) that will be incorporated near the

beginning of the resulting syntax analyser. One may also declare to-

ken names and the precedence and associativity of operators in the

declaration section by means of statements such as:

%token NUMBER

%left ’*’ DIV MOD
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The translation rules consist of BNF-like productions that include

fragments of C code for execution when the production is invoked dur-

ing syntax analysis. This C code is enclosed in braces ({ and }) and

may contain special symbols such as $$, $1 and $2 that provide a con-

venient means of accessing the result of translating the terms on the

right hand side of the corresponding production.

The auxiliary C code section of a Yacc program is just treated as text

to be included at the end of the resulting syntax analyser. It could for

instance be used to define the main program.

An example of a Yacc program (that makes use of the result of Lex

applied to calc.l) is calc.y listed in Figure 5.

Yacc parses using the LALR(1) technique. It has the interesting

and convenient feature that the grammar is allowed to be ambiguous

resulting in numerous shift-reduce and reduce-reduce conflicts that are

resolved by means of the precedence and associativity declarations

provided by the user. This allows the grammar to be given using fewer

syntactic categories with the result that it is in general more readable.

The above example uses Lex and Yacc to construct a simple inter-

active calculator; the translation of each expression construct is just the

integer result of evaluating the expression. Note that in one sense it is

not typical in that it does not construct a parse tree—instead the value

of the input expression is evaluated as the expression is parsed. The

first two productions for ‘expr’ would more typically look like:

177



%{

#include <stdio.h>

%}

%token NUMBER

%left ’+’ ’-’

%left ’*’ DIV MOD

/* gives higher precedence to ’*’, DIV and MOD */

%left SQR

%%

comm: comm ’\n’

| /* empty */

| comm expr ’\n’ { printf("%d\n", $2); }

| comm error ’\n’ { yyerrok; printf("Try again\n");

;

expr: ’(’ expr ’)’ { $$ = $2; }

| expr ’+’ expr { $$ = $1 + $3; }

| expr ’-’ expr { $$ = $1 - $3; }

| expr ’*’ expr { $$ = $1 * $3; }

| expr DIV expr { $$ = $1 / $3; }

| expr MOD expr { $$ = $1 % $3; }

| SQR expr { $$ = $2 * $2; }

| NUMBER

;
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expr: ’(’ expr ’)’ { $$ = $2; }

| expr ’+’ expr { $$ = mkbinop(’+’, $1, $3);

where mkbinop() is a C function which takes two parse trees for operands

and makes a new one representing the addition of those operands.

13 Phrase-structured grammars

The concept of the phrase-structured grammar was formalised by Chom-

sky.

We start with an alphabet, , of symbols (think of these as input

characters to lexing or tokens resulting from lexing that are input to the

syntax analyser). A string over this alphabet is just a finite sequence

σ1 · · ·σn of symbols from . A language is then merely a defined set of

such strings. (Using the ‘star’ notation from regular expressions earlier,

we can hence say that a language L over an alphabet is a defined

subset of ∗, i.e. L ⊆ ∗.

To make the definition we need a rule (or rules) that defines those

strings in the language. For a rather boring language, consider the

alphabet to be set of all letters {a ... z} and the rule to be “all strings

of length three” then we would have the language whose strings are:

aaa, aab, ... zzy, zzz
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Note that this is a finite language, but some languages may be infinite

(e.g. “all strings of even length”). Such informal rules (specified by En-

glish) are not terribly useful to Computer Science (e.g. think of the rule

“all valid Java programs”), so we turn to grammars.

Informally a grammar (more precisely a phrase structured grammar)

has additional symbols (non-terminals) which are not part of the lan-

guage we wish to describe. The ‘rule’ for determining which strings are

part of the language is then a two-part process: strings containing such

non-terminals can be re-written to other strings (perhaps also contain-

ing other non-terminals) using production rules; strings containing no

non-terminal symbols are considered part of the language.

