BioInformatics 2009-2010
12 lectures -- Pietro Lio’, pl219

Bioinformatics is focused on developing algorithms to be used in biological
and medical researches. Molecular biologists generate massive amounts of
information that can only be efficiently analyzed with computers.

Computer science could provide the abstraction needed for consolidating
knowledge of biomolecular systems.

Both DNA sequence and protein structure research have adopted good
abstractions: ‘DNA-as-string’ (a mathematical string is a finite sequence of
symbols) and‘protein-as-three-dimensional-labelled-graph’, respectively.

BioInformatics

Content

 Working with sequence data

» Algorithms focusing on strings (lect 1-4)

« Algorithms on Trees (lect 5-7)

+ Information theory and DNA (lect 8)

+ Applications of Hidden Markov models (lect 9)
- working with microarray data

» Algorithms for Clustering (lect 10)

« Algorithms for Genetic Networks (lect 11)

+ Algorithms for System Biology (lect 12)

« These algorithms are useful in life sciences and are also used in other
fields such as economic and social sciences.

DNA SEQUENCES AS STRINGS

DNA: 4-letter alphabet, A (adenine), T (thymine), C (cytosine) and G (guanine). In the double
helix A pairs with T, C with G ; RNA: same as DNA but T -> U (uracil)
3 letters (triplet — a codon) code for one amino acid in a protein.

5-CCTGAGCCAACTATTGATGAA-3
3-GGACTCGGTTGATAACTACTT-5

RNA
CCUGAGCCAACUAUU GAA

Gene: hereditary information located on
the chromosomes and consisting of DNA
(say 1000 bases);

Genome: an organism’s genetic material;
human genome= 46 pieces
(chromosomes) with overall length

3 x 109 base.

Proteins as 3D labelled graphs

units are the 20 amino acids A, C, D, E,F, G, H, |, K,L, M,N,P,Q,R, S, T, V, W, Y.

5-CCTGAGCCAACTATTGATGAA-3 DNA O SeodPostionofCim |
3-GGACTCGGTTGATAACTACTT-5 -] T c A [[
TTT Phe [F] | TCT Ser[S] | TAT Tyr [Y] | TGT Cys [C]
1 TTC Phe [F] | TCC Ser [S] | TAC Tyr [Y] | TGC Cys [C]
TTALeu[L] | TCA Ser(S] | TAA Ter [end] | TGA Ter [end]
CCUGAGCCAACUAUU GAA transc |p1-|on) TIGLeu[L] | TCG Ser[S] | TAG Ter [end] | TGG Trp [W]
Genetic

Code

1
c
A
¥ G
i
| [crriem [corrom |catmsm [corarm [T
5| | CTCLeu[L] | CCCPro[P] | CACH: (H] |CGCArg[R] |C
Y CTALeu[l] | CCAPro[?] |CAAGRIQ] |CGAAm[R] |A
B| |CTGLeul] |CCGPro[P] [CAGGRIQ] |COGARMR] |G
g T
i c
¢ A
i G
o
n 1
c
A

ATT Te [1] | ACT Tr[T] | AAT Asn[N] | AGT Ser [S]
ATC Te [T |ACCTh[T] | AAC Asn[N] | AGC Ser [S]
ATA Te [|ACATW(T] |AAALys[K] |AGAAm[R]
ATGMet[M] | ACG Th [T] | AAG Lys [K] | AGG Asg[R]

PEPTI E RNA

Bommmuor anmss

translation

GITVa[V] | GCT Ala[A] | GAT Asp[D] | GGT Giy[G]
GICVal[V] |GCC Ala[A] | GAC Asp[D] | GGC Giy [G]
GTAVal[V] |GCAAR[A] | GAA G [E] |GGAGly[G]
GIGVal[V] |GCGAla[A] | GAG G [E] |GGG Gl(G] |G

1/23/10

Yol 13 ‘-\‘ Pathways

Network level

Biochemical
reactions

. Proteins,
\ genes...
)
H

o . 5
M g
\
]
- O ; N e
\ /! WA~
N . ~ -

Scaling electro and bio devices

n Tourist Problem (MTP)

: | Imagine seeking a path (from
source to sink) to travel (only
eastward and southward) with
the most number of attractions
in the Manhattan grid

I, N I SR)

T

...

|

A

|

|

1]

ol
I

|

I
=]

[
a
7
]
R

Scale in A
H+++
0123456
A =0.25 micron AB
in Pentium Il
A - 1 micron 1 micron
B - Human
Bacterium chromos
ome.
(a) NAND gate layout geometry. 6
Manhattan Tourist Problem MTP:
Greedy Algorithm Is Not Optimal
Goal: Find the longest
path in a weighted grid.
Input: A weighted gridG __ .. 1 2 5
with two distinct vertices,
one labeled “source” and > : 1 >
the other labeled “sink” 2 1 =
Output: The longest path 3 5 3 1
in G from “source” to 2 3 4
usink" - - /
promising start, 0 o 5 2
but leads to bad @
choices! 0 o 20 sink
Greedy: comparing number of attractions by moving one block east or south ¢

1/23/10

® Calculate optimal path score for each vertex in the graph

 Each vertex’s score is the maximum of the prior vertices score plus the weight of the
respective edge in between

* The only hitch is that one must decide on the order in which visit the vertices; By the time
the vertex x is analyzed, the values sy for all its predecessors y should be computed.

3 2 ! o
O>00>©>©
1 o 2 4 '3
; 2 1 2
O>O -~

i? V]

2, I
JORE
. - max si.1,;+ weight of the edge between (i-1, j) and (i, j)
" s; .1+ weight of the edge between (i, j-1) and (i, j)
The running timeis n x m for a n by m grid °

Computing the score for a point (i,j) by the recurrence relation:

MTP: Dynamic Programming

MAN](ATTA]\'TDL’RIST(VLVA:V.nAm]
1 sgp—0

2 fori—1ton

3 $1,0 < S1-1,0+ Wi

4 for j—1tom

5 80,5 < Sog—1+ Woz
6 fori— lton
7 for j— 1tom
1
8 Sg— mz\x{ Syt iy
St,3-1+ Wey
9 return s, .,

MANHATTANTOURIST computes the length of the longest path in the grid, but does not give
the path itself. Lines 1 through 5 set up the initial conditions on the matrix s, and line 8
correspondsto the recurrence that allows us to fill in later table entries based on earlier ones.
Most of the dynamic programming algorithms we will develop in the context of DNA sequence
comparison will look just like MANHATTANTOURIST with only minor changes. Many problems
in bioinformatics can be solved efficiently by the application of the dynamic programming
technique, once they are cast as traveling in a Manhattan-like grid.

Manhattan Is Not A Perfect Grid

A; As * The score at point B is given by:
s, + weight of the edge (A, B)
A, B Sy = max of s, + weight of the edge (A,, B)
3 + weight of the edge (A, B)

Computing the score for point x is given by the
recurrence relation:

s = max s, + weight of vertex (y, x) where

of y € Predecessors(x)
® Predecessors (x) — set of vertices that have edges leading to x

*The running time for a graph G(V, E) (V is the set of all vertices and E is
the set of all edges) is O(E) since each edge is evaluated once .

Alignment: 2 row representation

Given 2 DNA sequences v and w:

v: ATGTTAT m=7
w: ATCGTAC n=7

Alignment: 2 * k matrix (k>m, n)

letters of v A|T |=-|G|T |T |A|T |-
letters of w A|T |[C |G |T |- |A]|-|C
4 matches 2 insertions 2 deletions

1/23/10

Longest Common Subsequence (LCS) —the simplest form of
sequence alignment — allows only insertions and deletions (no
mismatches). In the LCS Problem, we scored 1 for matches and 0
for indels; in real analysis we consider penalising indels and
mismatches with negative scores.
Given two sequences
V=V, V,..V, and W= w; W, W,
The LCS of v and w is a sequence of positions in
vil <ip<ip<...<ip<m
and a sequence of positions in
wl<j;<jpb<..<j<n

such that i, -th letter of v equals to j-th letter of w and t is maximal

13

LCS: Example

i coords: 0 1 2 2 3 3 4 5 6 7 8
elements of v AlTl=-lcl=-Il1tl6elAalT €
elements of w ~|l1tleglclalT!l=-1Al-1lc¢C

j coords: oo 1 2 3 4 5 5 6 6 7

(0,0~ (1,0)=> (2,1)=> (2,2)=> (3,3)> (3,4)> (4,5)~> (5,5)> (6,6)> (7,6)> (8,7)
positions in v: 2<3<4<6<8

Matches shown in red .)
positionsinw: 1 <3<5<6<7

Every common subsequence is a path in 2-D grid

LCS Problem as Manhattan Tourist Problem- Edit
Graph for LCS Problem

i A T C T G A T C

0 . ; ; N J N 4 . Everypathisa

common
T2 subsequence.
G:2 Every diagonal edge
adds an extra
C: element to common
subsequence
A s
LCS Problem: Find a
Ts path with maximum
number of diagonal
As edges
C7

Computing LCS ., i

Letv, = prefixofvoflengthi: v, ..y

and w; = prefix of w of length j: w; ... w, . -

1) -1 i,j

The length of LCS(v;,w;) is computed by: . +0 >
i-1,j

s;; = MAX { Sija *+0

Sipjatl ifvi=w

W
A T ¢ G Every Path in the Grid Corresponds

v 0 1 2 3 4 to an Alignment
5 NN\
012234
Al 1 N V= AT-GT

T 2 1l
W= ATCG-
G| 3 \ 012344

T| 4 l

The Edit distance between two strings is the minimum number of operations
(insertions, deletions, and substitutions) to transform one string into the other

Edit distance
may compare
ith letter of v with

jth letter of w

Just one shift VvV = —A"I"A“T,‘A"I'A"["

Hamming distance
always compares
ith letter of v with
ith letter of w
V = ATATATA
\T\ ﬁ \T\

W= TATATATA Mekeitallineup gy - TATATATA-
Hamming distance: Edit distance:
d(v, w)=8 d(v, w)=2

Computing Hamming distance
is a trivial task

Computing edit distance
is a non-trivial task

Edit Distance: Example

TGCATAT - ATCCGAT in 4 steps

TGCATAT - (insert A at front)
ATGCATA - (delete6th)
ATGCATA - (substitute G for 5t A)
ATGCGTA - (substitute C for 37 G)
ATCCGAT (Done)

Alignment as a Path in the Edit Graph

w
@Aﬂﬁz ©3 @41 T5&@@7 Old Alignment
0 0122345677
4 N v= AT_GTTAT_
< w= ATCGT_A_C
2 0123455667

‘| | New Alignment
0122345677
< v= AT_GTTAT_

l w= ATCG_TA_C
T 0123445667

[

[

=Y

5> = @ = <

=~

Two similar alignments; the score is 5 for both the alignment paths.

Alignment: Dynamic Programming

Sij= Si1, J._1+1 ifv, = W, AN
max Si-l,j+0 l
S; j_1+0 —

This recurrence corresponds to the Manhattan Tourist problem (three
incoming edges into a vertex) with all horizontal and vertical edges weighted
by zero.

1/23/10

LCS Algorithm

LCS(v. w)
1 fori—Oton o
N 200 PRINTLCS (b, v,)
3 forj— ltom 1 ifi=0orj=0
2 return
4 S0 < 0 3 if —_« "
5 fori—1lton by =N o
. for j o 1tom 4 PRINTLCS(b, v,i ~ 1, ~ 1)
S-1y 5 print v,
7 sy —max{ sy 6 else .,
s—1g-1+ 1, ifvo=wy 7 if by =T
S s, = 8 PRINTLCS(b, v,i - 1,5)
St,3 = Si-19
8 by { Cet sy = sy 9 else
10 PRINTLCS(b, v,i,j — 1)

N, sy =sim1go1 +1
9 return (spm.b)

The above recursive program prints out the longest common subsequence
using the information stored in b. The initial invocation that prints
the solution to the problem is PRINTLCS(b, v, n,m).

Ensembl Genome Browser (EMBL-EBI-Sanger)
www.ensembl.org

http://www.ebi.ac.uk

National Center for Biotechnology Information

Ensembl Human Database http://www.ncbi.nlm.nih.gov/

““Ensembl S Sanger Institute

http://www.ensembl.org/

Evsemr

o

g

e e R L
e
Rtz e s et
et
oues
o

‘Tooun Ensomb Ensombi Species
ot oy el teman)
T e = vemt e » What does NCBI do?

i =t
o T) o s
G, e Vo awm Estabiished in 1988 as a nationai resource for > Custrs of
F e R S .
EitEeh ety T public databases, conducls research in + Cottee B
o-dae sequence dets end Help and documentation computational biology. develops software ——

> Electronic PCR

o ‘molec »
processes affecting human health and omnibus
More.

A A disease.

> Ganes and dsaaze

> Human genome

o Freetutext
& 80,000 articles from over 100 joumals
© Linked to PubMed and fully searchable | > LocusLink
se o PubMag Contral ecuies regsraion o oo

e S s cson » Humanimouse.

homalogy maps

Accaze ti1om any computer v an mtornet comecion

> Maiara genetics &

Have you ed .7

Fasta Format

>gi|18089116|gb|BC020718.1| Homo sapiens I factor
AAATTTCAAAAGAATACCTGGAGTGGAAAAGAGTTCTCAGCAGAGACAAAGACCCCGAACACCTCCAACA
TGAAGCTTCTTCATGTTTTCCTGTTATTTCTGTGCTTCCACTTAAGGTTTTGCAAGGTCACTTATACATC
TCAAGAGGATCTGGTGGAGAAAAAGTGCTTAGCAAAAAAATATACTCACCTCTCCTGCGATAAAGTCTTC
TGCCAGCCATGGCAGAGATGCATTGAGGGCACCTGTGTTTGTAAACTACCGTATCAGTGCCCAAAGAATG
GCACTGCAGTGTGTGCAACTAACAGGAGAAGCTTCCCAACATACTGTCAACAAAAGAGTTTGGAATGTCT
TCATCCAGGGACAAAGTTTTTAAATAACGGAACATGCACAGCCGAAGGAAAGTTTAGTGTTTCCTTGAAG
CATGGAAATACAGATTCAGAGGGAATAGTTGAAGTAAAACTTGTGGACCAAGATAAGACAATGTTCATAT
GCAAAAGCAGCTGGAGCATGAGGGAAGCCAACGTGGCCTGCCTTGACCTTGGGTTTCAACAAGGTGCTGA
TACTCAAAGAAGGTTTAAGTTGTCTGATCTCTCTATAARATTCCACTGAATGTCTACATGTGCATTGCCGA
GGATTAGAGACCAGTTTGGCTGAATGTACTTTTACTAAGAGAAGAACTATGGGTTACCAGGATTTCGCTG
ATGTGGTTTGTTATACACAGAAAGCAGATTCTCCAATGGATGACTTCTTTCAGTGTGTGAATGGGARATA
CATTTCTCAGATGAAAGCCTGTGATGGTATCAATGATTGTGGAGACCAAAGTGATGAACTGTGTTGTARA
GCATGCCAAGGCAAAGGCTTCCATTGCAAATCGGGTGTTTGCATTCCAAGCCAGTATCAATGCAATGGTG
AGGTGGACTGCATTACAGGGGAAGATGAAGTTGGCTGTGCAGGCTTTGCATCTGTGGCTCAAGAAGAAAC
AGAAATTTTGACTGCTGACATGGATGCAGAAAGAAGACGGATAAAATCATTATTACCTAAACTATCTTGT
GGAGTTAAAAACAGAATGCACATTCGAAGGAAACGAATTGTGGGAGGAAAGCGAGCACAACTGGGAAARAA
TGAAGCAAATCTCATTGGATATTTTTAAAGGTCTCCACAGAGTTTATGCCATATTGGAATTTTGTTGTAT
AATTCTCAAATAAATATTTTGGTGAAGCCAAAAAA AA AR AA

1: BC020718. Reports Homo sapiens | fa...[gi:18089116] Links

Locus

BC020718 1249bp mRNA linear PRI 06-OCT-2003

DEFINITION Homo sapiens | factor (complement), mMRNA (cDNA clone MGC:22501

VERSION

BC020718.1 GI:18089116

KEYWORDS MGC.

