
Compiler Contruction for the 21st Century:

Report on the Compiler Technology Project

funded by Microsoft

Neil Johnson and Alan Mycroft
University of Cambridge
Computer Laboratory

December 4, 2004

Introduction

Cambridge University has a long-established record of excellence in the field
of Computer Science. The Computer Laboratory was originally founded in
May 1937, and began teaching the world’s first taught course in Computer
Science in 1953. Today, the lab enjoys a world-class record of both under-
graduate and postgraduate teaching, and leading research in the fields of pro-
gramming languages, security, theorem proving, natural language processing,
systems research, theory and semantics, and processor hardware design.

The second-year Compiler Construction course at the Computer Lab-
oratory currently uses the Java JVM intermediate byte-code language for
illustrating code generation techniques for a stack machine. A newer virtual
machine—Microsoft’s .Net—is growing in popularity, being used for modern
Windows applications, from web servers to word processors.

This report describes the three main examples presented in the Compiler

Construction course—a recursive-descent four function calculator, a machine-
generated four function calculator for comparison, and a compiler for a simple
C-like language that generates .Net assembly code. This report also includes
a list of resources that students may find useful in their studies.

The final year Optimising Compilers course focuses on more advanced
topics, namely optimising for faster execution, and touching on related issues
such as decompilation. The compiler presented in this report is an ideal
base from which student projects can explore the concepts presented in the
advanced course.

1

Chapter 1

What is .Net?

The .Net platform, announced by Microsoft in July 2000, is a cross-platform
operating environment for hosting a wide variety of services and applications,
and supporting communication between not only different applications, but
also applications written in seemingly different languages (interoperability).

Of itself, .Net is neither an operating system nor a programming language.
It is more a layer that sits between the lower levels of the platform-specific
operating system, and the higher levels of applications, services, libraries, de-
velopment environments, etc. .Net is currently hosted on Windows, FreeBSD,
and Apple’s OS X (see later for details of MONO and running .Net appli-
cations on Linux). Applications can be written in C, C++, C#, Java, J#,
Visual Basic, COBOL, ML, Haskell, Oberon, Eiffel, Fortran, Perl, Python,
and Smalltalk to name a few. And the list is steadily growing.

While the full .Net includes many interesting components, for the pur-
poses of this report perhaps the more interesting components are:

• Development environment of .Net is enriched with many freely
available tools, both from Microsoft and other sources. This allows
a great deal of experimentation and exploration of compiler technology
for both host and target for a wide range of programming models (e.g.,
object-oriented or functional).

• Object model of .Net automatically supports many of the object-
oriented features required to implement object-oriented programming
languages. This simplifies compiler design, and allows easier experi-
mentation with new programming models.

• Common language runtime simplifies compiler development, mini-
mizing the need to develop entire runtime support libraries for any new
compiler. As the runtime suppors even the basic data types, there is

2

greater interoperability between modules written in different languages;
so, for example, one could write a new compiler for language A, and
as long as the compiler matches A’s type system to that of .Net, then
applications written in A have access to libraries and test harnesses
written in another language, say C#.

The .Net Common Language Infrastructure has been standardised by the
international standards body ECMA. Specifically, ECMA-335: Common Lan-
guage Infrastructure (CLI) specifies a file format, a common type system, an
extensible metadata system, an intermediate language, access to the underly-
ing platform, and a factored base class library. As well as the CLI, Microsoft
have also standardised C#, as ECMA-334: C# Language Specification.

These standards have opened the way forward for a variety of implemen-
tations of .Net, the CLR, and C#. The ROTOR project from Microsoft is a
shared-source .Net project, providing compilers, a runtime, and the majority
of the CLR to enable many applications to be compiled and interpreted on
both Windows and Mac OS X. Another project, this time open-source, is
the Mono project, released under various public licenses—the C# compiler
under the terms of the GNU GPL, the CLR under the GNU LGPL, and the
class libraries are released under the MIT X11 license.