A grammar can then be defined to be a 4-tuple (T, N, S, R) where T

and N are disjoint sets of respectively terminal and non-terminal sym-

bols, S ∈ N is the start (or sentence) symbol, and R is a set of produc-

tions. T performs the rôle of above, but now it is convenient to use the

word ‘symbol’ to mean any symbol in T ∪ N . The most general form of

a production is:

A1 A2 · · · Am −→ B1 B2 · · · Bn

where the Ai and Bi are symbols and A1 A2 · · · Am contains at least

one non-terminal.

The above rule specifies that if A1 A2 · · · Am occurs in a string gen-

erated by the grammar then the string formed by replacing A1 A2 · · · Am
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by B1 B2 · · · Bn is also generated by the grammar (note that the symbol

‘::=’ is sometimes used as an alternative to ‘−→’). The string consist-

ing of just the start symbol S is defined to be trivially generated by

the grammar. Any string that can be formed by the application of pro-

ductions to S is called a sentential form. A sentential form containing

no non-terminals is called a sentence. The language generated by a

grammar is the set of sentences it generates. The problem of syntax

analysis is to discover which series of applications of productions that

will convert the sentence symbol into the given sentence.

It is important not to confuse T and N . Elements of T occur in

programs, in examples terminal symbols may be a, b, c as in the length-

3 string example above and occur in input text. Non-terminals like Term

or Declaration do not occur in input text but instead are place holders

for other sequences of symbols.

It is useful to impose certain restrictions on A1 A2 · · · Am and B1 B2 · · · Bn

and this has been done by Chomsky to form four different types of gram-

mar. The most important of these is the Chomsky Type 2 grammar

(commonly known as a context-free grammar for reasons which will be-

come clear below).
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13.1 Type 2 grammar

In the Chomsky type 2 grammar the left hand side of every production is

restricted to just a single non-terminal symbol. Such symbols are often

called syntactic categories. Type 2 grammars are known as context-

free grammars and have been used frequently in the specification of

the syntax of programming languages, most notably Algol 60 where it

was first used. The notation is sometime called Backus Naur Form or

BNF after two of the designers of Algol 60. A simple example of a type

2 grammar is as follows:

S −→ A B

A −→ a

A −→ A B b

B −→ b c

B −→ B a

A slightly more convenient way of writing the above grammar is:

S −→ A B

A −→ a | A B b

B −→ b c | B a

The alphabet for this grammar is {S, A, B, a, b, c, d}. The non-

terminals are S, A, B being the symbols occurring on the left-hand-

side of productions, with S being identified as the start symbol. The
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terminal symbols are a, b, c, d, these being the characters that only

appear on the right hand side. Sentences that this grammar generates

include, for instance:

abc

abcbbc

abcbca

abcbbcaabca

Where the last sentence, for instance, is generated from the sentence
symbol by means of the following productions:

S

|

A---------------B

| |

A-------B-----b B---a

| | | | |

A-B---b B---a | b-c |

| | | | | | | | |

a b-c | b-c | | | | |

| | | | | | | | | | |

a b c b b c a b b c a

For completeness, the other grammars in the Chomsky classifica-

tion are as follows.
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13.2 Type 0 grammars

In a type 0 grammar there are no restrictions on the sequences on

either side of productions. Consider the following example:

S −→ a S B C | a B C

C B −→ B C

a B −→ a b

b B −→ b b

b C −→ b c

c C −→ c c

This generates all strings of the form anbncn for all n ≥ 1.