SOURCE

FEATURES

source

gene

CcDs

Homo sapiens (human)
Location/Qualifiers GenBank Format
1..1249
Jorganism="Homo sapiens"
/mol_type="mRNA"
/db_xref="taxon:9606"
MGC:22501 IMAGE:4716122"
ltissue_type="Liver"
/clone_lib="NIH_MGC_76"
Nlab_host="DH10B"
Inote="Vector: pDNR-LIB"
1.1249

Igen
Inote="synonym: FI"

Idb_xref="GenelD:3426"
/db_xref="MIM:217030"

70..1203
Igen: "
/codon_start=1
Iproduct="IF protein"
Iprotein_id="AAH20718.1"
/db_xref="Gl:18089117"
Idb_xref enelD:3426"
Idb_xref IM:217030"

Itranslation="MKLLHVFLLFLCFHLRFCKVTYTSQEDLVEKKCLAKKYTHLSCD
KVFCQPWQRCIEGTCVCKLPYQCPKNGTAVCATNRRSFPTYCQQKSLECLHPGTKFLN
NGTCTAEGKFSVSLKHGNTDSEGIVEVKLVDQDKTMFICKSSWSMREANVACLDLGFQ
QGADTQRRFKLSDLSINSTECLHVHCRGLETSLAECTFTKRRTMGYQDFADVVCYTQK
ADSPMDDFFQCVNGKYISQMKACDGINDCGDQSDELCCKACQGKGFHCKSGVCIPSQY
QCNGEVDCITGEDEVGCAGFASVAQEETEILTADMDAERRRIKSLLPKLSCGVKNRMH
IRRKRIVGGKRAQLGKMKQISLDIFKGLHRVYAILEFCCIILK" 24

1/23/10

BioJava — www.biojava.org

BioPerl —www.bioperl.org (till now the dominant language in
bioinformatics; loosely typed)

BioPython — www.biopython.org

BioCorba — www.biocorba.org (can be used to tying it all
together; strongly typed)

C++ www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/

BioInformatics 2: sequence alignment

AGGCTATCACCTGACCTCCAGGCCGATGCCC
TAGCTATCACGACCGCGGTCGATTTGCCCGAC

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---
TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC

Definition
Given two strings X = X;X,...Xy, Y = Y1Ya---Yn»

an alignment is an assignment of gaps to positions
0,...,Ninx,and0,..., Niny, so as to line up each letter in one sequence with
either a letter, or a gap in the other sequence

F[i-1,j-1] | Flij-1]
F[I-15] |F[iJ]

Notice three possible cases:

m, if x; = Yi

1. xalignstoy, F(i.j) = F(i-1, j-1) +

Xyennnnn Xiq X -s, if not

NI Vit Y
2 x; aligns to a gap

Xgueennn Xiq X . o

Yieo¥j - F(ij) = F(i-1,)) - d
3 y; aligns to a gap

Xqerenn X -
YieoeeYia Y F(i,j) = F(i, j-1) -d

* How do we know which case is correct?

Fli-1,j-1] | Fl[i,j-1]

Inductive assumption: F[I-1,j] F[i,j]
F(i, j-1), F(i-1, j), F(i-1,j-1) are optimal
Then,
F(i-1, j-1) + s(x; y))
F(i, j) = max F@-1, j)-d

F(i, j-1)-d

Where Fx, y)=m,ifx;=y; -s,ifnot

1/23/10

* The Global Alignment Problem tries to
find the longest path between vertices Local
(0,0) and (n,m) in the edit graph. alignment
Global
* The Local Alignment Problem tries to find | 3jignment ‘

the longest path among paths between

arbitrary vertices (i,j) and (i} j°) in the edit
graph.

e Global Alignment

N N
AATTGCCGCC-GTCGT-T-TTCAG----CA-GTTATG—T-CAGAT--C

* Local Alignment—Dbetter alignment to find conserved

Segment tccCAGTTATGTCAGgggacacgagcatgcagagac

FEEETErrrrrd
aattgccgccgtegttttcagCAGTTATGTCAGatce

The Needleman-Wunsch Algorithm (Global alignment)

1. Initialization.
F(0,0) =0
F(0,j) =-jxd
F(i, 0) =-ixd

3. Main lteration. Filling-in partial alignments

For each i=1... M
Foreach j=1...... N
F(i-1,)) - d [case 1]
F(, j) = max F(, j-1)-d [case 2]
F(i-1,j-1) + s(x;, y;) [case 3]

UP, if [case 1]
Ptr(i,j) = LEFT if [case 2]
DIAG if [case 3]

3. Termination. F(M, N) is the optimal score, and from Ptr(M, N) can trace back optimal
alignment
Complexity: Space: O(mn); Time: O(mn)
Filling the matrix O(mn)
Backtrace O(m+n)

The Overlap Detection variant

Maybe it is OK to have an unlimited # of gaps in the beginning and end:

—————————— CTATCACCTGACCTCCAGGCCGATGCCCCTTCCGGC
GCGAGTTCATCTATCAC--GACCGC--GGTCG-——=====m== ===

_ Changes:

>

D (e 1.0 Initialization

Forall i, j,

g F(i,0)=0

: F(0,))=0

2. Termination

max; F(i, N)
C B R e e e Fopr = max max; F(M, j)
=

The local alignment: Smith-Waterman algorithm

Idea: Ignore badly aligning regions: Modifications to

Needleman-Wunsch

e.g. X = aaaacccecggge

y = cccgggaaccaacc

Initialization: F(0, j) =F(i,0)=0

0
Iteration: F(i, j) = max F(i—1,j)—d
F(i,j—1)—d

Fi—-1,i—1) +s(x, v)
Termination:
1. If we want the best local alignhment...
Fopr = max;; F(i, j)
2. If we want all local alighments scoring > t
For alli, j find F(i, j) > t, and trace back

1/23/10

Alignment with gaps

Current model: a gap of length n incurs penalty nxd
Gaps usually occur in bunches so we use a convex gap
penalty function:
y(n):

foralln,y(n+1)-y(n) =y(n)-y(n—1)

Initialization: same

Iteration:

F(i-1, j-1) + s(x, v;)
mMaXy-o_i1F(K,j) = y(i-k)
max,q_;1F(i,k) = v(j-k)

F(i,j) =max

Termination: same

Running Time: O(N2M) (assume N>M)

Space: O(NM)

v(n)

v(n)

A compromise: affine gaps

yin)=d+(n—1)xe ¥(n)
| |
gap gap €
open extend d
To compute optimal alignment, at position i,j, need to “remember” best
score if gap is open and best score if gap is not open

F(i, j):score of alignment x;..x; to y,...y; if x alignstoy;
G(i, j):score if x, ory;, aligns to a gap

Initialization: F(i, 0) =d + (i— 1)xe
F(O,j)=d+(j—1)xe

Iteration:
F(i—1,j-1) +s(x, y)
F(i, j) = max
G(i—-1,j-1) +s(x,y;)

Fi—-1,j)—d
F(i,j—1)-d

Gli, j) = max
G(i,j—1)-e
G(i-1,j)-e

Termination: same

Banded DP

Assume we know that x and y are very similar; If the optimal alignment of
x and y has few gaps, then the path of the alignment will be close to the

Out of range

7

diagonal
Assumption: #gaps(x,y) <k(N) (say N>M)
Xi ..
| implies |i—j| <k(N) Fli,i+k/2]
Yi Fli+1, i+k/2]

Fli+1, i+k/2 +1]

A

Note that for diagonals, i-j = constant.

Time, Space: O(N x k(N)) << O(N?)

Banded Dynamic Programming

Initialization:
F(i,0), F(0,j) undefined fori, j > k

Xq ettt X
Iteration:
Fori=1..M
For j = max(1, i — k)...min(N, i+k)
F(i - 1! J - 1)+ S(Xw Vj)
F(i,j) =max| F(i,j—1)—d,if j>i—k(N)
[F(i—1,j)—d,ifj<i+k(N)
Termination: same
k(N)

Easy to extend to the affine gap case

1/23/10

Computing Alignment Path Requires

Quadratic Memory

Alignment Path

* Space complexity for

computing alignment path

for sequences of length n n
and mis O(nm)

We need to keep all

backtracking references in
memory to reconstruct the

path (backtracking)

Computing Alignment Score with Linear

Alignment Score

- Space complexity of

computing just the score itself AN

. L
is O(n) A
. LN T
- We only need the previous n< [Tl
ILIrN W1N
column to calculate the Ti ik
current column, and we can L

Memory

S

then throw away that previous
column once we’re done

Computing Alignment Score: Recycling Columns

Only two columns of scores are saved at any

given time
/\
[v]|» < [*][w] VARV =
gl B oo lo[Ib
7 Lo [[e|]]w VARVAI L4 N
I B ool] |
(o [|v] VARVE| M

memory for column 1
is used to calculate
column 3

memory for column
2 is used to calculate
column 4

using it
Crossing the Middle Line
We want to calculate the longest
. m/2 m path from (0,0) to (n,m) that passes
through (i,m/2) where i ranges from
0 to n and represents the i-th row
7 (i, m2) Define
Prefix(i) \ length(i)
S“fﬁx(i)\A as the length of the longest path
n from (0,0) to (n,m) that passes

through vertex (i, m/2)

1/23/10

10

Crossing the Middle Line

m/2 m

=

Prefix(i)

Suffix(i)

n
Define (mid,m/2) as the vertex where the longest path crosses the
middle column.

length(mid) = optimal length = max,_; _, length(i)

Computing Prefix(i)
« prefix(i) is the length of the longest path from (0,0)
to (i,m/2)
« Compute prefix(i) by dynamic programming in the
left half of the matrix

store prefix(i) column

4 ¢ | ¢ ¢ | ¢
CRKARJ
L
X

0 m/2 m

Computing Suffix(i)

« suffix(i) is the length of the longest path from (i,m/2) to (n,m)
« suffix(i) is the length of the longest path from (n,m) to (i,m/2) with
all edges reversed

« Compute suffix(i) by dynamic programming in the right half of the
“reversed” matrix

store suffix(i) column

Length(i) = Prefix(i) + Suffix(i)

+ Add prefix(i) and suffix(i) to compute length(i):
- length(i)=prefix(i) + suffix(i)
* You now have a middle vertex of the maximum path
(i,m/2) as maximum of length(i)

Vlva oo
/\
middle point found

0

%
0
Q
VARVE(2 RAN I
Q
0

1/23/10

11

Linear-Space Sequence Alignment
©0) m2 m 0.0

(i
i

Space-efficient sequence alignment. The
computational time (area of solid rectangles)
() decreases by a factor of 2 at every iteration:

area + area/2 + area/4 + ..<2 x area
and therefore time is O(nm) and space is O(n)

=)

5% pass:

=)

@m)

BioInformatics 3: can we align
Sequences in Subquadratic Time?

* Partition the n x n grid into blocks of size t x t

* We are comparing two sequences, each of size n,
and each sequence is sectioned off into chunks,
each of length t

* Sequence u = u,...u, becomes

[ugetty] [Upgeelin] oo (UG g U |
and sequence v = v,...v, becomes

Vil WerrVil e Vg

Partitioning Alignment Grid ir}:%) Blocks

/—E%

—

t
f_H
t { nlt

partition
Block alignment of sequences u and v:

1. An entire block in u is aligned with an entire block in v
2. An entire block is inserted
3. An entire block is deleted
Block path: a path that traverses every t x t square through its corners

valid

invalid

Block Alignment Problem

* Goal: Find the longest block path through an edit
graph

* Input: Two sequences, u and v partitioned into
blocks of size t. This is equivalent to an n x n edit
graph partitioned into t x t subgrids

* Qutput: The block alignment of u and v with the
maximum score (longest block path through the
edit graph)

1/23/10

12

1/23/10

Constructing Alignments within Blocks Constructing Alignments within Blocks

* To solve: compute alignment score f3;; for each pair of it

blocks [UqyesgUpre| AN [V qprpiqonViec —

* How many blocks are there per sequence? <

(n/t) blocks of size t
* How many pairs of blocks for aligning the two

sequences ’ Block pair represented by
(n/t) X (n/t) each small square

* For each block pair, solve a mini-alignment problem of
sizetxt

Solve mini-alignmnent problems

Block Alignment Runtime

Block Alignment: Dynamic Programmin
& y & & * Indices i,j range from 0 to n/t

* Lets;; denote the optimal block alignment score « Running time of algorithm is
between the first i blocks of u and first j blocks of v
O([n/t1*[n/t]) = O(n*/¥?)

if we don’t count the time to compute each f;;

Opjock 18 the penalty

Si-1j = Oblock ;
5, = max ly - Tbloe for inserting or * Computing all B requires solving (n/t)*(n/t) mini block
: Si5-1 = Oblock deleting an entire . % .
block alignments, each of size (t*t)
Sitjo1 - Bij

P, is score of pair of

blocks in row i and ¢ CompUﬁng a” ﬁi,jtakes time O([n/t]*[n/t]*t*t) = O(nZ)
column * This is the same as dynamic programming

* How do we speed this up?

13

Four Russians Technique
(Arlazarov, Dinic, Kronrod, Faradzev)

* Let t =log(n), where tis block size, n is sequence
size.

* Instead of having (n/t)*(n/t) mini-alignments,
construct 4! x 4t mini-alignments for all pairs of
strings of t nucleotides (huge size), and putin a
lookup table.

* However, size of lookup table is not really that
huge if tis small. Lett=(logn)/4. Then4tx4t=n

Look-up Table for Four Russians Technique

each sequence has

g 13 99
¢ nucleotides %‘ Lookup table “Score

AAAAAC
AAAAAG
AAAAAT
AAAACA

AAAAAA
AAAAAC
AAAAAG

size is only 7,
instead of (n/f)*
(n/t)

AAAAAT
AAAACA

The new lookup table Score is indexed by a pair of t-
nucleotide strings, so

_ Si1j = Oblock
5;; = max

Sij-1 = Oblock

8;.1j.1 — Score(i™ block of v, /™ block of u)

Four Russians Speedup Runtime

* Since computing the lookup table Score of size n
takes O(n) time, the running time is mainly limited
by the (n/t)*(n/t) accesses to the lookup table

* Each access takes O(logn) time

* Overall running time: O([n?/t?]*logn)

* Since t = logn, substitute in:

* O([n*/{logn}’]*logn) > O(n*/logn)

So Far...

* We can divide up the grid into blocks and run
dynamic programming only on the corners of
these blocks

* In order to speed up the mini-alignment
calculations to under n?, we create a lookup table
of size n, which consists of all scores for all t-
nucleotide pairs

* Running time goes from quadratic, O(n?), to
subquadratic: O(n?/logn)

1/23/10

14

Four Russians Speedup for LCS

* Unlike the block partitioned graph, the LCS path
does not have to pass through the vertices of the
blocks.

block alignment longest common subsequence

Block Alignment vs. LCS

In block alignment, we only care about the corners of the blocks.

In LCS, we care about all points on the edges of the blocks,
because those are points that the path can traverse.

Recall, each sequence is of length n, each block is of size t, so
each sequence has (n/t) blocks.

e—@ & ©

block alignment has
(n/ty*(nit) = (n?/2)

LCS alignment
has O(n?/t) points
points of interest of interest

Traversing Blocks for LCS
* Given alignment scores s, . in the first row and scores s. ; in the
first column of a t x t mini square, compute alignment scores in
the last row and column of the minisquare.
* To compute the last row and the last column score, we use these
4 variables:
— alignment scores s, * in the first row
— alignment scores s*,; in the first column
— substring of sequence u in this block (4t possibilities)
— substring of sequence v in this block (4t possibilities

* If we used this to compute the grid, it would take
quadratic, O(n?) tirn/e,bgt we want to do better.

we can calculate
<~ these scores

"

t x t block

we know these 5
scores

Four Russians Speedup

* Build a lookup table for all possible values of the four
variables:

all possible scores for the first row s,

all possible scores for the first column s, |

substring of sequence u in this block (4! possibilities)

P wnNPe

substring of sequence v in this block (4! possibilities)
* For each quadruple we store the value of the score
for the last row and last column.