As a side note, all of the applications described in this report have been
successfully executed on a Linux box under Mono and a Windows box un-
der the Microsoft .Net runtime, both as C# files compiled with Mono’s C#
compiler, and as compiled .exe files, illustrating the cross-platform nature
of .Net.

1.1 Supporting Materials

All of the source code described in this report is freely available for download
from the website accompanying the Compiler Construction course. It is
currently located at

http://www.cl.cam.ac.uk/Teaching/current/CompConstr/

Within each directory there is a Makefile and associated source files. Once
the files are unpacked the Makefile explains the steps necessary to build the
projects.

For projects using the ANTLR package you will need to have this installed
on your system prior to building or running the examples. Full details, with
downloads, are available from the ANTLR website:

http://www.antlr.org/

3

Chapter 2

Hand-written Recursive

Descent Parser

The design of the recursive descent four-function calculator follows that of
the example given in section 4.1 of the lecture notes. The implementation de-
scribed here is written in C# (the sources for this, and all the other examples
in this report, are in the included ZIP archive).

The grammar has four operators, and parentheses to modify evaluation
order:

T -> T + F | T - F | F

F -> F * P | F / P | P

P -> (T) | n

As mentioned in the lecture notes, the actual implementation uses right re-
cursion to avoid loops in the parser. The top-level function simply repeatedly
calls for T items until there is no more input:

4

public void Parse ()

{

while(true)

{

lexer.lex();

switch(lexer.getToken())

{

case Token.EOF: return;

default: Console.WriteLine("= " + RdT());

break;

}

}

}

The first rule, for “T -> T + F | T - F | F” produces the parsing function
RdT():

Int32 RdT()

{

Int32 result = RdF();

while(true)

switch(lexer.getToken())

{

case Token.PLUS: lexer.lex();

result += RdF();

continue;

case Token.MINUS: lexer.lex();

result -= RdF();

continue;

default: return result;

}

}

The second rule, for “F -> F * P | F / P | P” produces the parsing func-
tion RdF():

5

Int32 RdF()

{

Int32 result = RdP();

while(true)

switch(lexer.getToken())

{

case Token.TIMES: lexer.lex();

result *= RdP();

continue;

case Token.DIVIDE: lexer.lex();

result /= RdP();

continue;

default: return result;

}

}

The final rule, “P -> (T) | n” produces the parsing function RdP():

6

Int32 RdP()

{

Int32 result;

switch(lexer.getToken())

{

case Token.NUMBER: result = (Int32)lexer.getNumber();

break;

case Token.LPAREN: lexer.lex();

result = RdT();

if (lexer.getToken() != Token.RPAREN)

{

Console.WriteLine("Error: missing closing ’)’");

throw new System.Exception();

}

break;

default: Console.WriteLine("Error in expression.");

throw new System.Exception();

}

lexer.lex();

return result;

}

For brevity the above code has been simplified and the code for the lexer
has been omitted. Fully working source code may be found in the accompa-
nying source archive.

Exercises

1. Extend the language with unary minus, remainder, and exponential
operators.

2. Add user variables to this calculator. As a first instance fix the number
of user variables to, say, twenty-six variables (hint: use single letters
of the alphabet as symbolic names). You will also need to extend the
language to add the assignment operator.

3. Extend the user variable feature to allow arbitrary variable names.

7

4. Change the numeric types of this calculator to support arbitrary pre-
cision decimal arithmetic. For example, consider that a signed 32-bit
number is too small to record the gross domestic product of the USA.

8

Chapter 3

Machine-generated Parser

The previous chapter presented a hand-written recursive-descent calculator.
In this chapter we present a machine-generated version of the same program
as a comparison of the two techniques. The tool we use is called ANTLR, and
it generates LL(k) (i.e., recursive-descent) parsers which output an Abstract
Syntax tree (AST).

One goal of the design of this tool was that the output code should be
almost human-readable; the more curious reader will find it interesting to
examine the output of the ANTLR parser generator of the grammar described
below.