To derive aaaaabbbbbccccc, first apply S −→aSBC four times giv-

ing:

aaaaSBCBCBCBC

Then apply S −→aBC giving:

aaaaaBCBCBCBCBC

Then apply CB −→BC many times until all the Cs are at the right hand

end.

aaaaaBBBBBCCCCC

Finally, use the last four productions to convert all the Bs and Cs to lower
case giving the required result. The resulting parse tree is as follows:
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S

a-S-----------------------B-C

| a-S-----------------B-C | |

| | a-S-----------B-C | | | |

| | | a-S-----B-C | | | | | |

| | | | a-B-C | | | | | | | |

| | | | a-b B-C B-C B-C B-C |

| | | | | b-b B-C B-C B-C | |

| | | | | | b-b B-C B-C | | |

| | | | | | | b-b B-C | | | |

| | | | | | | | b-b | | | | |

| | | | | | | | | b-c | | | |

| | | | | | | | | | c-c | | |

| | | | | | | | | | | c-c | |

| | | | | | | | | | | | c-c |

| | | | | | | | | | | | | c-c

| | | | | | | | | | | | | | |

a a a a a b b b b b c c c c c

As a final remark on type 0 grammars, it should be clear that one

can write a grammar which essentially specifies the behaviour of a Tur-

ing machine, and syntax analysis in this case is equivalent to deciding

whether a given string is the answer to some program. This is un-

decidable and syntax analysis of type 0 grammars is thus, in general,

undecidable.
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13.3 Type 1 grammars

A production in a type 1 grammar takes the following form:

L1 · · ·Ll
︸ ︷︷ ︸

U R1 · · ·Rr
︸ ︷︷ ︸

−→ L1 · · ·Ll
︸ ︷︷ ︸

︷ ︸︸ ︷

B1 · · ·Bn R1 · · ·Rr
︸ ︷︷ ︸

where A is a single non-terminal symbol, and the L1 · · ·Ll, R1 · · ·Rr

and B1 · · ·Bn are sequences of terminal and non-terminal symbols.

The sequence B1 · · ·Bn may not be empty. These grammars are called

context sensitive since U can only be replaced by B1 · · ·Bn if it occurs

in a suitable context (the Li form the left context and the Ri the right

context).

13.4 Type 3 grammars

This is the most restrictive of the phrase structured grammars. In it all

productions are limited to being one of the following two forms:

U −→ a

U −→ a V

That is, the right hand side must consist of a single terminal symbol

possibly followed by a single non-terminal.

Type 3 grammars can clearly be parsed using a finite state recog-

niser, and for this reason they are often called regular grammars. [To

get precise correspondence to regular languages it is necessary also

186



to allow the empty production S −→ǫ otherwise the regular language

consisting of the empty string (accepted by an automaton whose initial

state is accepting, but any non-empty input sequence causes it to move

to a non-accepting state) cannot be represented as a type 3 grammar;

more information on topics like this can be found on Wikipedia, e.g.

http://en.wikipedia.org/wiki/Regular_grammar

13.5 Grammar inclusions

Finally, note that clearly every Type 3 grammar is a Type 2 grammar

and every Type 2 grammar is a Type 1 grammar etc. Moreover these

inclusions are strict in that there are languages which can be generated

by (e.g.) a Type 2 grammar and which cannot be generated by any

Type 3 grammar. However, just because a particular language can be

described by (say) a Type 2 grammar does not automatically mean that

there is no Type 3 grammar which describes the language. An example

would be the grammar G given by

S −→ a

S −→ S a

which is of Type 2 (and not Type 3) but the grammar G′ given by

S −→ a

S −→ a S
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clearly generates the same set of strings (is equivalent to G) and is

Type 3.

14 How parser generators work

As mentioned earlier, given a relatively large grammar, it is more conve-

nient to supply the grammar to a tool (a ‘parser generator’) and allow it

to generate a parser rather than hand-writing a parser. Such tools tend

not to generate a parser in code form; rather they derive a table from the

grammar and attach a fixed table-driven parsing algorithm to it. Parser

generators do not accept an arbitrary context-free grammar, but instead

accept a restricted form, of which the most common form for practical

tools (e.g. yacc, mlyacc, CUP) is the LALR(1) grammar (although antlr

uses LL(k) parsing).

Rather than explain how a LALR(1) parser generator works, I will ex-

plain so-called SLR(k) parsers work; these use the the same underlying

parsing algorithm, but generate less compact (but easier to understand)

tables.