* This will be a huge table, but we can eliminate
alignments scores that don’t make sense

1/23/10

15

Reducing Table Size

* Alignment scores in LCS are monotonically
increasing, and adjacent elements can’t differ by
more than 1

* Example: 0,1,2,2,3,4is ok; 0,1,2,4,5,8, is not
because 2 and 4 differ by more than 1 (and sodo 5
and 8)

* Therefore, we only need to store quadruples
whose scores are monotonically increasing and
differ by at most 1

Efficient Encoding of Alignment Scores

* Instead of recording numbers that correspond to
the index in the sequences u and v, we can use
binary to encode the differences between the
alignment scores

40\1\2\2\
1101

3 ‘ 4 | original encoding
|

1 ‘ | binary encoding

Reducing Lookup Table Size
* 2! possible scores (t = size of blocks)
* 4t possible strings
—Lookup table size is (2t * 29)*(4t * 4t) = 26t
Let t = (logn)/4;
—Table size is: 26Wogn/4) = n6/4) = nG3/2)
* Time = O([n%/t?]*logn)
* O([n*/{logn}’]*logn) > O(n*/logn)
Summary: We take advantage of the fact that for each block of t =
log(n), we can pre-compute all possible scores and store them in a
lookup table of size n®/2), We used the Four Russian speedup to go

from a quadratic running time for LCS to subquadratic running
time: O(n?/logn).

RNA structure: great variety!

Hepatitis C
internal

E. coli 58 rRNA

ribosome
entry site

B. sublilis SRP RNA

0 TR B

— _
Pseudoknow are too difficult ? _ ﬁv/]’ I
— — I

1/23/10

16

RNA Secondary Structure

* Secondary Structure :

— Set of paired positions on interval [/,/]

— This tells which bases are paired in the subsequence from x; to x;
* Every optimal structure can be built by extending optimal substructures.
* Suppose we know all optimal substructures of length less than j-i+1.

The optimal substructure for [/,/] must be formed in one of four ways:

1. ij paired

2. iunpaired

3. j unpaired

4. combining two substructures

NQ((} that each of these consists of extending or joining substructures of length less than
J-itl.

N
; Ris

i]

Nussinov algorithm

(2) (3)

i k k+1 J

bifurcation

i i

I,j pair i unpaired Jj unpaired

Objective: To find the secondary structure with the maximal number of base pairs under the
pseudo-knot exclusion constraint.

Principle: Recursive procedure (dynamic programming algorithm). Scoring function: sum of
base-pair scores, no penalties for loops Optimal score computed from the optimal scores of
subsequences.

Filling-stage. Scores for subsequences are recursively computed from and recorded in a
quadratic table.

Trace-back: Reconstruction of filling steps indicates optimal structure

Time-complexity: O(N3)

=3z
i,j pair i unpaired j uppaired bifurcation
The Nussinov Folding Algorithm
Example: GGGAAAUCC ™
v(i,j) is the maximum number A A
of base pairs in segment [i,j] N/
Initialisation y (i,i-1) = 0 & y(i,i) = 0| ;:;F
Starting with all subsequences of ﬁ -
length 2, to length L: G
- j —
y(,)) =
. . GGG AAA UCC
y(i+1,))
7(.j-1) @10
ma. R . . @fo |o
y(i+1,j-1)+6(, j) o o o
max,_[y@,K+yk+1,))] > 0o |o
> 0o |0
I
Where 8(i,j) = 1 if x;and x; > 0 0
are a complementary base pair, = 0
and 8(i,j) = 0, otherwise. @) 0 |0
1] 0

—

|

GGGAAAUCC ,— -

G) el L A\ ;\ };((lirjl-’lj))

@|o o |o A=y MY G 1,j-1)+8G))

() 0|0 |0 G_ﬁ max [y i,k +y(k+1,j)]

> 0|0 |0 6=

> 0 [0 |0 G

> 0|0 1

c 0o jo o j—

O 0 [0 |0

o o o GGG A AAUCC
® 0 0 0
@ |0 0 0 0

After scores for s T o o 1o

subsequences of > 0o [0 |o o

length 2 (left) and P > 0 g g : -

3 (right) l:(c’ 0o [o [o o
O 0 0 0
) o |o

1/23/10

17

y(i.j) =

Nussinov Folding Algorithm
After scores for subsequences of length 4

e GGG AAA UCC
max y(i+lV§L-:;i)é(i i @0 10 Jo |9
e ’ o |o |o |o |o
max; [y (LK) +y(k+1,j)] 8 0 o o 0 0
> o [o [o [0 |G
0 0 1
P > ®®
A A > o o [1 [1 |1
\5 l; c o o |o |o
o o 0 o |o
F_c 0 0
G Two optimal substructures for same subsequence

y(i.j) =

Nussinov Folding Algorithm
After scores for subsequences of length 5

yG+1.) GGG AAA UCC
a r(i.3-1) o Jo Jo Jo o
MY G+ Lj-D+8GL) ®
]maxwm[y(i,k)-ﬁ-y(k+l,j)] ® (o 0 0 0 0 0
® o o |0 |0 |0 |1
> o (o |o [o |1 |1

[

A A > 0 o Jo |1 |1 [1
N > o o [1 [1 |1
%"4 c o o |o o
B 9] o |o |o
s 0 |o
G

j —
y(G.9) et GGG AAAUCC
o Gy olo [0 o o |o o
\ ra+Li-D+86.) Olo To o Jo [o Jo [4
max,(m[y(l,k)+y(k+I,J)]
® 0o [0 |o |0 |o |1 |2
> o |0 [0 [0 [1 |1 |1
™ > o [0 |o |1 |1 |1
A\ f I:(> 0 |0 [1 |1 |1
A=y lc o |o |o |o
§7¢) o o o
6= 0 |0
G

Nussinov Folding Algorithm
After scores for subsequences of length 6

Nussinov Folding Algorithm
After scores for subsequences of length 7

y(ij) = j —
yG+1.9)
Y1) GGG AAA UCC
Y L)+ 0L) olo To To Jo o o Ta
max, [y (i, k) +y (K +1,))] olo o oo [0 0o |1 |2
® o |0 [0 |0 |0 |1 |2 |2
™ > 0o [0 |0 [0 |1 |1 |1
A A i o |0 |0 |1 |1 |1
;_l; "y 0o o [1 |1 |1
6 l [« o [0 [0 |o
\
6= 9] 0 |0 |o
G 0 0

1/23/10

18

Nussinov Folding Algorithm
After scores for subsequences of length 8

r(Q,j) =

Nussinov Folding Algorithm
After scores for subsequences of length 9

r(Q,j) =

j—»
yi+1.5)
o y(.j-1) GG G AAA UCC
r+Li-D+oG.p o [o [o o [o [o |1 |2
maxr (0 syl) @
®lo [o [o o o [o |1 [2 3
® o [0 o |o |0 |1 |2 |2
> o |o |o [o |1 |1 |1
Aq 2 0 o [o |1 |1 |1
Y S o o [1 [1 |4
2_9 \C o o |o |o
17¢ o o [o |o
g o o
G
73
Nussinov Folding Algorithm
Traceback
J—>
GGG AAA UCC
oo [0 |o |o 0o |0 |1 2 @
®lo o [o o o [o [1 [2 [&
® 0o |0 [o |0 |0 |1 |@F]|2
/) > o [o [o Jo W1 [4
A A > o [o [t [1 |4
I
A=y > o (@1 [1 [+
G‘—g l C 0 |0 |0 |0
6= o o |o |o
G o o

] —
y(i+1,j)
e GGG AAA UCC
v+l i-D+o6D) olo o JoJo Jo [o [1]2 |s
max; [y (k) +y(k+1,j)]
@ |0 0 0 0 0 0 1 2 3
® 0 |0 |0 |o |o [1 [2 |2
Aq > o [o o [o [1 [1 |4
\ > 0 o o |1 |1 |1
A=y 'S o |o [1 [1 |1
6—¢ l c o |o |o |o
g o 0o |o o
G 0o |o
74
Nussinov algonthm: ﬁ”_Stage Algorithm: Nussinov RNA folding, fill stage
G|G|CIC|AIGIUIUICT pitialisation
y@,i—=1) = 0 fori =2to L;
1(2(3|4|5|6|7|8]9 yG,i) =0 fori=1toL.
Gl1 olol1l2]2(213]ala Recursion: xlmunpwnhu(ll ;u:nc;pmm-sn|'l«-up|h7,luh-uy_|l|l
yu AN
y(i,j) = max)'H‘._/ I_)'
Gl2 0|0f1]21(1}2]|2|3(3 yG+1,j—1)+8G, j),
max; k< [y G, k) +yk+1,)].
cls olojojof1f1]|2]2
cla ololol1la]2]2 Scoring system: .)
d(i,j) = 1 for all RNA Watson-Crick base-pairs
als ololol1]2]2 including G-U else d(i,j) = 0.
Gle ojof1{1|1 ’Blue: addition of unpaired base 3 or 7 ‘
ul7 0j0f010 |Green: addition of paired bases 1,7 |
uls ojofo ‘Pink: joining of substructures 1..4 and 5..8 ‘
ofo
clo

1/23/10

19

Algorithm: Nussinov RNA folding, traceback stage
Initialisation: Push (1, L) onto stack.

Nussinov algorithm: trace-back

G|G|C|C|A|G|U|U|C Recursion: Repeat until stack is empty:
-pop (i,)-
- if i >= j continue; ;
tj2]3]ajsje|7|8]® else if y (i +1,j) = y(,j) push (+1, 7%
elseif y(i,j — 1) =y @, j) push G, j = DY
G|1 0|0/ 1y22|3 /44 elseif y(i+1,j = D48, =7 1)
|| - record i, j base pair.
olo 111(2]21]3]|3 -push i+ 1,j—1). ’
¢l else fork =i +1to j— 1: if y(@, k) +yk+1, H=ya.i:
T - push (k+1, j).
c|3 010j0j0|1)112]2 - push (i, k).
- break.
cl4 ojofof1]1]|2|2
Als current record stack
ofo 1,9
1,9 1,8
G|e 0 1,8 1,4 5,8 /.\ Q
1,4 1,4 2,35,8 Gec °
U7 2,3 2,3 3,2 5,8 GeC AeU
3,2 5,8 C
u|s 5,8 5,8 6,7
0|0|0 6,7 6,7 7,6
7,6
cl9
0|0

BioInformatics 4
Multiple Alignment: Running Time o i
o __

For N sequences, there are 2N-1 ways 0
(3]

to extend an alignment; for 3 sequences of Ie&th n, the
run time is 7n3; O(n3)
For k sequences, build a k-dimensional Manhattan, with
run time (2k-1)(n*); O(2knk)

* Conclusion: dynamic programming approach for
alignment between two sequences is easily extended to
k sequences but it is impractical due to exponential
running time

Combining Optimal Pairwise Alignments into Multiple Alighment

[ARAATTTT

Can combine pairwise ~ /m\““

alignments into multiple
) [TrTTecca - [ARARGGGE
alignment

Can not combine aanaTrTT—
pairwise alignments into
multiple alignment erersess] ——————— [Seemnmn.

Progressive Alignment

1) Align each sequence against each other giving a similarity matrix; Similarity
= exact matches / sequence length (percent identity)

2) Create Guide Tree using the similarity matrix; Guide tree roughly reflects
evolutionary relations

3) Progressive Alignment guided by the tree

Vi Vo, V3 vy v,
v, - V3
v, | .17 -
\4
v,| .87 .28 - ¢
\Z
v, | .59 .33 .62 -
Calculate:
Vi3 = alignment (v;, v3)
V1,34 = alignment ((v; ;),v,)
V1,234 = alignment((v; ; ,),V,)

1/23/10

20

How does it work?

LGHB

P1LHB

MYWHP
I l: HAHU
HAHO

. HBHU

L HBHO

>

Increasing Similarity

Cluster the sequences by similarity to create a guide tree

Branch length is proportional to estimated divergence between
the two sequences

(-9
* Starting with a group 212122 &2 2
= o = @ = =]
of 7 sequences from = . L
different species HAHUY
. . HBHU .
* Do pairwise 211
. HAHO 329|197
alignments between all
HBHO 20.7 | 39.0 | 204
7 sequences
. MYWHP| 110 98 [103 | 9.7
¢ S'Core g_lven.for PiLHB | 93 | 86 | 96 | 84 | 70
§nﬂnarnm mghe(sgore wom |70 (73 [75 | 72 [73 | 43
indicates more similar
HBHU
o S E— -HBHU
—_
% ——— s e = HBHO
HAHU
o — e ——— == HAHU
—_
E — — —— A HO

I I New gaps

— — mm HBHU
— — === HBHO
— — = HAHU
— — - AHO

1/23/10

21

Sum of Pairs Score(SP-Score)

* Consider pairwise alignment of sequences a;and g;
imposed by a multiple alignment of k sequences

* Denote the score of this suboptimal (not necessarily optimal)

pairwise alignment as s*(a, a))
* Sum up the pairwise scores for a multiple alignment:
s(ay,...,a) =2,;5%(a, a)
Given al,a2,a3,04:
s(al...ad) = 2s*(ai,aj) = s*(al,a2) + s*(al,a3)
+s*(al,a4) + s*(a2,a3)
+s*(a2,a4) + s*(a3,a4)

—-— s ssesss == HBHU
— — - = HBHO
— e E—— == AHU
— e — 0O New gaps
— — = wm HBHU
— — mmm HBHO
o —_—— — == HAHU
g _— — — —e—— = HAHO
= MYWHP
CLUSTAL
& Clustalxifile cit WAlignmentTrees Colors Qulity Help SIS © | 0 s < ooEGIZZENCu]
oo ClustX 208

Mode: (Multple Algnment Mode

%) Font: (1018

l
5

Edit QAlignment Trees Colors [EZAMiAlignment _Trees Colors YPTREFY Trees Colors Quality Help
Cut Sequences X Do Complete Alignment 8L |
Load Sequences %0 | Paste Sequences B8V Do Guide Tree Only #G
Append Sequences Select All Sequences %A Do Alignment from Guide Tree
Save Sequences as... ®S Realign Selected Sequences

Realign Selected Residue Range

Clear Sequence Selection
Clear Range Selection

Search for String ®F
Remove All Gaps

Remove Gap-Only Columns

Alignment Parameters
Iteration >
Output Format Options

Set All Parameters to default

Write Alignment as Postscript 8P

v

Output Format Options
(%‘) 0B Colors Quality Help
Reset New Gaps before Alignment M’" ; D
A I CLUSTAL format (] NBRE/PIR format raw Tree

Reset All Gaps before Alignment 2 GCO/MS forma YL format Bootstrap N-J Tree
Pairwise Alignment Parameters e Exclude Positions with Gaps
Multiple Alignment Parameters — Correct for Multiple Substitutions
Protein Gap Parameters EEenmrieTs | Output Format Options
S 5 CLUSTALW sequence numbers : (O 18] Clustering Algorithm

Output order Aligned 1§/

Parameters outpus for)

B

——— Helo

i B General
Q_ua ty Help Show Low-Scoring Segments
Show Exceptional Residues Multiple Alignments.
Low-Scoring Segment Parameters ::‘:::,::f::fﬁn
Column Score Parameters Trees
Save Column Scores to File o

Command Line Parameters
References

v Background Coloring | Editing Alignments
Black and White |
v Default Colors

Load Color Parameter File

[nputsouputriles]

1/23/10

22

FASTA

- Heuristic -

* Problem of Dynamic Programming: D.P. computes the score in a lot of useless areas for

optimal sequence

* Heuristic”: Good local alignment should have some exact match subsequence.