Note that in the following grammar, ! denotes non-AST tokens (i.e.,
those which do not produce nodes in the resulting AST), and ^ denotes
tokens which produce AST root nodes. Terminal symbols, defined elsewhere
in the provided source file, are written in uppercase.

9

class CalcParser extends Parser;

expr

: subexpr SEMI!

;

subexpr

: addexpr (MINUS^ addexpr)*

;

addexpr

: mulexpr (PLUS^ mulexpr)*

;

mulexpr

: divexpr (STAR^ divexpr)*

;

divexpr

: atom (DIVIDE^ atom)*

;

atom: INT

| LPAREN! subexpr RPAREN!

;

The above grammar will be turned into a machine which constructs an ab-
stract syntax tree (AST) of the expression. To actually compute the result,
we define a tree walker that does the actual computation:

10

class CalcTreeWalker extends TreeParser;

expr returns [float r]

{

float a,b;

r=0;

}

: #(PLUS a=expr b=expr) {r = a+b;}

| #(MINUS a=expr b=expr) {r = a-b;}

| #(STAR a=expr b=expr) {r = a*b;}

| #(DIVIDE a=expr b=expr) {r = a/b;}

| #(LPAREN a=expr RPAREN) {r = a;}

| i:INT {r = Convert.ToSingle(i.getText());}

;

The # construct defines an AST node pattern, with the first argument
being the root node, followed by the child nodes. For example, the first rule
matches an AST node with a PLUS terminal symbol root node, and two
sub-trees ‘a’ and ‘b’.

Note that the code in this report has been laid out for ease of readability;
the grammar could be written in six lines, with another six for the tree
walker.

This chapter has shown how automated toosl (i.e., ANTLR in this case)
can greatly simplify the task of writing compilers and interpreters. The
ANTLR grammar uses several meta-characters to simplify the layout of
grammar rules, which are summarised below:

• ! identifies tokens which, although necessary for the syntactic structure,
do not appear in the AST;

• ^ identifies tokens which form the roots of new ASTs (or subtrees
thereof);

• # is short-hand notation for describing AST nodes, taking a list as an
argument consisting of the root node and and child nodes of the AST
node;

• * denotes zero-or-more copies of the preceding item;

• ? denotes zero-or-one (i.e., optional) item.

11

Exercises

1. Repeat the same exercises from the previous chapter. Compare how
much effort is required (lines of codes, hours spent typing, etc) in using
automated tools compared to manual methods.

2. Extend the calculator language with user-definable functions, in the
style:

f(a,b,c) = (a + b) * c;

12

Chapter 4

Elisa .Net— Experimental

Language Compiler

Elisa is a simplified C-like language designed for this project to aid the teach-
ing of modern compiler techniques. The compiler presented here generates
intermediate code for a stack machine. The current implementation directly
targets the .Net virtual machine, but could be retargeted to other stack ma-
chines, e.g., the JVM.

It differs from the example compiler in the ROTOR package by (a) using
an automated tool (ANTLR), and (b) not relying on .Net CLR support for
generating target code.

4.1 The Elisa Language

The Elisa language looks very similar to C, and indeed the standard C pre-
processor can be used to provide, for example, source file inclusion and con-
ditional compilation features. The following discussion refers to parts of the
Elisa grammar (simplified for exposition), included for reference.

A program is a list of declarations, with each declaration being either a
global variable or a function:

13

program

: (declaration)+

;

declaration

: declarator SEMI!

| declarator LPAREN! (parameter_list)? RPAREN! stmt_block

;

A declarator specifes the type, a name, and an optional array suffix:

declarator

: KW_INT IDENT (arraydecl)?

;

arraydecl

: LBRACKET! INTEGER RBRACKET!

| LBRACKET! RBRACKET!

;

An array declaration with no dimension is treated as if the dimension was
zero1.