The basic idea is that the currently-consumed input could potentially

be parsed in various ways and we keep all feasible possibilities alive

using a non-deterministic automaton. However, we convert the NDA to

a deterministic one at compile time (inside the yacc tool or whatever)

(using the subset construction) so we only need to run the deterministic
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machine at run time.

To exemplify this style of syntax analysis, consider the following

grammar (here E, T, P abbreviate ‘expression’, ‘term’ and ‘primary’—an

alternative notation would use names like <expr>, <term> and <primary>

instead):

#0 S −→ E eof

#1 E −→ E + T

#2 E −→ T

#3 T −→ P ** T

#4 T −→ P

#5 P −→ i

#6 P −→ ( E )

The form of production #0 is important. It defines the sentence symbol

S and its RHS consists of a single non-terminal followed by the special

terminal symbol eof which must not occur anywhere else in the gram-

mar. (When you revisit this issue you will note that this ensures the

value parsed is an E and what would be a reduce transition using rule

#0 is used for the acc accept marker.)

We first construct what is called the characteristic finite state ma-

chine or CFSM for the grammar. Each state in the CFSM corresponds

to a different set of items where an item consists of a production to-

gether with a position marker (represented by .) marking some position
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on the right hand side. Items are also commonly known as configura-

tions. There are, for instance, four possible items involving production

#1, as follows:

E −→ .E + T

E −→ E .+ T

E −→ E + .T

E −→ E + T .

If the marker in an item is at the beginning of the right hand side then

the item is called an initial item. If it is at the right hand end then the

item is called a completed item. In forming item sets a closure operation

must be performed to ensure that whenever the marker in an item of a

set precedes a non-terminal, E say, then initial items must be included

in the set for all productions with E on the left hand side.

The first item set is formed by taking the initial item for the production

defining the sentence symbol (S −→.E eof ) and then performing the

closure operation, giving the item set:

1: { S −→ .E eof

E −→ .E + T

E −→ .T

T −→ .P ** T

T −→ .P

P −→ .i
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P −→ .( E )

}

States have successor states formed by advancing the marker over

the symbol it precedes. For state 1 there are successor states reached

by advancing the marker over the symbols ‘E’, ‘T’, ‘P’, ‘i’ or ‘(’. Consider,

first, the E successor (state 2), it contains two items derived from state 1

and the closure operation adds no more (since neither marker precedes

a non terminal). State 2 is thus:

2: { S −→ E . eof

E −→ E .+ T

}

The other successor states are defined similarly, except that the suc-

cessor of eof is always the special state accept. If a new item set is

identical to an already existing set then the existing set is used. The

successor of a completed item is a special state represented by $ and

the transition is labelled by the production number (#i) of the produc-

tion involved. The process of forming the complete collection of item

sets continues until all successors of all item sets have been formed.

This necessarily terminates because there are only a finite number of

different item sets.

For the example grammar the complete collection of item sets given

in Figure 6. Note that for completed items the successor state is reached
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1: { S -> .E eof \

E -> .E + T / E => 2

E -> .T T => 5

T -> .P ** T \

T -> .P / P => 6

P -> .i i => 9

P -> .( E ) ( => 10

}

2: { S -> E .eof eof => accept

E -> E .+ T + => 3

}

3: { E -> E + .T T => 4

T -> .P ** T \

T -> .P / P => 6

P -> .i i => 9

P -> .( E ) ( => 10

}

4: { E -> E + T . #1 => $

}

5: { E -> T . #2 => $

}

6: { T -> P .** T ** => 7

T -> P . #4 => $

}

7: { T -> P ** .T T => 8

T -> .P ** T \

T -> .P / P => 6

P -> .i i => 9
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via the application of a production (whose number is given in the dia-

gram).

The CFSM can be represented diagrammatically as follows:

5

6

7

10 12

8

1

43$

$

$
#2 #1

#4P

T

T

E

(

T +

2
eof

accept

**

$

$

i
9

#5
$

11
)E #6

#3

14.1 SLR(0) parser

From the CFSM we can construct the two matrices action and goto:

1. If there is a transition from state i to state j under the terminal

symbol k, then set action[i, k] to Sj.