Hi level algorithm ~
Let q be a query
max € 0

For each sequence, s in DB

T / FASTA focus on

FASTA - Algorithm -

¢ Step1l
Find all hot-spots

// Hot spots are pairs of words of length k that exactly match

* Step 1in detail
Use look-up Table
Query : GAATTCAGTTA

“~~. this area
compare g with s and compute a score, y
if max<y
max € vy;
bestSequence € s ;
Return bestSequence
FASTA - Algorithm -
* Step 2: Score the Hot-spot and locate the ten best DN

diagonal runs

* Step 3: Combine sub-alignments into one alignment

with GAP

.

One of local
alignment

GAP
—

U

I

Dot—Matrix
Sequence: GGATCGA
Look-up Table G|A|IA|T|T|C|A|G|T|T|A
Q | Location 2
A (237,11 — s (Al ; ;
Ccl|6 T * | % * | *
G|1,8 c :
T [4,5,9,10 &
A - * *
. Stepa FASTA - Algorithm N

Consider weighted direct graph.
Let node be a sub-alignment found in step 1
Let u and v be nodes

Edge (u,v) exists if alignment u is before in the sequence.

Each edge has gap penalty (negative)

One Sequence

Find the maximum weight path

Sub-alignmen

)\...' +«—GAP

PN

One of Sequence

Max Weight Path

1/23/10

23

FASTA - Algorithm -
e Step5

Use the dynamic programming in restricted area around the best-score alignment to find
out the higher-score alignment larger than the best-score alignment

~
Width of this band | \\ NN
is a parameter S S
Summary of the algorithm \\\ ‘\\
1: Find all hot-spots \\\ ‘\\
/I Hot spots is pairs of words of length k RN e
that exactly match. N \y
~

2: Score each Hot-spot and locate the ten
best diagonal runs.

3: Combine sub-alignments into one
alignment.

4: Score each alignment with gap penalty
and pick up the best-score alignment.

5: Use the dynamic programming in
restricted area around the best-score
alignment to find out the alignment greater
than the best-score alignment.

FASTA - Complexity -

Step 1and 2 // select the best 10 diagonal runs

Let n be a sequence from DB
O(n) because Step 1 just uses look up table
0O(n) << O(mn) m,n =100 to 200

T N
\{?\\§;j<:\\ . \\\if\\
N ~

Step3and 4 // compute the MAX Weight Path

Let r be the number of sub-alignments. (r = 10)

O(r2) < O(m*n)

Step 5 /I compute partial D.P.

Depends on the restricted area < O(mn)

BLAST
Basic Local Alignment Search Tool

* Heuristic but evaluating the result statistically.

Homologous sequence are likely to contain a short high scoring word pair,
a hit.

BLAST tries to extend it on the both sides to get optimal sequence.

Sequence

Short high score Word

hit

GCNTACACGTCACCATCTGTGCCACCACNCATGTCTCTAGTGATCCCTCATAAGTTCCAACAAAGTTTGC

(NN NN A AN I N A e A N A B A
GCCTACACACCGCCAGTTGTG-TTCCTGCTATGTCTCTAGTGATCCCTGAAAAGTTCCAGCGTATTTTGC

GAGTACTCAACACCAACATTGATGGGCAATGGAAAATAGCCTTCGCCATCACACCATTAAGGGTGA---~

FEPEErrreer e e et FEEEEEEr ree reeeeerr 00l
GAATACTCAACAGCAACATCAACGGGCAGCAGAAAATAGGCTTTGCCATCACTGCCATTAAGGATGTGGG

------------------ TGTTGAGGAAAGCAGACATTGACCTCACCGAGAGGGCAGGCGAGCTCAGGTA

PECEREETEEErr vee P v e e il |
TTGACAGTACACTCATAGTGTT AAGCTGACGTTGACCTCACCAAGTGGGCAGGAGAACTCACTGA

GGATGAGGTGGAGCATATGATCACCATCATACAGAACTCAC---———-! CAAGATTCCAGACTGGTTCTTG

N N R NN A RNy FEEEEE TEEEEErrrrrnnd
GGATGAGATGGAACGTGTGATGACCATTATGCAGAATCCATGCCAGTACAAGATCCCAGRCTGGTTCTTG

Human-Mouse genome homology

1/23/10

24

BLAST - Algorithm -

Step 1: preprocessing Query Neighborhood Word

Compile the short-hit scoring word list from query.
The length of query word,w, is 3 for protein search, 11 for DNA.
Threshold Tis 13

Query : LAALLNKCKTPQGHRLVNQWIKQPLMDKNRIEE

Query word (W=3 PQG 18
PEG 15

PRG 14

PKG 14

neighborhood words. NG 12

PDGE 12 heighborhood score
pHe 12 Threshold (T=13)
PMG 13

PSG 13

PQA 12

PON 12

BLAST - Algorithm -

* Stepl-2
Create neighborhood words for each query word

p
Query Word \ !

- _ p-word

List of words of length w,
scoring more than T with
the p-word.

Neighborhood words

BLAST - Algorithm -

Step 2: Scanning DB
For each words list, identify all exact matches with DB sequences

Query Word Neighborhood Sequences in DB
— T Word list - Sequence 1
R

BLAST - Algorithm -

* Step2-2
Method 1: Hash Table
Query: LAALLNKCKTPQGQRLVNQWIKQPLMD

;R Hash Table

{1111

—
~

e
Step 1

Step 2 -

The purpose of Step 1 and 2 is as same as FASTA

N q
posilion| 1 2 3 4 word | position
LAA AAL ALL LLN AAR[1,2,15,16..
£ | LAG AAA AAL LVN AAL|2,3,10,11..
§ Z |AAA AGL ALA LLD ™ AAR|2,15,43..
g £ |LGA GAL GLL LLE LAA|1,5,7, .
@ 2 | IAR RRAV VVN GLL|2,8,24,..
BART VVN|4,21,25,..
AGL : :

1/23/10

25

BLAST - Algorithm -

e Step2-3
Method 2: Finite Automata

oo

g
5
=
o |
w
1=y

L ALL LLN
é AAL LVN
z GL ALA LLD 1
£ AL GLL LLE
2 VVN

BLAST — Algorithm -

* Step 3 (Search optimal alignment)

Let S be a score of hit-word

For each hit-word, extend ungapped alignment in both directions.
« Step 4 (Evaluate the alignment statistically)

Stop extension when E-value (depending on score S) become less than
threshold. The hit-word is called High Scoring Segment Pair. BLAST return it

Sequence

. >
Hit Word
E-value = the number of HSPs having score S (or higher) expected to
occur only by chance.
-> Smaller E-value, more significant in statistics
Bigger E-value , by chance

BLAST - Algorithm -

Step 3-2
Definition of E-Value
The expected number of HSP with the score at least S'is :
E= K*n*m*e—)\s
K, \ is constant depending on model
n, m are the length of query and sequence
The probability of finding at least one such HSP is:
P=1-ef
- If a word is hit by chance (E-value is bigger),
P become smaller.

BLAST - Running Time -

¢ Running Time on a Pentium 4
The length of Query : 153

DB size : 5997 sequences
Algorithm Running Time
D.P 16.989 [s]
FASTA 0.618 [s]
BLAST 0.118 [s]

1/23/10

26

FASTA vs BLAST

BLAST

Compare the query and sequences in DB

with the same thre

FASTA

compare the query and a sequence one by one
And compare the each result.

Hits indicate a similarity that may indicate a homology; Seeds determine how an
algorithm looks for hits; w-> weight or number of positions to match; model ->
relative position of letters for each w

Seed Parameters: y = 11
letters: 0, 1

7 LT NN

111010010100110111
€< ;=18 —

model { 1 — exact match required
<

0 — no match required, any value

Patternhunter most sensitive model Blastn seed is all “1”’s

A spaced seed is formed by two words, one from each input

sequence, that match at positions specified by a fixed
pattern — a word over symbols # and _ interpreted as a
match and a don't care symbol respectively. For
example, pattern ##_# specifies that the first, second
and fourth positions must match and the third one may
contain a mismatch.

PatternHunter was the first method that used carefully

designed spaced seeds to improve the sensitivity of DNA
local alignment. Spaced seeds have been shown to
improve the efficiency of /ossless filtration for
approximate pattern matching, namely for the problem
of detecting all matches of a string of length m with g
possible substitution errors (an (m, g)-problem). Other
software use some specific spaced seeds and random
spaced seeds

BLAST uses

“consecutive seeds”
* |In BLAST, we often use the consecutive model with

weight 11.
GAGTACTCAACACCAACATCAGTGGGCAATGGAAAAT
FErrrrrrrrr e reeed NERRN
GAATACTCAACAGCAACATCAATGGGCAGCAGAAAAT
~11111111111 - .. S....-> 11111111111
* However, it fails to find the alignment in the two
sequence.

1/23/10

27

Dilemma: Sensitivity vs Speed

Similarity
How similar it is between two sequences?

Usually mean that the probability of the same symbol appear in
anywhere of two sequences.

Sensitivity

The probability to find a local alignment.

needs shorter seeds

too many random hits, slow computation

Speed — needs longer seeds, lose distant homologies
Specificity

In all local alignments, how many alignments are homologous

PatternHunter uses
“non-consecutive seed”

* In PatternHunter, we often use the spaced model
with weight 11 and length 18.
GAGTACTCAACACCAACATCAGTGGGCAATGGAAAAT

FErrerererr reeererr reeend L
GAATACTCAACAGCAACATCAATGGGCAGCAGAAAAT
111010010100110111

* Higher hit probability
* Lower expected number of random hits

A trivial comparison between spaced and
consecutive seed

* Consider 111 and 1101.

* To fail seed 111, we can use
—110110110110...
— 66.66% similarity

* But we can prove, seed 1101 will hit every region
with 61% similarity for sufficient long region.

Simulated sensitivity curves

1 T T T T T

aa

as

as -

probatify of i least 1 Hi

a4 - f B

a3

az

ail

L
az a3 aa a3 a.g 1

as a8 a7
=hnllarity aver lengh 64

1/23/10

28

Simulated sensitivity curves:

Solid curves: Multiple (1, 2, 4, 8, 16)

o8 weight-12 spaced seeds.
’ Dashed curves: Optimal spaced seeds

with weight = 11, 10, 9, 8.

Sensitivity curves:

PH 8 seeds: 996 sec
PH 4 seeds: 575 sec
PH 2 see 7 sec
PH 1 seed: 214 sec
BLAST 575 sec

(SSearch: 20 days)

f
0.5%0 30 4 50 60 70 20 90
alignment score

0.6
sensitivity | Typically, “Doubling the seed number”
0.4 gains better sensitivity than “decreasing
the weight by 1”.
0.2
0
0.6 07 simifafiy 0.9 !
113

Suppose there is a length 100 region which is not hit by 1101.
We can break the region into blocks of 120°. Besides the last block,
the other blocks have the following few cases:
— 10b for b>=1
— 110 for b>=2
— 1110° for b>=2
In each block, similarity <= 3/5.
The last block has at most 3 matches.
So, in total there are at most 61 matches in 100 positions. The
similarity is <=61%.

Formalize

* Given i.i.d. sequence (homology region) with Pr(1)
=p and Pr(0)=1-p for each bit:

1100111011101101011101101011111011101
111*1*1*1**11*111
* Which seed is more likely to hit this region:

— BLAST seed: 11111111111
— Spaced seed: 111*1**1*1**11*111

1/23/10

29

Expect Less, Get More

* Lemma: The expected number of hits of a weight W
length M seed model within a length L region with
homology level p is

(L-M+1)pW
Proof. E(#hits) =5, |1 PV [

* Example: In a region of length 64 with p=0.7
— Pr(BLAST seed hits)=0.3
E(# of hits by BLAST seed)=1.07
— Pr(optimal spaced seed hits)=0.466, 50% more
E(# of hits by spaced seed)=0.93, 14% less

Why Is Spaced Seed Better?

A wrong, but intuitive, proof: seed s, interval |, similarity p
E(#hits) = Pr(s hits) E(#hits | s hits)

Thus:
Pr(s hits) = Lp¥ / E(#hits | s hits)

For optimized spaced seed, E(#hits | s hits)

111*1**1*1*%*11*%111 Non overlap Prob
6

111*1%*1*1**11*111 6 p
111*1%*1*1**11*111 6 pé
111*1%*1*1**11*111 6 pé
111%1**1*1**11*111 7 p’

* For spaced seed: the divisor is 1+p®+pS+p®+p7+ ...
* For BLAST seed: the divisor is bigger: 1+ p + p2 + p3 + ...

Observations of spaced seeds

* Seed models with different shapes can detect different
homologies.

* Two consequences:

— Some models may detect more homologies than others
* More sensitive homology search
* PatternHunter |
— Can use several seed models simultaneously to hit more
homologies
* Approaching 100% sensitive homology search
* PatternHunter Il

Example of a hit using a spaced seed:

GAGTACTCAACACCAACATTAGTGGCAATGGAAAAT...

IO L e or teeer -t

GAATACTCAACAGCAACACTAATGGCAGCAGAAAAT...
111010010100110111

* BLAST: redundant hits = PatternHunter

TTGACCTCACC? CAR?A?Z?A?C??TA?TGG?
NARARRRNRAE: [Iz]zz]|z|22||z]]]|2
TTGACCTCACC? CARZAZ?Z?A?C?2?TA?ITGG?
11111111111 111010010100110111
11111111111 111010010100110111

This results in > 1 hit and
creates clusters of redundant
hits

This results in very few
redundant hits

1/23/10

30

1/23/10

. PatternHunter II:
Why is PH better? - Smith-Waterman Sensitivity, BLAST Speed

(Li, Ma, Kisman, Tromp, J. Bioinfo Comput. Biol. 2004)

BLAST may also miss a hit

GAGTACTCAACACCAACAT TAGTGGGCAATGGAAAAT) o
LU LLLL T 1 L * The biggest problem for BLAST was low sensitivity (and low
speed). Massive parallel machines are built to do S-W

GAATACTCAACAGCAACATCAATGGGCAGCAGAAAAT exhaustive dynamic programming.

* Spaced seeds give PH a unique opportunity of using several
9 matches optimal seeds to achieve optimal sensitivity, this was not
In this example, despite a clear homology, there is no sequence of possible by BLAST technology.
continuous matches longer than length 9. BLAST uses a length 11 * PH Il has with multiple optimal seeds.

and because of this, BLAST does not recognize this as a hit! « PH Il approaches Smith-Waterman sensitivity, and 3000 times

Resolving this would require reducing the seed length to 9, which faster.
would have a damaging effect on speed

BioInformatics 5 Parsimony Approach
Molecular Evolution: Fitch and Sankoff Algorithms * Applies Occam’s razor principle to identify the simplest
Terminal Nodes O & explanation for the data
Branches or | \H * Assumes observed character differences resulted from
Lineages — ® A d \. the fewest possible mutations

B * Seeks the tree that yields lowest possible parsimony
c score - sum of cost of all mutations found in the tree
Ancestral Node ! ‘/
or ROOT of Internal Nodes E O é)
the Tree
o rooted
time .

((A,(B,C)),(D,E)) =The above phylogeny as nested parentheses 23 e ; 124

31

Small Parsimony
Input: Tree T with each leaf labeled by an m-character string.

Output: Labeling of internal vertices of the tree T minimizing the
parsimony score.

We can assume that every leaf is labeled by a single character,
because the characters in the string are independent.