Functions take an optional comma-separated list of parameters:

parameter_list

: declarator (COMMA! declarator)*

;

The body of a function is a statement block: a list of zero or more declarators
followed by zero or more statements.

stmt_block

: LCURLY! (declarator SEMI!)* (statement)* RCURLY!

;

Declarators have already been described. A statement can be an expression
(including assignment), if, while, return, another statement block, or the
empty (null) statement:

1This supports pointer-like behaviour.

14

statement

: expression SEMI!

| if_stmt

| while_stmt

| return_stmt

| stmt_block

| SEMI!

;

if statements provide Elisa with a selection mechanism. The current im-
plementation of the Elisa compiler uses a feature of ANTLR to handle the
“dangling-else” issue:

if_stmt

: KW_IF! LPAREN! expression RPAREN! statement

(options { warnWhenFollowAmbig = false; } :

KW_ELSE! statement)?

;

The while statement takes an expression and a statement (which may be a
statement block). The statement is repeatedly executed while the expression
evaluates to true.

while_stmt

: KW_WHILE^ LPAREN! expression RPAREN! statement

;

The last statement, return, takes a single expression, and exits the enclosing
function.

return_stmt

: KW_RETURN^ expression SEMI!

;

Expressions in Elisa are handled through a stack of grammar rules to
enforce the precedence directly in the grammar, rather than though parser-
tool directives.

15

expression

: or_expr (ASSIGN^ expression)?

;

or_expr

: and_expr (OR^ and_expr)*

;

... etc ...

mult_expr

: unary_expr ((TIMES^ | DIVIDE^ | MOD^) unary_expr)*

;

unary_expr

: (NOT^ | COMP^ | MINUS^)? primary_expr

;

Note that we do not use left-recursion here. In general, LL(k) grammars do
not like left-recursion grammars, since it cannot be determined statically how
large k (the number of lookahead tokens) needs to be to parse all possible
inputs. In general most left-recursion rules can be rewritten using ANTLR’s
EBNF-style operators, as shown above.

Primary expressions include numbers, characters, variables, function calls,
and parenthesised expressions:

primary_expr

: INTEGER

| CHAR

| IDENT

| IDENT LBRACKET! expression RBRACKET!

| IDENT LPAREN! (expression (COMMA! expression)*)? RPAREN!

| LPAREN! expression RPAREN!

;

The lexical analyser is not described here; the reader is directed to the
source of the Elisa compiler, where the patterns for the lexical elements are
to be found.

16

4.2 Building the Elisa Compiler

The Elisa compiler requires the use of ANTLR to auto-generate the lexer
and parser code, and a C# compiler to produce the executable compiler. The
ElisaParser.g file is processed by ANTLR, producing two files: ElisaParser.cs
and ElisaCodeGenerator.cs. All the remaining files (including those gener-
ated by ANTLR) are passed to the C# compiler for compilation and linking
with the CLR runtime libraries.

The remaining files describe various components of the Elisa compiler:

• Elisa.cs is the top-level module, handling command line options, se-
lecting the target code generator, and calling the lexer and parser.

• ElisaParser.cs is produced by ANTLR and contains the parser code.

• ElisaCodeGenerator.cs is also produced by ANTLR and contains the
code for the tree walking code generator.

• SymbolTable.cs provides symbol table and basic type management.

• CodeGen.cs is an abstract class which specifies the code generator API,
and

• DotNetCodeGen.cs is the .Net code generator class which provides a
.Net code generator.

4.3 Intermediate Code Generation

The Elisa compiler generates stack-based intermediate code in two phases.
The first phase parses the input and produces abstract syntax trees (ASTs).
This is handled by the first part of the ElisaParser.g file. The second phase
walks the ASTs and emits stack code.

For stack machine targets the intermediate code output of the compiler
is the target code itself, no further translationa necessary to execute it. For
non-stack machines (e.g., x86) a further step of target code generation will
be required.