2. If there is a transition under a non-terminal symbol A, say, from

state i to state j, set goto[i, A] to Sj.

3. If state i contains a transition under eof set action[i, eof ] to acc.

4. If there is a reduce transition #p from state i, set action[i, k] to #p

for all terminals k.
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If any entry is multiply defined then the grammar is not SLR(0).

The example grammar gives matrices (using dash (-) to mark blank

entries);

action goto

state eof ( i ) + ** P T E

S1 - S10 S9 - - - S6 S5 S2

S2 acc - - - S3 - - - -

S3 - S10 S9 - - - S6 S4 -

S4 #1 #1 #1 #1 #1 #1 - - -

S5 #2 #2 #2 #2 #2 #2 - - -

S6 #4 #4 #4 #4 #4 XXX - - -

S7 - S10 S9 - - - S6 S8 -

S8 #3 #3 #3 #3 #3 #3 - - -

S9 #5 #5 #5 #5 #5 #5 - - -

S10 - S10 S9 - - - S6 S5 S11

S11 - - - S12 S3 - - - -

S12 #6 #6 #6 #6 #6 #6 - - -

and so therefore is not SLR(0)—because (state S6, symbol ‘∗∗’) is

marked ‘XXX’ to indicate that it admits both a shift transition (S7) and

a reduce transition (#4) for the terminal ∗∗. In general right associative

operators do not give SLR(0) grammars.

The key idea is to determine whether to shift or reduce according to

the next terminal in the input stream—i.e. to use a 1-token lookahead
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to determine whether it is appropriate to perform reduce transition. This

leads to the idea of an SLR(1) grammar to which we now turn.

14.2 SLR(1) parser

To construct an SLR(1) parser we must define and compute the sets

FOLLOW(U ) for all non-terminal symbols U . FOLLOW(U ) is defined to be

the set of all symbols (terminal and non-terminal) that can immediately

follow the non-terminal symbol U in a sentential form. To do this, it is

helpful to define the notion of the set of symbols Left(U ) (again ter-

minal and non-terminal) which can appear at the start of a sentential

form generated from the non-terminal symbol U . I.e. if U
1+
−→ B1 · · ·Bn

then B1 is in Left(U ) where the notation
1+
−→ means using one or more

production rules.

The sets Left(U ) can be calculated for all non-terminals U in the

grammar by the following algorithm:

1. Initialise all sets Left(U ) to empty.

2. For each production U −→ B1 · · ·Bn enter B1 into Left(U ).

3. For each production U −→ B1 · · ·Bn where B1 is also a non-

terminal enter all the elements of Left(B1) into Left(U )

4. Repeat 3. until no further change.
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For the example grammar the Left sets are as follows:

U Left(U )

S E T P ( i

E E T P ( i

T P ( i

P ( i

The sets FOLLOW(U ) can now be formed using the following rules.38

1. If there is a production of the form U −→ · · ·V B · · · put B into

FOLLOW(V ).

2. If, moreover, B is a non-terminal then also put all symbols in

Left(B) into FOLLOW(V ).

3. If there is a production of the form U −→ · · ·V put all symbols in

FOLLOW(U ) into FOLLOW(V ).

We are assuming here that no production in the grammar has an empty

right hand side. For our example grammar, the FOLLOW sets are as

38 Apology: because of the structure of the example language (which does not contain two adjacent

non-terminals in any production) case 2 of this construction is never exercised—thanks to Tom Stuart

for pointing this out. A production such as U −→ xV Wy with x and y terminals and U , V and W

non-terminals would exercise this case.
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follows:
U FOLLOW(U )

E eof + )

T eof + )

P eof + ) **

The action and goto matrices are formed from the CFSM as in the

SLR(0) case, but with rule 4 modified:

4’ If there is a reduce transition #p from state i, set action[i, k] to #p

for all terminals k belonging to FOLLOW(U ) where U is the subject

of production #p.