Weighted Small Parsimony Problem
Input: Tree T with each leaf labeled by elements of a k-letter
alphabet and a k x k scoring matrix (5,7)
Output: Labeling of internal vertices of the tree T minimizing the
weighted parsimony score.
For Small Parsimony problem, the scoring matrix is based on
Hamming distance dH(v, w) =0 if v=w ; dH(v, w) = 1 otherwise

Unweighted vs. Weighted

A

YA\

T C
AWAS
C GT ¢C

A
AN
T C

N N

C GT ¢

A T|G|C
AlfO|1]1]1
T|1]0|1]1
G|1|1]0]1
Cl|1]1]1]0

A T|G|C
A[f0]|3]4]9
T|3]0|2]4
G|4]|2]0]4
Cl|9]|4]4]|0

Small Parsimony
Score: 5

Weighted
Parsimony
Score: 22

Sankoff Algorithm: Dynamic Programming

* Calculate and keep track of a score for every
possible label at each vertex
— 5,(v) = minimum parsimony score of the subtree rooted
at vertex v if v has character t
* The score at each vertex is based on scores of its
children:
— s/(parent) = min, {s(left child) + 6, .} +
min; {s{ right child) + 6] o

Sankoff Algorithm (cont.)

* Begin at leaves:

— If leaf has the character in question, score is 0

— Else, score is ®

Ve / \

P ¥
O=T=1=] [e]eeJoe] 0] [0 0Je]oo] [ccJee] 0[]
Al T G C A T G ¢ A T G ¢ A T @ c

1/23/10

32

Sankoff Algorithm (cont.)

§|A T G C s,(v) = min; {s(u) + 6; } +
A|lO0O 3 4 9 :
T|3 0 2 4 min;{s;(w) + J; §
Gl4 2 o 4 _
Cl? 4 4 0 (STEIETF] .~ S{U)| & 4 | sum
S
A 0 0 0
54()=0
min; {s,(w) + 9, 4} S Tl=]38]
G © 4 o0
C o0 9 ©

Sankoff Algorithm (cont.)

§|A T G C s,(v) = min; {s(u) + 6; } +
AlO0O 3 4 9 mn.fe. + 4.
219 5 3 @1 minis(w)+6;)
G|4 2 0 4 -
cio 4 & o C¥TEISTS] .~ 5(u) | 8,4 | sum
A T @G
A © 0 ©
s,»V=0
+9=9 T | 3 ©
3 «
G o0 4 o0
C 0 9 9
(T o [[T e=Tee 0]
A 7 I | Cc A T Cc 130

Sankoff Algorithm (cont.)

§|A T G C s,(v) = min; {s(u) + 5, } +
A|lO0O 3 4 9 :
T|3 0 2 4 min {s;(W) + 0}
G|4 2 0 4 pu
cCl9 4 4 o0 D
A T G
Repeat for T, G, and C
3 «

Sankoff Algorithm (cont.)

Repeat for right subtree

A T G C

1/23/10

33

Sankoff Algorithm (cont.)

Repeat for root

A T G C
(EIRAm IR (F1317TE)
TR A TOo C
Or=T=l=) [El=I=]3) EDl=l=) EI[=lilx]
A T G C A T G C A T G C A T G ©:3

Sankoff Algorithm (cont.)

Smallest score at root is minimum weighted

(OTIITWITE] In this case, 9 —
so label with T

parsimony score [RRANT

AT G C

A T G ¢ AT G C AT 6 G

Sankoff Algorithm: Traveling down the Tree

The scores at the root vertex have been computed by going up the tree
After the scores at root vertex are computed the Sankoff algorithm moves down the tree
and assign each vertex with optimal character.

9 is derived from 7 + 2
So left child is T,
And right child is T

EIERCIE @ | oo) e | e I=T=]
A T G C A T G ¢C A T G C AT 6 ©&

Sankoff Algorithm (cont.)

And the tree is thus labeled...

1/23/10

34

Fitch Algorithm

* Solves Small Parsimony problem;
* Dynamic programming in essence;

1) Assign a set of possible letters to every vertex, traversing the tree from
leaves to root

e Each node’s set is the combination of its children’s sets (leaves contain their
label)

— E.g. if the node we are looking at has a left child labeled {A, C} and a
right child labeled {A, T}, the node will be given the set {A}

2) Assign labels to each vertex, traversing the tree from root to leaves
* Assign root arbitrarily from its set of letters

* For all other vertices, if its parent’s label is in its set of letters, assign it its
parent’s label
* Else, choose an arbitrary letter from its set as its label

Fitch

{A, C, G}
{A, C} {G}
A G & {6 A G G {6
A
A G
A C G G -

Parsimony Example

Say we have an alignment of 4 DNA sequences of 3 bases each

1 GGA 1>'_c<3 1>_c<z 1>_c<3
2 4 3 4 4 2
zeec Column 1
3ACA
™2 o 2 1 3
thaCC 2>O_<4 3>O_<4 4>O_<z
Total number of *
substitutions Column 2

Tree 1:4 1: is 1: 'iz 1_: :_3
2. .4 3 4 4 2

Tree 2: 5

Tree 3: 6 Column 3

e substitution

Sankoff vs. Fitch

The Sankoff algorithm gives the same set of optimal labels as the
Fitch algorithm
For Sankoff algorithm, character t is optimal for vertex v if s(v) =
mMiny g Siv)
— Denote the set of optimal letters at vertex v as S(v)
* If S(left child) and S(right child) overlap, S(parent) is the intersection
* Else it’s the union of s(left child) and S(right child)
* This is also the Fitch recurrence
Complexity:
Fitch: O(mnk); Sankoff: O(mnk?)
m characters, n leaves, k possible values for a character

1/23/10

35

Large Parsimony Problem

Input: An n x m matrix M describing n species, each
represented by an m-character string

Output: A tree T with n leaves labeled by the n rows of
matrix M, and a labeling of the internal vertices such
that the parsimony score is minimized over all possible
trees and all possible labelings of internal vertices

Possible search space is huge, especially as n increases
(2n = 3)!! possible rooted trees
(2n —5)!! possible unrooted trees

Problem is NP-complete; Exhaustive search only possible
w/ small n(< 10)

BioInformatics 6

Distance in Trees

dy(T) — tree distance between i and j

di4=12+13+14+17+13 =69

Edit Distance vs. Tree Distance

* Given n sequences, we can compute the n x n distance
matrix D;;

* D;may be defined as the edit distance between a gene in
species i and species j, where the gene of interest is
sequenced for all n species.

D; - edit distance between i and j
* Note the difference with

d,(T) - tree distance between i and j

Fitting Distance Matrix

* Given n sequences, we can compute thenxn
distance matrix D,.j

* Evolution of these sequences is described by a
tree that we don’t know.

* We need an algorithm to construct a tree that best
fits the distance matrix D;

Lengths of path in an (unknown) tree T

. . /—/%
* Fitting means DLidijm

Edit distance between species (known)

1/23/10

36

Reconstructing a 3 Leaved Tree

* Tree reconstruction for any 3x3 matrix is
straightforward

* We have 3 leaves j, j, k and a center vertex ¢

bomme Dij e

< Observe:
di + die =D
dic + dkc = Vik
djc + dkc = Dj

Reconstructing a 3 Leaved Tree (cont’d)
di.+ djc =Dy
T+ _dziﬂk_z_Dg
2d, + djc +d, = D; + Dy
LAAVAAJ
2d, .+ Dy =D;+Dy
d,.=(D;+ Dy —Dy)/2
* Similarly
£C) '
di. = (D;+ Dy —DyJ)/2
i = (Dy; + Dy — Dy)/2

Trees with > 3 Leaves

* A tree with n leaves has 2n-3 edges

* This means fitting a given tree to a distance matrix
D requires solving a system of “n choose 2”
equations with 2n-3 variables

* This is not always possible to solve forn >3

Additive Distance Matrices

Matrix D is ADDITIVE if
there existsatree T
with d(T) = D;

>

B
C
D

oo B
W O N W

cwwn
Y.

NON-ADDITIVE
otherwise

1/23/10

37

Distance Based Phylogeny Problem

* Goal: Reconstruct an evolutionary tree from a

distance matrix
* Input: n x n distance matrix D;;

* Qutput: weighted tree T with n leaves fitting D

there is a simple algorithm to solve it

If D is additive, this problem has a solution and

%
N
N\
N
\?\\
\\
Dim = (Dim + Djm - DU)/2 D,-J-\|
,/
-7 P . L.
7 mpress j and j into k,
y terate algorithm for rest
N of tree

Using Neighboring Leaves to Construct the Tree

* Find neighboring leaves i and j with parent k
* Remove the rows and columns of i and j

* Add a new row and column corresponding to k, where the
distance from k to any other leaf m can be computed as:

Finding Neighboring Leaves

e Closest leaves aren’t necessarily neighbors
e iandj are neighbors, but (d;= 13) > (d; = 12)
@ ®

e Finding a pair of neighboring leaves is
a nontrivial problem!

Degenerate Triples

A degenerate triple is a set of three distinct elements 1<=ij k<=n where D;
+D., =D,
Jjk ik

Elementin a degenerate triple i,j k lies on the path from i to k (or is
attached to this path by an edge of length 0).

If distance matrix D has a degenerate triple i,j,k then j can be “removed”
from D thus reducing the size of the problem.

”

If distance matrix D does not have a degenerate triple i,j,k, one can “create
a degenerative triple in D by shortening all hanging edges (in the tree).

1/23/10

38

Shortening Hanging Edges to Produce Degenerate
Triples

* Shorten all “hanging” edges (edges that connect
leaves) until a degenerate triple is found

32 5

AL CD O—o-a ©
A 0 4 10 © 1
B 4 0 8 7 4
clus oo ® @
D 97 s 0

A B CD D)2 A2 4

A 0 2 8 7 1)

B 06 - ER)

p @

D

Finding Degenerate Triples

* If there is no degenerate triple, all hanging edges are reduced
by the same amount §, so that all pair-wise distances in the
matrix are reduced by 26.

* Eventually this process collapses one of the leaves (when & =
length of shortest hanging edge), forming a degenerate triple
i,j,k and reducing the size of the distance matrix D.

* The attachment point for j can be recovered in the reverse
transformations by saving D; for each collapsed leaf.

Reconstructing Trees for Additive Distance Matrices
A H D @4‘Z o
® ‘T

{

@ O

AdditivePhylogeny Algorithm

1. AdditivePhylogeny(D)

2 if Dis a 2 x 2 matrix

3 T = tree of a single edge of length D, ,
4 return T

5. if Dis non-degenerate

6. 6 = trimming parameter of matrix D
7 forall 1 <i#j<n

8 D, =Dy - 25

9. else

10. 6=0

1/23/10

39

1/23/10

AdditivePhylogeny (contd) The Four Point Condition

;: f(inzdg__triple hJ kin D such that D; + Dy = Dy + AdditivePhylogeny provides a way to check if
3. Remove j® row and jt" column from D distance matrix D is additive
4. T = AdditivePhylogeny(D)
5. Add a new vertex v to T at distance x from jto k
6. Addjbackto T by creating an edge (v, of length 0 + An even more efficient additivity check is the
7. foreveryleaf /in T . o
8. if distance from / to v in the tree D, “four-point condition”
9. output “matrix is not additive”
10. return
11. Extend all *hanging” edges by length & » Let 1<ij k< n befourdistinct leaves in a tree
12. return T

The Four Point Condition (contd) The Four Point Condition: Theorem

Compute: 1.D;+ Dy, 2. D, + D;, 3. D, + D; . - . :
P §o ok k= o * The four point condition for the quartet i,jk,/ is
satisfied if two of these sums are the same, with

the third sum smaller than these first two

* Theorem : An n x n matrix D is additive if and only

2 and 3 represent the ! if the four point condition holds for every quartet
same number: the 1 1 represents a ..
length of all edges + X smaller number: 1<, ,k,/ sn
the middle edge (itis p,, ™ * Dy the length of all
counted twice) S k edges —the
middle edge

40

Least Squares Distance Phylogeny Problem
If the distance matrix D is NOT additive, then we look for a tree T that
approximates D the best:
Squared Error: 5, (dy(T)— D;)?

Squared Error is a measure of the quality of the fit between distance
matrix and the tree: we want to minimize it.

Least Squares Distance Phylogeny Problem: finding the best
approximation tree T for a non-additive matrix D (NP-hard).

Neighbor Joining Algorithm

* In 1987 Naruya Saitou and Masatoshi Nei developed a
neighbor joining algorithm for phylogenetic tree
reconstruction

* Finds a pair of leaves that are close to each other but far
from other leaves: implicitly finds a pair of neighboring leaves

* Advantages: works well for additive and other non-additive
matrices, it does not have the flawed molecular clock
assumption (see UPGMA).

Neighbor Joining Algorithm

1 5 1 1 5
2 2
4 4

2 3 4 3 3

6 * Sequences chosen to give best
. least-squares estimate of branch

> length
* Begin with star topology — no

2 4 neighbors have been joined

Neighbor Joining

* Tree modified by joining pairs of sequences

* Pairis chosen by calculating sum of branch lengths, S, for the
corresponding tree (joining m and n; i are the other nodes); d;; are
the distance matrix values.

S 2 dim + din dmn
= +
™\ 2(N =2) 2

(If A and B are joined):

1/23/10

41

Neighbour Joining Algorithm

« Identify 1,j as neighbours if their “distance” is the shortest.
» Combine i,j into a new node u.

» Update the distance matrix.

* Distance of u from the rest of the tree is calculated

* If only 3 nodes are left — finish.

Why does using S;; give us O(n®) complexity?

1. If N represents the number of leaves at each stage, we compute
S12: 13, S145 ---Sp3, .. S(n.1.n, Which about N? computations.

2. We have N stages (we start off with a matrix of N x N, and at
each stage the matrix is reduced by 1) = so we've reached N x
N2 =N3.

3. Each S; we compute, requires us to sum over all of the elements
in the matrix — once again, N? computations, so now we've
reached N x N2 X N2 =N?,

Let’s define a new parameter called r. This r is computed for each node represented
in the current matrix.

N
r = Zdik
=1

(i represents the node for which we are computing r now)
Next, we define a rate corrected matrix (M), in which the elements are defined by:
M; = dj— (r;+r)) / (N-2)

And this is now our new parameter; i and j represent numbers of nodes. At each
stage, we look for the i and j which give us the minimal M;.

Why does M;; give us complexity of O(N*)?

In M;; we only have to evaluate r; and r; each round. This can
be achieved in O(1), if we compute these terms once at the
beginning of the round.

Thus, if we return to the list that built the complexity of S;;,
Stage 1 and 2 remain with the same complexity = O(N?).

Stage 3 is reduced to O(1), and thus we get a total of O(N?).

1/23/10

42

UPGMA: Unweighted Pair Group Method with
Arithmetic Mean
* UPGMA is a clustering algorithm that:

— computes the distance between clusters using average
pairwise distance

—assigns a height to every vertex in the tree, effectively
assuming the presence of a molecular clock and dating
every vertex

—The algorithm produces an ultrametric tree : the
distance from the root to any leaf is the same (this
corresponds to a constant molecular clock: leaves in the
tree are assumed to accumulate mutations (and thus
evolve) at the same rate.

Clustering in UPGMA

Given two disjoint clusters C, C; of sequences,

1
d; = 2l eci, g €6)%q

Gl <16l

Note that if C, = C; U C, then distance to another
cluster C, is:
d, 1] +d, IC]
dy=

Gl + 1G]

UPGMA Algorithm

Initialization:
Assign each x; to its own cluster C;
Define one leaf per sequence, each at height 0
Iteration:
Find two clusters C;and C; such that d;; is min
Let C, =G UG
Add a vertex connecting C, C;and place it at height d;;/2
Delete C;and C;
Termination:
When a single cluster remains

Weakness

2

UPGMA
Correct tree

1/23/10

43

BioInformatics 7: Likelihood for a tree

Aligned sequences

for 4 taxa; Whatis @ 1 i N
: MC..GGACA[CIGTTTA..C
the prob that this @C.AGACA|ClcTCTA. C
tree generated the B C..GGATAIAIGTTAA..C
@C. . GGATA|GICCTAG. C
data?
1 oo @ 6 @
B) M 3) % G

\/

(5)

@ @ \

6)

Calculating L for a tree

Root the tree at any internal node (models are time-reversible)
Assumption of independence allows to calculate L for each site
separately

Then combine the likelihoods into a total value at the end

To calculate L for some site j, we must consider all possible scenarios by
which the tip sequences could have evolved; Specifically, the root (6)
may have had A, C, T, or G.