4.3.1 Declarations

Global declarations (both functions and global variables) are added to the
global symbol table as they are processed. Global variables are added to the

17

symbol table, and we choose to decorate their target-specific name xName
with the prefix “EL ” within the tree walker:

declaration

{

Symbol s;

ArrayList plist = null;

}

: #(DECLARATION s=declarator {

globals.Add(s);

s.xName = "EL_" + s.Name;

})

4.3.2 Functions

Functions require a little more treatment. First, we mark the function iden-
tifier’s type as a function type. All functions other than Main are decorated
with the EL prefix, as before. Then a new symbol table scope is created for
the function parameters:

| #(FUNCTION_DECL s=declarator {

s.Type = new Type(Type.T.FUNC, 0, s.Type);

if (s.Name == "Main")

s.xName = s.Name;

else

s.xName = "EL_" + s.Name;

symtab = new Symboltable(symtab);

Once the parameters have been processed, the function body is then cre-
ated, the list of local variables is initialised, and we define the exit label.
Local variables are announced to the backend during parsing. Array dec-
larations defined at any scope within a function generate code to allocate
sufficient memory for the array. For the .Net target, this code calls the run-
time function [mscorlib]System.Int32, passing it the number of words to
allocate.

18

(plist=parameter_list)? {

target.openFunction(s, plist);

locals = new ArrayList();

exitlabel = label++;

needsReturn = true;

}

Finally, the body of the function itself, which is treated as any other state-
ment block (see below) is processed. A check is then made on needsReturn,
emitting a warning and a default value if the last statement was not a return

statement. We then emit the exit label, the instruction to return control to
the function caller, and we close the function itself. The last action is to
remove the function parameter symbol table.

stmt_block {

if (needsReturn)

{

Console.Error.WriteLine("Warning: missing return");

target.emit_iconst(0);

}

target.emit_label(exitlabel);

target.emit_ret();

target.closeFunction(locals);

// remove parameter table

symtab = symtab.Parent;

}

For the .Net target all global array variables are allocated by code gener-
ated for the constructor method. All declarations, both variables and func-
tions, are declared as static members and methods respectively.

4.3.3 Expressions

Stack machines are especially good at computing expressions2. Generating
expression code for stack machines is done by a recursive-descent tree walker
that builds the expression on the stack, with the result of the expression
always on the top of the stack.

2Hewlett Packard produced (and still do to this day) many engineering and scientific
calculators that were based on stack-oriented Reverse Polish Notation (RPN).

19

Constants are loaded directly onto the evaluation stack. Depending on
their scope, variables are read from the local variable stack (including func-
tion parameters) or from global memory. Because Elisa does not support
explicit pointers as found in, say, C, there is no dereferencing operator.
However, pointer-like behaviour can be simulated with arrays, whereupon
the index expression is computed, and then an array access from the array
base is performed.

Assignments require careful handling. In Elisa, the address of the lvalue
expression is computed first, including any side-effects. Then the rvalue
expression is computed. Finally, the store of the rvalue into the location
addressed by the lvalue is generated.

One careful issue with assignments on stack machines is to ensure that
the result of the assignment, even after a store instruction, is left on the top
of the stack. The assignment operator achieves ensures this with the “dup”
instruction, which duplicates the value on the top of the stack. Assignment
statements pop the remaining unused value from the stack. Thus we correctly
compile such statements as:

x = y = 1 + z;

where the first assignment (to y) duplicates the result of the right-hand
expression on the stack, before popping the topmost copy off the top of the
stack and storing it in y. The second assignment, to x, similarly duplicates
the value on the top of the stack, takes the topmost item off the stack and
stores it in x. Finally, the end of the expression statement pops the unused
value off the top of the stack.

All expressions take two labels: tlab and flab. Expressions which are
computed solely for their value have both these labels set to zero. Where
an expression is required to determine control flow (if...then...else) one
of tlab or flab will be given a value other than zero. Then, depending on
which label is non-zero, code wil be emitted to jump to the non-zero label if
the result of the expression is zero or non-zero.