If any entry is multiply defined then the grammar is not SLR(1). Blank

entries are represented by dash (-).
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action goto

state eof ( i ) + ** P T E

S1 - S10 S9 - - - S6 S5 S2

S2 acc - - - S3 - - - -

S3 - S10 S9 - - - S6 S4 -

S4 #1 - - #1 #1 - - - -

S5 #2 - - #2 #2 - - - -

S6 #4 - - #4 #4 S7 - - -

S7 - S10 S9 - - - S6 S8 -

S8 #3 - - #3 #3 - - - -

S9 #5 - - #5 #5 #5 - - -

S10 - S10 S9 - - - S6 S5 S11

S11 - - - S12 S3 - - - -

S12 #6 - - #6 #6 #6 - - -

14.3 SLR parser runtime code

The parsing algorithm used for all LR methods uses a stack that con-

tains alternately state numbers and symbols from the grammar, and a

list of input terminal symbols terminated by eof .39 A typical situation is

represented below:

39The stack can also be coded as a stack of pairs with minor changes. This is more convenient when

the generator is implemented in modern, strongly-typed languages. The pairs are instead triples when

a parse tree is being generated, which is the normal case.
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a A b B c C d D e E f | u v w x y z eof

Here a ... f are state numbers, A ... E are grammar symbols (ei-

ther terminal or non-terminal) and u ... z are the terminal symbols of

the text still to be parsed. If the original text was syntactically correct,

then

A B C D E u v w x y z

will be a sentential form.

The parsing algorithm starts in state S1 with the whole program, i.e.

configuration

1 | 〈the whole program upto eof 〉

and then repeatedly applies the following rules until either a syntactic

error is found or the parse is complete.

1. If action[f, u] = Si, then transform

a A b B c C d D e E f | u v w x y z eof

to

a A b B c C d D e E f u i | v w x y z eof

This is called a shift transition.
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2. If action[f, u] = #p, and production #p is of length 3, say, then

it will be of the form P −→ C D E where C D E exactly matches the

top three symbols on the stack, and P is some non-terminal, then

assuming goto[c, P] = g

a A b B c C d D e E f | u v w x y z eof

will transform to

a A b B c P g | u v w x y z eof

Notice that the symbols in the stack corresponding to the right

hand side of the production have been replaced by the subject of

the production and a new state chosen using the goto table. This

is called a reduce transition.

3. If action[f, u] = acc then the situation will be as follows:

a Q f | eof

and the parse will be complete. (Here Q will necessarily be the

single non-terminal in the start symbol production (#0) and u will

be the symbol eof .)

4. If action[f, u] = - then the text being parsed is syntactically

incorrect.
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Note again that there is a single program for all grammars; the grammar

is coded in the action and goto matrices.

As an example, the following steps are used in the parsing of i+i:

Stack text production to use

1 i + i eof

1 i 9 + i eof P −→ i

1 P 6 + i eof T −→ P

1 T 5 + i eof E −→ T

1 E 2 + i eof

1 E 2 + 3 i eof

1 E 2 + 3 i 9 eof P −→ i

1 E 2 + 3 P 6 eof T −→ P

1 E 2 + 3 T 4 eof E −→ E + T

1 E 2 eof acc (E is result)

In practice a tree will be produced and stored attached to terminals and

non-terminals on the stack. Thus the final E will in reality be a pair of

values: the non-terminal E along with a tree representing i+i.

Note that the above parse is an LR-parse: look at the productions

used (backwards, starting at the bottom of the page since we are pars-

ing, not deriving strings from the start symbol).

We see

E −→ E+T −→ E+P −→ E+i −→ T+i −→ P+i −→ i+i
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i.e. a rightmost derivation.

14.4 Errors

A syntactic error is detected by encountering a blank entry in the action

or goto tables. If this happens the parser can recover by systematically

inserting, deleting or replacing symbols near the current point in the

source text, and choosing the modification that yields the most satisfac-

tory recovery. A suitable error message can then be generated.

[The end]
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