For each of these possibilities, the other internal node (5) also might
have possessed any of the 4 nucleotides

Calculating L for a tree

* Thus, there are 4x4=16 possibilities to consider

0]

g

iy

|

-

—

[}

o
—
-0

>
NO
\)>
[0)
v

+

=

=

Q

lony
O/O
>/ ~NO
> >

+
+
=
]

Q
o
o
N0

[9)

-0

4
e

[9)

+ + Prob

§>°

-

Calculating L for a tree

* Calculate the probability of each and sum them
to obtain the total probability for site j

* Assume that the changes along each branch are
independent (Markov model)

* Thus, the Pr of any single scenario is equal to the
product of the Pr of the changes required by that
scenario

(BE) N
L=Lay*Lg*-..-*Lwn= .I—IIL(;)
]:

1/23/10

44

Calculating L for a tree
* Because the Probability of any single
observation is an extremely small number, we
evaluate the log of the likelihood instead

* Probabilities are accumulated as the sum of
logs of the single-site likelihoods
(F)

N
InL=InLyy+InLpy+ ...+ InLppy=3 In L)
=1

Typical assumptions of ML substitution models

The probability of any change is independent of the prior history of the site (a Markov Model)

Substitution probabilities do not change with time or over the tree (a homogeneous Markov
process)

Change is time reversible e.g. the rate of change of Ato T is the same as T to A

Typical assumptions of ML substitution models

* The probability of any change is independent of the
prior history of the site (a Markov Model)

* Substitution probabilities do not change with time or
over the tree (a homogeneous Markov process)

* Change is time reversible e.g. the rate of change of A to
TisthesameasTto A

Human
Base frequency Gorilla Allow for bias
parameters ” towards transition
allowed to differ [Mtfz ==k mutation
(yellow) (red)
A C G T

FEL K2P

- © 0 »

Human Human
A A
G Gorilla G Gorilla
T Infg = —2842.67 T Infop =—2748.41
A C G T A C G T
Allow for bias HKY Base frequency
towards transition parameters
mutation A Human allowed to differ
(red) (yellow)
c Chimp
G Gorilla
T ‘ Infrg = —2665.42
A C G T

All base exchangeability
parameters vary (blue)

Bootstrapping to get the best trees

Main outline of algorithm:

1. Select random columns from a multiple alignment — one

column can then appear several times

2. Build a phylogenetic tree based on the random sample
from (1)

3. Repeat (1), (2) many (say, 1000) times
4. Output the tree that is constructed most frequently

Jackknifing: Similar to bootstrapping; Generates a number of randomized data

sets that are sampled without replacements -> each data set is smaller
than the original 180

1/23/10

45

If few positions tipped the balance between

Nearest Neighbor Interchange
* A Branch Swapping algorithm
* Only evaluates a subset of all possible trees

» Defines a neighbor of a tree as one reachable by a nearest neighbor
interchange

— A rearrangement of the four subtrees defined by one internal edge
— Only three different rearrangements per edge

—a o7 Start with an arbitrary tree and check
O O zieD its neighbors
@ © . s .
* Move to a neighbor if it provides the
—o fos | best improvement in parsimony score
@, X AC|BD p . . p y.
226 ® * No way of knowing if the result is the
o most parsimonious tree
— ()il
O O wse » Could be stuck in local optimum
@ ©<22Z,

X Pseudosample 1 Bootstrap trees
one topology and another, different s
topologies will appear as each replicate 188ggAAAAGGCTOOCCT AR >_ﬁ—
i 3CCCCAAAAAAAGGGGGTAAA 2
datasetlsevaluated 4 CCCCAAAAAAAGGGGGTAAA 4
5GGGGCCCCGGAGGGGTTAAA 5
() Sample
L isisezarmnunuBETELD w| L
1GAGGCGAGGACCCGATCAAAA A
2GCCTCGGGAACCGGAGAAAA A
3CAGAGAGAAACAGAGTAAAC c ‘>—ﬂ—2
4 CAAAGAGCAACGAGTTAAAC [
5GCGGACAGAAAAGATTAAAT T 5
3, 1
Inferred tree
& 2
5
Hibod
AA 2
AA
an| *
AA 1
®) Subhypothesis 1
1 3 1
— Bootstrap value
0 Aie e -
.) 95% tis significantly positive
5
Subhypothesis 2
siep1 siep2 Stepa

Star decomposition

Stepwise addition KQ ‘

3
x

BioInformatics 8: Information theory

* Given a text composed from an alphabet of 32 letters (each letter equally probable)
* Person A chooses a letter X (randomly)

* Person B wants to know this letter

* B may ask only binary questions

* Question: how many binary questions must B ask in order to learn which letter X was
chosen by A

* Answer: Here: H(X) = 5 bit

denine @
aa uy ®

how many binary Purines
questions must person
B ask in order to learn
which DNA base was
chosen by person A?

Pyrimidines

1/23/10

46

Conditional entropy

* Given a text composed from an alphabet of 32 letters (each letter equally
probable)

* Person A chooses a letter X (randomly)
* Person B wants to know this letter

* B may ask only binary questions

* A may tell B the letter Y preceding X

¢ Question: how many binary questions must B ask in order to learn which letter X

was chosen by A
* Answer: ;5 H(X]Y) <= H(X)
* In worst case — namely if B ignores all “information” in Y about X — B needs H(X)
binary questions
* Under no circumstances should B need more than H(X) binary questions

* Knowledge of Y cannot increase the number of binary questions

Mutual information

Compare two situations:

I learn X without knowing Y

Il: learn X with knowing Y

How many binary questions in case of I? = H(X)
How many binary questions in case of II? > H(X]Y)

Question: How many binary questions could B save in case of II?
Question: How many binary questions could B save by knowing Y?
Answer: 1(X;Y) = H(X) — H(X]Y) where = in Y about X
H(X]Y)<=H(X) > I(X;Y)>=0

Example 1: random sequence composed of A, C, G, T (equally probable)
H(X) = 2bit; HX|Y)= 2bit; I(X;Y) = H(X)—H(X]Y) = O0bit
Example 2: deterministic sequence ... ACGT ACGT ACGT ACGT ...

H(X) = 2bit; H(X]Y)= 0bit; I(;Y) = H(X)-H(X|Y)= 2 bit

Identifying Motifs and generating Motif Logo

Genes are turned on or off by regulatory

proteins; TGGGGGA
These proteins bind to a short DNA sequence TGAGAGA
called a motif (TFBS) TGGGGGA
So finding the same motif in multiple genes’ TGAGAGA

TGAGGGA

regulatory regions suggests a regulatory
relationship amongst those genes 1
Motifs can mutate on non important bases

2

The five motifs in five different genes have
mutations in position 3 and 5
Representations called motif logos illustrate
the conserved and variable regions of a motif

Bits

- & & v ® e
Sequence position

~

Information Content of a DNA Motif

Information at position j: |J- = Hyerore = Hatter

Motif probabilities: Py (k=A,C,G,T)

1
Background probabilities: q, = 1 (k=A,C,G,T)

= -2 dlog.g, --Eplog p, =2-H

]

Ioti = Z 1,= 2W - H, o4 (motif of width w bases)

Log base 2 gives entropy/information in ‘bits’

1/23/10

47

Sequence Logos
» http://weblogo.berkeley.edu/

1

» Height of letters given by p;(x) = /;

Entropy estimation of alignment

* Define frequencies for the occurrence of each letter
in each column of multiple alignment

Pa =1, pr=ps=p=0 (1%t column) AAA

AAA
P, =0.75, p; = 0.25, pg=p=0 (2" column) AAT
p, = 0.50, p; = 0.25, p.=0.25 p;=0 (3™ column) ATC

* Compute entropy of each column

— Pxlogpy

X=A4,7.G,C

Multiple Alignment: Entropy Score

A
A
Best case entrop P =0
A
A
T 1 1 1
Worst case t =-\-1 = 4(—%-2)=2
WOISL CdsE entrop)) G p og 1 (4)
C

Entropy for a multiple alignment is the sum of
entropies of its columns:

2 over all columns 2 X=A,T,G,C px|09px

Information Content

In a positional weight matrix , PWM, convert frequencies to
probabilities

PWM W: W, = frequency of base p at position k
ap= frequency of base p by chance
Information content of W:

/4
Z AZ W log—~
BEIAC.G.T} o

o If Wy is always equal to g, i-e., if W is similar to random
sequence, information content of W is 0.

* If W is different from ¢, information content is high.

1/23/10

48

Entropy of an Alignment: Example

column entropy:

-(palogp,+ pdogpc+ pclogps + pogpy)

«Column 1 =-[1*log(1) + 0*log0 + 0*log0 +0*log0]
=0

«Column 2 = -[('/,)*log('/,) + (*/,)¥log(*,) + 0¥log0 + 0*10g0]

=L (1)) + CLY*-415)] = +0811
“Column 3 = -[(/y)*log(!/,y+('/,)*log(\/y)+(/)*log(1/y) +('/,)*log(/,)]

> > > >

4| 0| >

=4%-[(/)*(-2)] = +2.0

OO0 o0|>

«Alignment Entropy =0 + 0.811 + 2.0 =+2.811

Donor: 7.9 bits
Acceptor: 9.4 bits
(Stephens & Schneider, 1996)

Splice Sites

* Donor site:
— start of intron
— consensus GT
— also called 5’ splice site

* Acceptor site:
— end of intron intron
— consensus AG
— also called 3’ splice site

. TTTTTT‘ITTTT T
* Introns can be inserted in

o acceptor
the middle of a codon!

o 3 o exon

Recognize splice sites

Donor site

&=
Position

% | 8|..|2/-1]0]1]|2]|..[17
Al26...]60 9|0 |1/|54]|...]21
cla26|...[15(5]0|1]2]..| 27
G|25|...[12(78/99| 0 |41]...| 27 A
T 23 ..[13 8|1 |98 3 |..|25] AL |Clis

Position-specific scoring matrix

Pos 3] -2 [-1 +1 +2 | +3 | +4 | +b | +6
A | 03 [06 [01 [00 | 00|04 07| 01 [01
[4 0.4 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.2
G 0.2 0.2 0.8 1.0 0.0 0.4 0.1 0.8 0.2
T 0.1 0.1 0.1 0.0 1.0 0.1 0.1 0.0 0.5
S=S5,5,5;S,S;S¢S,5; S,
P(Sl+) P_3(S1)P(S,)P.1(S3) *** P5(Sg)Ps(Ss)
Odds Ratio R =

P(SI) PoglS1)Pog(S2)Pog(Sa) *** Pog(Se)Pog(So)

Q Il R
Score s =10g;R
196

1/23/10

49

Motifs: Profiles and Consensus

* Line up the patterns by their start
indexes

aGgtacTt
CcAtacgt $=(Sy, S5 s St)
Alignment ac g : Z_ ‘c‘ J E * Construct matrix profile with
Ccgtacge frequencies of each nucleotide in
columns
* Consensus nucleotide in each
A 30103110 position has the highest score in
profile € 24001400 column
G 01400031)
T 00051014 < Thinkof consensus as an

Consensus ACGTACGT .

“ancestor” motif, from which
mutated motifs emerged

The distance between a real motif
and the consensus sequence is
generally less than that for two real
motifs

197

Predicting the number of sites

Association between adjacent bases will lead to association between more distant bases, and an
estimate of how far the relations extend may be found from Markov Chain theory.

Without invoking any biological mechanism, a Markov chain of order k supposes that the base
present at a certain position in a sequence depends only on the bases present at the previous k
positions.

For a zero order Markov chain we estimate the

P(GGATCC) = p(G)p(G)p(A)p(T)p(C)p(C) ",
frequency of a word from base composition alone

P(GGATCC) = p(GG)PGA)P(AT)P(TC)P(CC),
PGPAPTPO)

first order Markov chain model can be used to
estimate the same frequency

2" order Markov chain that uses di and tri
nucleotide frequencies

P(GGATCC) = p(GGA)p(GAT)p(ATC)p(TCC)

P(GA)p(AT)p(TC)

P(GGATCC) = GGAT)p(GAT! AT
p(_w 3 order Markov chain

P(GAT)p(ATC)

Predictiqp of the number of sequences =}

- Oth Order

FREQUENCY (%)

FREQUENCY (%)

FREQUENCY (%)

- 3cd Order

FREQUENCY (%)

- 4th Order
- Ist Order

FREQUENCY (%)

200 800 1600 2400 3200 4000

HEXANUCLEOTIDE RANK

=~ 2nd Order Yeast genome: Frequencies of each hexanucleotide

were plotted from highest to lowest abundance along
with values determined by each Markov chain

Gibbs Sampling
* Gibbs Sampling is an iterative procedure that discards
one -mer after each iteration and replaces it with a
new one.

* Gibbs Sampling proceeds slowly and chooses new /-
mers at random increasing the odds that it will
converge to the correct solution.

motif start index
gene start
4
S L
s Genes regulated
2 - BN | by same
transcription
S3 -
factor
= e]
St o I

1/23/10

50

How Gibbs Sampling Works

1) Randomly choose starting positions
s = (s4,...,5;) and form the set of /-mers associated
with these starting positions.

2) Randomly choose one of the t sequences.

3) Create a profile p from the other t -1 sequences.

4) For each position in the removed sequence, calculate the
probability that the /-mer starting at that position was generated
by p.

5) Choose a new starting position for the removed sequence
based on the probabilities calculated in step 4.

6) Repeat steps 2-5 until there is no improvement

Gibbs Sampling Algorithm

Gibbs Sampling — Motif Positions

» For each position, r, in the omitted sequence, s;, calculate
a weight:

P
HH-W 1 HI e /(ks“(r+l1)
/
Hr+W 1I—L 1p(31k =)
i.e. the probability of motif to background score

» New motif location in s; is choosen according to these
weights. That is, instead of giving each position in the
sequence equal weight so that each position has a L1_:
chance of being selected, the chance of being selected is
proportional to the weight. Large weight (meaning higher
chance of the motif begin positioned there) gives large
chance of selection.

Gibbs Sampling
Input:

t = 5 sequences, motif length | =8
1. GTAAACAATATTTATAGC
2. AAAATTTACCTCGCAAGG

3. CCGTACTGTCAAGCGTGG

4. TGAGTAAACGACGTCCCA
5. TACTTAACACCCTGTCAA

1) Randomly choose starting positions, s=(s,,5,,555,5) in the 5 sequences:

S1=7GTAAACAATATTTATAGC
S,=11 AAAATTTACCTTAGAAGG
$3=9CCGTACTGTCAAGCGTGG
s,=4 TGAGTAAACGACGTCCCA
S;=1TACTTAACACCCTGTCAA

1/23/10

51

Gibbs Sampling: an Example

2) Choose one of the sequences at random:
Sequence 2: AAAATTTACCTTAGAAGG
3) Create profile p from I-mers in remaining 4 sequences:

| ®|4|>
> H|0|>
>I0|0|H
>IOIO|H
o|r|4d|>»

174 | 2/4 | 214 | 3/4 | 1/4 | 1/4 | 1/4 | 2/4

—HO|Plou|lbd|w| -

2/4 1/4 1/4 14 | 2/4 1/4 1/4 1/4
G 1/4 0 0 0 1/4 0 3/4 0
Consensus T A A A T C G A

String

Gibbs Sampling: an Example

4) Calculate the prob(b/P) for every possible 8-mer

in the removed sequence:
Strings Highlighted in Red prob(a|P)

AAAATTTACCTTAGAAGG .000732

AAAATTTACCTTAGAAGG .000122

AAAATTTACCTTAGAAGG

AAAATTTACCTTAGAAGG

AAAATTTACCTTAGAAGG

AAAATTTACCTTAGAAGG

AAAATTTACCTTAGAAGG

=

AAAATTTACCTTAGAAGG .000183

AAAATTTACCTTAGAAGG

AAAATTTACCTTAGAAGG

o|o|o|Q|o|o|o|o|o

AAAATTTACCTTAGAAGG

5) Create a distribution of probabilities of I-mers prob(b/P), and
randomly select a new starting position based on this distribution.

a) To create this distribution, divide each probability prob(b/P) by the

lowest probability:
Starting Position 1: prob(AAAATTTA | P)= .000732 /.000122 = 6
Starting Position 2: prob(AAATTTAC | P) = .000122 / .000122 = 1
Starting Position 8: prob(ACCTTAGA | P)=.000183 / .000122 = 1.5

Ratio=6:1:1.5

b) Define probabilities of starting positions according

to computed ratios
Probability (Selecting Starting Position 1): 6/(6+1+1.5)= 0.706
Probability (Selecting Starting Position 2): 1/(6+1+1.5)= 0.118
Probability (Selecting Starting Position 8): 1.5/(6+1+1.5)=0.176

Gibbs Sampling: an Example

c) Select the start position according to computed ratios:

P(selecting starting position 1): .706
P(selecting starting position 2): .118
P(selecting starting position 8): .176

6) We iterate the procedure again with the above starting positions
until we cannot improve the score any more.