The logical operators must implement short-circuit evaluation (see lecture
notes, section 6.6). They do not in themselves compute a value. For example,
the logical AND operator && evaluates its left-hand first. If the result of that
is true, it then evaluates the right-hand expression, otherwise it branches to
the false label. If the result of the right-hand expression is similarly false,
the code branches to the false label. Otherwise execution continues at the
true label.

If the true label is zero and flab is L, then we generate code of the form

20

if lexpr == 0 goto L

if rexpr == 0 goto L

Conversely, if tlab is L and flab is zero, then we generate code:

if lexpr == 0 goto L’

if rexpr != 0 goto L

L’:

And similarly for logical OR and logical NOT.
In addition, if neither label is supplied then the logical operator is required

to produce a numeric value: 0 for false, 1 for true. This is used for code such
as

put(’0’ + (x == y));

which prints a ‘0’ or a ‘1’ depending on the values of x and y.

4.3.4 Statements

The Elisa language has a few basic statements. In the following, note that
labels are represented in the compiler as positive integers.

A statement block is defined as a block beginning with zero or more
declarations, then zero or more statements. A new symbol table is opened,
and any locals are both added to the symbol table, and announced to the
backend:

stmt_block

{

Symbol s;

}

: #(STMT_BLOCK {

symtab = new Symboltable(symtab);

} (s=declarator {

locals.Add(s);

target.announceLocal(s);

})* (statement)* { symtab = symtab.Parent; })

;

On exit of the statement block, the block’s symbol table is removed, prevent-
ing any variables defined in the block from being used outside the block.

21

Assignment Statements

Expressions are compiled for their effects (usually assignment). As noted
above, all expressions leave their result on the top of the stack, so an expres-
sion statement pops the redundant result off the stack:

: ty=expression[0,0] {

target.emit_pop();

needsReturn = true;

}

The setting of needsReturn tells the code generator that the current last
statement is not a return statement, causing the function epilogue code to
print a warning and to emit default “ return 0;” statement. Conversely, if
the last statement is a return statement, this flag is cleared and function
compiles without a warning.

If Statements

The if e then ST else SF statement (where the else clause is optional)
first evaluations expression e, and if true (i.e., non-zero) executes statement
ST . If there is an else clause, then if e evaluates to false, the SF is executed,
otherwise control flow follows to the next statement. Note that both ST and
SF can be single statements or statement blocks.

if_stmt

{

Type ty;

uint flab = label++;

uint endlab = label++;

}

: #(IF_STMT ty=expression[0,endlab] statement {

target.emit_label(endlab);

})

| #(IF_ELSE_STMT ty=expression[0,flab] statement {

target.emit_branch(endlab);

target.emit_label(flab);

} statement {

target.emit_label(endlab);

})

;

The code generated for the if statement needs one or two labels, depending

22

on the presence, or absence, of the else clause. When there is an else

clause, we generate code of the form

e[0,LF]

S_T

bra LX

LF:

S_F

LX:

The evaluation of the expression e takes two labels, as described above. The
true label is 0, to indicate that control flow should fall through the expression
to the true statement, ST . If the expression is false, then it should jump to
label LF . After ST we branch to the exit label, LX. This is followed by the
false label, LF , and the false statement, SF .

The code structure for an if statement without an else clause is similar,
but without the branch to LX, without SF , and without LX.

While Statements

The looping while statement is of the form while e S. For as long as
expression e evaluates to true (non-zero), statement S is executed. The code
structure for the while statement is of the form

L:

e[0,LX]

S

bra L

LX:

The code that actually generated while loops is equally simple:

23

while_stmt

{

Type ty;

uint toplab = label++;

uint btmlab = label++;

}

: #(KW_WHILE { target.emit_label(toplab); }

ty=expression[0,btmlab] statement)

{

target.emit_branch(toplab);

target.emit_label(btmlab);

}

;

Function Calls

Function calls require very little processing in the front end, other then eval-
uating the function arguments and the function address. The back end code
generator then emits the code to call the function, since the argument values
will already be on the evaluation stack in the correct order.