1/23/10

52

BioInformatics 9
The dishonest casino model

0.95 0.05 0.95

P(1|F) = 1/6 P(1]L) = 1/10
P(2|F) = 1/6 P(2L) = 1/10
P(3IF) = 1/6 0.05 PGIL) = 1/10
P(4|F) = 1/6 P(4|L) = 1/10
P(5|F) = 1/6 P(5|L) = 1/10
P(6|F) = 1/6 P(6IL) = 1/2

Definition: A hidden Markov model (HMME\/I

e Alphabet Z={b,, b,, .., by}

* Setofstates Q={1,..K}

» Transition probabilities between any two states

a; = transition prob from state i to state j
ay+..+a, =1, forallstatesi=1..K

* Start probabilities a;
ag t..tag=1

Emission probabilities within each state
g(b)=P(x=b | m=k)

e(b;) + ... +e(by) =1, forallstatesi=1..K
A Hidden Markov model is Memoryless:

P(m.q = k| “whatever happened so far”) = P(m,, =k | 7y, 70y, ..., 7, Xq, Xo, o0y X)) =
P(n., =k | m,) — at each time step t, only matters the current state mx,

A parse of a sequence

Likelihood of a parse

Given a sequence X = X;......Xy
and a parse it = 7,, Ty,

To find how likely is the parse:
(given our HMM)

my) =
P(xy | 70y) P(mty | Ttpq) coneee P(x, | m,) P(m, | m,) P(x, | m;) P(m,)

A0y Ax1m2eee o+ BuN-1mN Ert (X1)€ (Xy)

1/23/10

53

The three main questions on HMMs
1. Evaluation

GIVEN a HMM M, and a sequence x,

FIND Prob[x | M]
2. Decoding

GIVEN a HMM M, and a sequence X,

FIND the sequence i of states that maximizes P[x, 7w | M]
3. Learning

GIVEN a HMM M, with unspecified transition/emission probs.,
and a sequence x,

FIND parameters 6 = (e,(.), a;) that maximize P[x | 6]

Let’s not be confused by notation

P[x | M]: The probability that sequence x was generated by
the model; The model is: architecture (#states, etc)

+ parameters 8 = a;, e/(.)
So, P[x | 6], and P[x] are the same, when the architecture,
and the entire model, respectively, are implied
Similarly, P[x, w | M] and P[x, 7t] are the same
In the LEARNING problem we always write P[x | 6] to
emphasize that we are seeking the 6 that maximizes P[x | 0]

Decoding

GIVEN X = X;X5...0. Xy

We want to find = m,) T
such that P[x, &t] is maximized

7" =argmax, P[x, 7t]

X4

Xz X3

We can use dynamic programming!

Let V(i) = MaXg, g P[X1---Xi g, Tq, ooy T g, X, T = K]

= Probability of most likely sequence of states ending at
state T, = k

Decoding — main idea

Given that for all states k, and for a fixed position i,

V(i) = maxgy gy PIXgeXi g, T, o, T, X, 78 = K]
What is V,(i+1)?
From definition,

V((i+1) = max(nll___,i}P[XgeeXiy T0qp woey Ty Xiyq, Wiyq = 1]

=maxgy aP(X Ty = 1| XX 7,0,) PIXg, 7,00, T

=maxy, i}P(xm, Ty =1 |) PIXqo Xy, T, oy g, X 7T

= max, P(X,q, Ty =1 | 1= K) maxg, o PIXgeXi 0,500,000, %, t=K] =

e(x;,1) max, ay V(i)

1/23/10

54

The Viterbi Algorithm

Input: X = X.....Xy

Initialization:
Vo(0)=1 (0 is the imaginary first position)
V,(0) =0, forallk>0
Iteration:
V(i) = g(x)) x max, a; V,(i-1)
Ptri(i) = argmax, a; V,(i-1)
Termination:

P(x, *) = max, V,(N)

Traceback:
m,* = argmax, V,(N)
m.* = Ptr (i)

The Viterbi Algorithm

D T D S XN Similarto

State 1 “aligning” a

toa
sequence

K i Time: O(K2N)
Space: O(KN)

2 > set of states
(i)

P[Xq,eeres Xip Ty vy T 1 = Qgsq epoppeeeeBi €51 (Xq)ernen€ri(X)
These numbers become extremely small — underflow
Solution: Take the logs of all values

V(i) = log e, (x;) + max, [V,(i-1) + log a,]

Generating a sequence by the model
Given a HMM, we can generate a sequence of length n as
follows:

Start at state m; according to prob a,,

1. Emit letter x, according to prob e_,(x,)
2. Go to state &, according to prob a_; .,
3. ... until emitting x,,

A couple of questions

Given a sequence X,

* What is the probability that x was generated by the model?
* Given a position i, what is the most likely state that emitted x,?

Example: the dishonest casino
Say x =12341623162616364616234161221341

Most likely path: it = FF......F
However: marked letters more likely to be L than unmarked letters

1/23/10

55

Evaluation

We will develop algorithms that allow us to compute:
P(x) Probability of x given the model
P(x;...x;) Probability of a substring of x given the model
P(m,=k | x) Probability that the it state is k, given x

A more refined measure of which states x may be in

The Forward Algorithm

We want to calculate
P(x) = probability of x, given the HMM

Sum over all possible ways of generating x:
P(x)= 2 P(x,m) = X P(x | m) P(n)

To avoid summing over an exponential number of paths i, define

f (i) = P(x;..x,, w, = k) (the forward probability)

The Forward Algorithm — derivation
Define the forward probability:

f,(i) = P(xq...x;, 7w, = 1)
=21 i POXgeeXig, Ty, g, 7= 1) €4(X)
=2 2 g PXpeXig, e, Ty, g = K) 3 €4(X)

=g(x) 2, fi(i-1) a

The Forward Algorithm
We can compute f,(i) for all k, i, using dynamic programming!
Initialization:
fo(o) =1
f(0) =0, forallk >0
Iteration:
fi(i) = e (x) 2y f(i-1) ay

P(x) = Ek f(N) a,g

Where, a,, is the probability that the terminating state is k
(usually = ag,)

1/23/10

56

Relation between Forward and Viterbi

VITERBI FORWARD
Initialization: Initialization:
Vo(0)=1 f,(0)=1

V,(0) =0, for all k > 0 f(0) =0, forallk>0

Iteration: Iteration:

V(i) = e(x) max, V,(i-1) ay fi(i) = e/(x;) 2k fili-1) ay

Termination: Termination:

P(x, t*) = max, V,(N) P(x) = 2y fi(N) 3

Motivation for the Backward Algorithm

We want to compute
P(m =k | x),
the probability distribution on the ith position, given x

We start by computing

P(m; = k, X) = P(XpeX, 5 = K, Xipq00-Xy)
= P(Xq...X;, 7 = k) P(Xiy 10Xy | XX, 7T = K)
= P(X;...x,, 7 = k) P(x | 7t = k)

WX
Forward, f(i) +1 Baclulvard, tl)k(i)

The Backward Algorithm — derivation
Define the backward probability:

b (i) = P(X;,1.--Xy | 7T =K)
= 2ni+1...JcN P(Xis1Xi42s s X Tig1s s Ty | 7 =K)
=2 2 N PO Xias oo Xy Ty =1, Ty ooy Ty | = K)
=2 &(X1) 3y Zigirg o POXias o Xow Ty o Ty | g =)

= 2| e(x,,1) ay b(i+1)

The Backward Algorithm

We can compute b, (i) for all k, i, using dynamic
programming

Initialization: What s th —
_ at is the running time,
b(N) = ayo, forall k and space required, for
Forward, and Backward?
Time: O(K?N)

Space: O(KN)

b (i) = X, €(x;,1) 3y by(i+1)

Termination:

P(x) =2, ag €/(x,) b(1)

1/23/10

57

Assume we are given a DNA sequence that begins in an
exon, contains one splice site and ends in an intron. The
problem is to identify where the switch from exon to intron
occurred.

For us to guess intelligently, the sequences of exons, splice
sites and introns must have different statistical properties.

Let's imagine some simple differences: say that exons have a
uniform base composition on average (25% each base),
introns are A+T rich (say, 40% each for A/T, 10% each for C/
G), and the 5'SS consensus nucleotide is almost always a G
(say, 95% G and 5% A).

Starting from this information, we can draw an HMM that
invokes three states, one for each of the three labels we
might assign to a nucleotide: E (exon), 5 (5'SS) and I
(intron).

Startcodon codons ponor site

[<{c[sATGCCCTTCTCCAACAG.
Transcription
start\

/ |

Promoter

Gene Structure

Acceptor site
Intron

HUMAN GENES Poly-A site

Stop codon

Comprise about 3% of the genom! * T T ACCAC
; [GATCCCCATGCCTGAGGGCCCCTC) ﬁ

Average gene length: ~ 8,000 bp \

Average of 5-6 exons/gene i

Average exon length: ~200 bp =7 V3'UTR

Average intron length: ~2,000 bp

~8% genes have a single exon

Some exons can be as small as 1 or 3 bp.

HUMFMR1S is not atypical:

17 exons 40-60 bp long, comprising 3% of a 67,000 bp gene

© o
a &

—H00>
o
o000

NN N
oonon
—HOO>

W

ocooo
—H0O0>
nnnn

cooo
ROUR

Start :
1.0

Sequence: CTTCATGTGAAAGCAGACGTAAGTCA

statepath: EEEEEEEEEEEEEEEEEES | [1 | 1 11 logP
: e 1 —41.22
[1036 1 —43.90
Parsing: E s 1 -43.45
C TamT: 1 —43.94
[[1 —42.58
[T 1 —41.71
46%
Posterior " 28%
decoding: -, _11 %)

Each state has its own emission probabilities (shown above the states), which model the base
composition of exons, introns and the consensus G at the 5'SS.

Each state also has transition probabilities (arrows), the probabilities of moving from this state to
a new state.

The transition probabilities describe the linear order in which we expect the states to occur: one
or more Es, one 5, one or more Is.

How confident are we that the fifth G is the right choice?
Our confidence will depend on posterior decoding.

Posterior decoding uses two dynamic programming
algorithms called Forward and Backward, which have
some similarity with Viterbi, but they sum over possible
paths instead of choosing the best.

1/23/10

58

Genescan model

Duration of states — length distributions of
— Exons (coding)
— Introns (non coding)
Signals at state transitions
— ATG Codon for gene start
— Stop Codon TAG/TGA/TAA
— Exon/Intron and Intron/Exon Splice Sites
Emissions
— Coding potential and frame at exons

— Intron emissions

scored by
signal sensor

scored by scored by
signal sensor content sensor
N N
‘ Y

. . . JCGTATGCTAGCTAGCGCA

signal sensor*

GenScan

N - intergenic region

P - promoter

F - 5" untranslated region

E,q— single exon (intronless) (translation
start -> stop codon)

E;;: — initial exon (translation start -> donor
splice site)

E,— phase k internal exon (acceptor splice
site -> donor splice site)

Eierm — terminal exon (acceptor splice site ->,
stop codon)

I, — phase k intron: 0 — between codon
after the first base of a codon; 2 — after the
second base of a codon

(single-exon

gene)

exon1 intron1 exon2 intron2 exon3

Length distributions of human introns and initial, internal and terminal exons

3s0 (@) Introns (b) Initial exons
[
S aomary
H g
g i
ki k
s E
o R o I
L e300 07000000 e
Length (bp) Length (bp)
250 (<) Internal exons 35 {d) Terminal exons
— o g
wol £ Smoothed density —— or Smoothed density -
28 i
g g L
E 100 i] 13
o
E
s
00 200 00 200 400 600 = 00 1
Length (bp) 234
GENSCAN (Burge & Karlin) 20| B Emoes

62051 CTAGGGTTGG CCAATCTACT CCCAGGAGCA GGGAGGGCAG GAGCCAGGGC

62251 T TGGTATCAAG GTTACAAGAC|
62301 AGCTTTARGG AGACCAATAG ABACTGGGCA TGTGGAGACA GAGAAGACTC]

62391 raecorrres camsooace Gaorcrorcr scomroer cratrrrec
X 1

62551]
62601 TGAGTCTA TGGGACCCTT]
62651| carerrrrer TAAGTTCATG

62701 GGGAGAAGTA ACAGGGTACA GGARACAGAC

. e R
e
e e

—>
63001 amaarcreee TrARTTGATA
63051[_aTACATATTT ATGGGTTAMA TraRTATGTG
\ / 63101 GACCAAATCA GGGTAATTTT GCATTTGTAA TTTTAMAAMA TcCTTTCTIC)

.
-
|

63151 TTTTAATATA CTTTTTTGTT TATCTTATTT CTAATACTTT CcCTAMTCTC|

63201]_rrrcrrrcas ThcanToT)
63251 CTAAAGARTA ACAGTGATAA AAGGCAATAG
Forward (+) strand
() intergenic 6330) T IO oA ARGt
region X
2 Reverse () strand 63351 _ATTGCTARTA GCAGCTACAA TCCAGCTACC ATTCTGOTTT TATTTIATG
63401]_TTGGGATARG GOTGGATTAT TCTGAGTCCA AGCTAGGCCC TTTTGCTAMT]

Forward (+) strand

Reverse (-) strand

CATGITCATA CCTCTTATCT TcCTCCCACA

Forward (+) strand N Forward (+) strand
——————————— (intergenic ————— i —— |
region) 2
Reverse (-) strand Reverse (-) strand

1/23/10

59

gene structure is known

* In general, increasing one

Assessing performance: Sensitivity and Specificity
Testing of predictions is performed on sequences where the

NTrue Positives / NAII Positives

decreases the other

Sensitivity is the fraction of known genes (or bases or exons)
correctly predicted: SN=N,,q positives / Nail True

— “Am | finding the things that I’'m supposed to find?

Specificity is the fraction of predicted genes (or bases or exons) that
correspond to true genes: Sp=

— “What fraction of my predictions are true?