24

#(FUNCTION fid:IDENT {

ArrayList arglist = new ArrayList();

} (rty=expression[0,0] {

arglist.Add(rty);

})*) {

Symbol fs = symtab.find(fid.getText());

// Catch special cases

if (fid.getText() == "put")

{

target.PUT();

}

else if (fid.getText() == "get")

{

target.GET();

}

else

{

target.emit_call("int32 " + target.BaseName + "::"

+ fs.xName, arglist);

}

mkPredicate(tlab, flab);

exprty = fs.Type.Of;

}

There are two special function names in Elisa—put and get. The above code
catches these special cases and passes them on to the code generator to emit
the target-specific code. All other functions have their names decorated, and
the argument list supplied to the back end.

On return from the function, the return value will be on the top of the
evaluation stack. This is optionally converted into a predicate value if re-
quired.

Return Statements

The return statement takes a single expression argument, whose value be-
comes the result of the function. The code generated for the return state-
ment evaluates the expression, and then jumps to the function’s exit label.

25

return_stmt

{

Type ty;

}

: #(KW_RETURN ty=expression[0,0])

{

target.emit_branch(exitlabel);

}

;

Accessing Variables

Variables can appear on both the left hand side of an assignment (an lvalue)
and on the right hand side (an rvalue).

Rvalues are the simpler case. Variables represent the address of some
storage location in the processor’s memory. To read from the address rep-
resented by that variable we use an indirection node to implement reading
memory.

26

(INDIR lty = iid:expression[0,0] {

if (iid.Type == ARRAY)

{

// Load from array and strip off ARRAY from result type

target.emit_ldelem();

lty = lty.Of;

}

else if (iid.Type == IDENT)

{

s = symtab.find(iid.getText());

if (s.Scope == 0)

target.emit_ldglobal(s);

else if (s.Scope == 1)

target.emit_ldarg(s.Offset);

else

target.emit_ldloc(s.Offset);

}

else

{

Console.Error.WriteLine("Error: bad rvalue");

throw new System.Exception();

}

mkPredicate(tlab, flab);

exprty = lty;

})

At this stage in compilation the types of variables are either identifiers or
arrays. If the variable is an array name then we use the special ldelem

instruction to index into the array. Otherwise we simply load from memory,
which can be global memory, function parameters (which require special
instructions), or local stack. Finally, we optionally make this a predicate
value (0 or 1) if either tlab or flab is non-zero.

Lvalues require special care. Their address must only be computed once,
and before the right hand side of an assignment is evaluated.

27

#(ASSIGN lty = lid:expression[0,0] rty = rid:expression[0,0]

{

target.emit_dup();

if (lid.Type == ARRAY)

{

target.emit_stelem();

}

else if (lid.Type == IDENT)

{

s = symtab.find(lid.getText());

if (s.Scope == 0)

target.emit_stglobal(s);

else if (s.Scope == 1)

target.emit_starg(s.Offset);

else

target.emit_stloc(s.Offset);

}

else

{

Console.Error.WriteLine("Error: bad lvalue");

throw new System.Exception();

}

exprty = rty;

})

The front end constructs the assignment node with the lvalue as the first
child and the rvalue as the second child. Once both expressions have been
computed and their values placed on the evaluaion stack we first duplicate
the rvalue, then emit the store instruction (dependent on the type and scope
of the lvalue).

Exercises

1. The current version of the language only supports single-dimension ar-
rays. Extend the language to support multi-dimensional arrays. The
grammar will need modifying to support both multi-dimensional dec-
larations and multi-dimensional accesses.

28

2. Add support for strings to Elisa. The change to the grammar is triv-
ial, while supporting strings in the compiler requires attention to such
issues as where the strings are stored in the output. Would you treat
strings and arrays as distinct types, or related (i.e., a string as a single-
dimension array). How would you implement simple operations on
strings, such as ‘+’ (i.e., concatenation)?

3. Add declaration initializers (e.g., “int a=12;”) to Elisa. For scalar
variables this is easy, but what about arrays? How would your solution
handle multi-dimensional arrays? What about partial initializers (e.g.,
“int a[10]={3,2,1,0};”.

4. Extend the set of operators in Elisa with, for example, compound as-
signment operators (“x+=5;”), more relational operators, etc.

5. Add the conditional operator “c ? e1 : e2” to Elisa.

6. Rewrite the grammar rule for the if statement to avoid using tool-
specific hacks for handling the “dangling-else” ambiguity.

7. The code structure for the while loop is not as efficient as it could be,
requiring 2n + 1 branches to iterate n times. Design a code structure
which is faster.

8. Add the “do S while(e);” statement to Elisa. How does this relate
to your answer to the previous exercise?

9. Extend Elisa with the for(e1; e2; e3) statement. As for other lan-
guages, all three expressions are optional, with varying default be-
haviours. Include support for all versions of this statement.

10. Most languages have some form of switch or select statement. De-
sign one for Elisa. How do you propose to deal with breaks and fall-
throughs? For example, C allows fall-through from one case block to
the nest one, while C# does not.

11. Implement a lambda evaluator, so that one could write, for example:

int computefac(int p) {

let int fac(int z) = z == 1 ? 1 : z*fac(z-1); in {

return fac(p);

}

}

29

Note that the above is a recursive lambda (refer to lecture nodes, section
9.8). Also consider the scope in which fac() executes in, and what
variables it has access to. Investigate the many ways that have been
developed to solve this issue. Choose one and implement it.

12. The grammar has very little error checking and reporting. A production
compiler should provide far more information to the user about errors
and potential errors (warnings) found in the source program during
compilation. Augment the grammar (a) with more informative error
messages, and (b) with additional rules to catch common errors so that
more meaningful error messages can be generated. How would you
change the grammar to be able to recover from minor errors?

13. Port the Elisa compiler to the JVM. Ideally, make the choice between
targets a command line flag for the compiler (e.g., “--dotnet” or
“--jvm”).

14. Section 7 of the lecture notes describes a method for compiling stack-
based code into non-stack (e.g., x86) code. Implement a simple x86

code generator that will produce output that can be assembled into
an executable program (e.g., using as on Unix or the free MASM for
Windows).

15. Taking guidance from section 7 of the notes, improve the quality of the
code output by your x86 code generator.

16. Design a decompiler that matches your Elisa compiler. Ideally, if C

represents the compiler, and D the decompiler, then D(C(S)) = S for
source S, subject to differences in local variable names.

30

Chapter 5

Resources

Further information can be found in the following forms.

5.1 Books

• Programming C# (3rd edition), Jesse Liberty, O’Reilly

• Inside Microsoft .Net IL Assembler, Serge Lidin, Microsoft Press

5.2 Web Resources

5.2.1 Course Support Materials

• Compiler Construction homepage

http://www.cl.cam.ac.uk/Teaching/current/CompConstr/Elisa

5.2.2 Language Development Tools

• ANTLR

http://www.antlr.org

• Grammatica

http://www.nongnu.org/grammatica/

5.2.3 Other .Net Compiler Projects

• LCC.Net

http://www.cs.princeton.edu/software/lcc/

31

• Cflat

http://iti.spbu.ru/eng/grants/Cflat.asp

5.2.4 .Net Online

Microsoft

• Shared-Source CLI (and Rotor)

http://msdn.microsoft.com/netframework/using/understanding/cli/default.aspx

• .Net

http://msdn.microsoft.com/netframework/downloads/updates/default.aspx

ECMA

• CLI

http://www.ecma-international.org/publications/standards/Ecma-335.htm

• C#

http://www.ecma-international.org/publications/standards/Ecma-334.htm

Other Sources

• MONO

http://www.go-mono.com

32