Accuracy per Accuracy per exon
{Sn+Spy/
Method sn s Ac Sn s ME WE o
P P 2 Sn = Sensitivity
GENSCAN 53 5 El 78 | 08 08 0 3 — Srecifici
FGENER | 077 85 78 51 06 (1] T T Sp = Specificity .
Geneld 63 81 67 | 04 0.45 20 Ac = Approximate Correlation
GeneParser2| 066 79 3 % | 03 037 7 ME = Missing Exons
GenLang 72 75 = 5 045 | 05 0 21 _
GRAILII 72 52 75 | 0% | 041 | 038 | 025 T WE = Wrong Exons
SORFIND 71 85 73 0.42 0.47 0.45 0.24 0.14
Xpound 0.61 0.82 0.68 0.15 0.17 0.16 0.32 0.13

Specificity/Sensitivity Tradeoffs

1200

[—random sequence — true sites |
1000
- / \ /
HES / X / \ Ideal Distribution of Scores
400
200
o NS
I 5 10 15 20 25 30 35 40 45 50
score (arb units)
1200
[—random sequence —true sites
1000
800 isH
- 7\ / More Realistically...
3 600
& / A\
200 A
o
0 10 20 30 40 50

score (arb units)

Correlation Coefficient
co aPXe)-(rYew)
VN YPPXAPYPN)
AN =TN + FP;,AP =TP+ FN;,
PP=TP+ FP,PN =TN + FN

= TruePositive _) TruePositive
AllTrue TruePositive+ FalseNegative

_ TruePositive _

TruePositive
AllPositive TrugPosiri ve+FalsePositive

TMHMM: Prediction of transmembrane topology of protein sequence

Model consists of submodels for:

* helix core and cap regions (cytoplasmic and extracellular)
» cytoplasmic and extracellular loop regions

* globular domain regions

Trained form 160 proteins with experimentally determined transmembrane helices.

outside loop

tail
) tail

inside loop

amino acid sequence MGDVCDTEFGILVA. . .SVALRPRKHGRUIV

state sequence ©000000000hhhhh. . .hhhhiiiiiiihhh

tail = tail — tail
topology s el e—
out o .

short loop

Prediction method: Posterior

decoding, the program

computes for each residue of

outside

of being part if a

membrane

il domain region, or an
region.

-~ -FUVDNGTEQ...PEHMTKLHMM. . .
---hhh000000...0000000hhh. ..

% tail - loop - tail

long loop

the sequence the probability

transmembrane helix, an
- intracellular loop or globular

extracellular loop or domain

Model architecture of TMHMM
(a)

non-cytoplasmic side

TMHMM: uses cyclic model with 7 states for

- TM helix core

- TM helix caps on the N- and C-terminal side

- non-membrane region on the cytoplasmic side

- 2 non-membrane regions on the non-cytoplasmic side (for short and long loops
to account for different membrane insertion mechanism)

- a globular domain state in the middle of each non-membrane region

1/23/10

60

1/23/10

TMHMM model architecture: submodels TMHMM-O UtpUt
Sequence Length: 274
(b) # Seamince Bup maiver o5 aam in THEa: 153.74601
Sequence Exp number, first 60 AAs: 22.08833
‘ § Semiemos Tobal pach of min: oot
i loop cap # Sequence POSSIBLE N-term signal sequence
glob- Ceiene wnz 0 Tl 27
Segquence TMHMMZ . O inside 50 61
Sequence TMHMMZ . O TMhe lix 62 84
Sequence TMHMMZ . O outside 85 103
Sequence TMHMMZ . O TMhelix 104 126
: O O<O=0O S .0 Thetee 1 13
12 3 4 5 6 7 8 9 101 2 3 4 5 Sequence TMRMMZ .0 outside 154 157
Segquence TMHMMZ . O TMhelix 158 180
Segquence TMHMMZ . O inside 181 200
Segquence TMHMMZ . O TMhe lix 201 223
Detailed structure of the inside and outside loop models and helix cap models e a0 Theite san 250
Sequence TMHMMZ . O inside 251 274
TMHMM posterior probabilities for Sequence
12
[T T D S E—
1 ~
<
§ os (|
= o4
The transitions from state 3 to non-adjacent states model the length 02 hl” d | " ‘ ‘ | \ Aw ‘
distribution of trans-membrane helices. 0 el Ilm :\‘ m.“._..“.“ Ll le 1
50 100 150 200 250
241 242
transmembrane inside outside
Biolnformatics 10: microarray . . .
Analysis of microarray: clustering
Samples Samples

Microarrays measure the activity (expression level) of the genes under varying conditions/
time points; expression level is estimated by measuring the amount of mRNA for that
particular gene; a gene is active if it is being transcribed; more mRNA usually indicates more
gene activity.

Cluster genes with similar
sample expression-profile.

Genes
Genes

Cluster samples with similar

)) —
gene expression-profile.

Intensity (expression level) of gene at
measured time/condition (tumor

N
<SSO

SONONS

e \\/
11 um

|
11 ym

Millions of identical probes per
feature (25 base-long single -
strand DNA)

and health) or different tissues,

different patient}/

Time: Time Time Y Time Z
Gene1 | 19/ 8 10
Gene2 | “10 0 9
Gene 3 4 8.6 3
Gene 4 7 8 3
Gene 5 1 2 3,

Combination model

Each color corresponds to
some “cause’.

Genes

The cause affects a
subset of genes in a
subset of the samples.

Samples L
P Plot each measure as a point in N-

dimensional space;
Make a distance matrix for the distance
between every two gene points in the N-
dimensional space;
Genes with a small distance share the
same expression characteristics and
might be functionally related or similar.
Clustering reveal groups of functionally
related genes

244

61

Clustering genes on expression profiles

Eisen etal. PNAS 1998.

Green = Expression level low with respect to reference sample.
Red = Expression level high with respect to reference sample.
Black = Expression level comparable to reference sample.

The columns are ordered such that similar expression profiles neighbor each other.

K-Means Clustering Problem: Formulation

* Input: A set, V, consisting of n points and a parameter k

* Output: A set X consisting of k points (cluster centers)
that minimizes the squared error distortion d(V,X) over
all possible choices of X

1-Means Clustering Problem: an Easy Case
* Input: A set, V, consisting of n points
* Output: A single points x (cluster center) that minimizes the
squared error distortion d(V,x) over all possible choices of x
1-Means Clustering problem is easy.

However, it becomes very difficult (NP-complete) for more than one center.
An efficient heuristic method for K-Means clustering is the Lloyd algorithm

K-Means Clustering: Lloyd Algorithm

. Lloyd Algorithm
Arbitrarily assign the k cluster centers

while the cluster centers keep changing

Assign each data point to the cluster C;
corresponding to the closest cluster
representative (center) (1 < i< k)

5. After the assignment of all data points,
compute new cluster representatives
according to the center of gravity of each
cluster, that is, the new cluster

representative is

>v\ /C| forallvinC for every cluster C

A WN =

*This may lead to merely a locally optimal clustering.

5
N ® ®
5 ° R
= ‘X 3
o ! A4
g ’
o 3 °
IE . .
c 2 % Py <
K=} ®
n <& ®
n P <
oy N N
g . ¢
) X .X o ¢ o

0 ‘ ‘ — ‘

0 1 2 3 4 5

expression in condition 1

1/23/10

62

5
a ® ®
c ®
-g 4 hd o=>°
= X,
T
5 —
8
£ ¢
2 ® - ® o
a \. ® % o
o * /
= 1 X <
Qo ® <
X ®
> XS ® °
0 ; ; ; ;
0 1 2 3 4

expression in condition 1

Conservative K-Means Algorithm

Lloyd algorithm is fast but in each iteration it moves many
data points, not necessarily causing better convergence.

A more conservative method would be to move one point at
a time only if it improves the overall clustering cost

— The smaller the clustering cost of a partition of data

points is the better that clustering is

— Different methods (e.g., the squared error distortion)

can be used to measure this clustering cost

2
3
4
5.
6
7
8

S

1.
10
1.
12.
13.
14
15

K-Means “Greedy” Algorithm

ProgressiveGreedyK-Means(k)
Select an arbitrary partition Pinto k clusters
while forever
bestChange < 0
for every cluster C
for every element jnot in C
if moving i to cluster C reduces its clustering cost
if (cost(P - cost(P, , o) > bestChange
bestChange € cost(P) - cost(P; ,,)
R
c<«cC
if bestChange > 0
Change partition P by moving i*to C*
else
return P

Squared Error Distortion

Given a data point v and a set of points X,
define the distance from v to X

d(v, X)
as the (Eucledian) distance from v to the closest point from X.

Given a set of n data points V={v,...v,} and a set of k points X,
define the Squared Error Distortion

dV,X)=Yd(v,X)* /n 1<i<n

1/23/10

63

Clustering Affinity Search Technique (CAST)-1
Affinity = a measure of similarity between a gene, and all the genes in a cluster.
Threshold affinity = user-specified criterion for retaining a gene in a cluster,

defined as %age of maximum affinity at that point
1. Create a new empty cluster C1.

2. Set initial affinity of all genes to zero
3. Move the two most similar genes into the new cluster.

Unassigned genes

4. Update the affinities of all the genes (new affinity of a gene =
its previous affinity + its similarity to the gene(s) newly added to the cluster C1)
ADD GENES:

5. While there exists an unassigned gene whose affinity to the cluster C1 exceeds the
user-specified threshold affinity, pick the unassigned gene whose affinity is the highest,
and add it to cluster C1. Update the affinities of all the genes accordingly.

253

REMOVE GENES: CAST -2

6. When there are no more unassigned high-affinity genes, check to see if cluster C1
contains any elements whose affinity is lower than the current threshold. If so, remove the
lowest-affinity gene from C1. Update the affinities of all genes by subtracting from each
gene’s affinity, its similarity to the removed gene.

7. Repeat step 6 while C1 contains a low-affinity gene

urrent cluster C1 " .

Unassigned genes

8. Repeat steps 5-7 as long as changes occur to the cluster C1.

9. Form a new cluster with the genes that were not assigned to cluster C1, repeating
steps 1-8.

10. Keep forming new clusters following steps 1-9, until all genes have been assigned to
a cluster

Markov clustering algorithm

We take a random walk on the graph described by the similarity matrix,
but after each step we weaken the links between distant nodes and
strengthen the links between nearby nodes.

Unlike most clustering algorithms, the MCL does not require the number
of expected clusters to be specified beforehand.

The basic idea underlying the algorithm is that dense clusters correspond
to regions with a larger number of paths.

A random walk has a higher probability to stay inside the cluster than to
leave it soon. The crucial point lies in boosting this effect by an iterative
alternation of expansion and inflation steps.

The algorithm iterates three steps.
Given a network with n vertexes, it takes the corresponding nxn
adjacency matrix A and normalises each column to obtain a stochastic
matrix M. It takes the ky, power M* of this matrix (expansion) and then
the ry, power m'(;) of every element (inflation).

The expansion parameter k is often taken equal to 2, while the
granularity of the clustering is controlled by tuning the inflation
parameter r.

Graphic from van Dongen, 2000

1/23/10

64

Principle Components Analysis (PCA)

A sample of n observations in the 2-D space X=(X,,X,)

Goal: to account for the variation in a sample in as few variables as
possible, to some accuracy

Sy
Asv

* the 1 PC Z, is a minimum distance fit to a line X in space
*the 2 PC Z, is a minimum distance fit to a line
in the plane perpendicular to the 15t PC

PCAs are a series of linear least squares fits to a sample,
each orthogonal to all the previous.

Principle Components Analysis (PCA)

PCA seeks for a linear projection that best describes the
data in a least mean squares sense

Finds a set of principle components (PCs)

— A PC defines a projection that encapsulates the maximum
amount of variation in a dataset

— Each PCis orthogonal to all other PCs

Reduce dimensionality by picking the most informative
PCs

— Namely, for reducing from dimension d to dimension d’, pick
the d’ most informative PCs e

PCA - Steps

Input: a dataset S ={s',...,s"}, s =<s{sj,>
» Subtract the mean from each dimension

« Compute the covariance matrix 3 for the d dimensions
— The covariance of two variables X and Y:

(X, -X)-(¥,-Y)

cov(X,Y)=2 oD

— The covariance matrix: 2(X,Y) =3, X) =cov(X.Y)

PCA — Steps (cont.)

» Compute the eigenvectors and eigenvalues of the covariance
matrix

« Choose the most informative PCs, construct a feature vector
— Eigenvectors with highest eigenvalues carry the most
information
— Feature vector is simply the combination of all eigenvectors
chosen
FeatureVector = (eig;, eig,, .., €igy)

. ei K

+ Transform dataset to the new axis syste| _g' !

- el S

— For s€S: s'= FeatureVector” xs = ‘.gz x|}
eig, Sy 260

1/23/10

65

When Things Get Messy...

* PCA is fine when initial dimension is not too big

— Space and time complexity are of O(d?) - size of
covariance matrix

* Otherwise —we have a problem...
— E.g. when d=10* = time/space complexity is O(108)...

* Luckily an alternative exists: SVD

Eigengenes, Eigenarrays and SVD

* The idea:

— Use the singular value decomposition (SVD) theorem
for transforming the dataset from the gene/array space
to the eigengene/eigenarray space

* Eigengenes, eigenarrays and eigenvalues:

— Each dimension is represented by an eigengene/
eigenarray/eigenvalue triplet

— Eigenvalues are used for ranking dimensions

Singular Value Decomposition (SVD)

+ Theorem: if E is a real M by N matrix, then there exist

orthogonal matrices

U=[u",...u”ER™™ and V =]',.. »']EeR™

s.t.
E=U-w-V"
Where
W =diag(o,,...,0,)
and

0,20,2..20,=20, p =min(m,n)

SVvD

o is the ith singular value of E.

u; and v; are the ith left singular vector and right singular
vector of E, respectively.

» It holds that

Evi=0-u
v =9 u,}i=1:min(M,N)
o

Efficient algorithms for calculating the SVD exist

1/23/10

66

€

€

Orthogonality of Decomposition

E=UW-V"
V=, "], v = <v,",...,vfx,>
U=[u,.,u"], u' =<ull,“.,u}1w>
W = diag(o,,...,0,)
e, ey u,’ uf u,” o, 0 - 0 Vi .V'l
- ”; < 0 oy < Y
©eyn u:‘w euy 0 e 0

SVD and Microarray analysis

Reduction from the N genes x M arrays to p eigengenes x p
eigenarrays space

— W is the eigenexpression matrix
— U represents the expression of genes over eigenarrays
— V represents the expression of eigengenes over arrays

The “fraction of eigenexpression”:

“Shannon entropy” of the dataset:
-1
log(p)

p
Z Py log(p) =1
=

1/23/10

Orthogonality of Decomposition

i V2 Y
! 2 Moo y -
Oyl Oxlly O it v ..
1 2
U-W = Oy Oyl 4 :
o,u, o ! 0 v :
i umty v vy
e ey EY & ok
. e, = Zok uj v
vw-yt=|"? -

e
€ eun

- ko kT
=E=Zak-u %
=1

BioInformatics 11: genetic networks

* assume that there are two related genes, B and D

* neither is expressed initially, but E causes B to be expressed and this in
turn causes D to be expressed
the addition of CX by itself may not affect expression of either B or D

both CX and E will have elevated levels of mRNAg and low levels of mRNA,

MRNA; | — MRNA,

N
Transcription Translation AN
\\
L)

B is a Primary D is a Secondary
Target of E Target of E
Production of mMRNAg Production of mRNA,
is enhanced by E is enhanced by B

268

67

E and CX both present

MRNA,

Transcription

(=]

No mRNA,

No Translation

| ° |

B is a Primary
Target

Production of mMRNAg

is enhanced by E

Production of mMRNA,
is decreased (prevented)

* in the presence of both CX and E we see increased
expression of mMRNA; but not of mRNA,

* this will be one of the principles we can use to
differentiate between primary targets of E (such as B)
and secondary targets of E (such as D)

Genes

mRNA, mRNA,

Nothing Low Low

Conditions |E High High
CX Low(?) Low (?)

E and CX |High Low

How to reconstruct a large genetic network from n gene
perturbations in fewer than n? steps

Direct:
A =B
B =C

Indirect
A =C

* How can we distinguish between direct and indirect
relationships in a network based on microarray data?

* Additional Assumption needed

* Next: minimize # relationshi

ps

Perturbation Static Graph Model

* Motivation: perturb a gene network one gene at a
time and use the effected genes in order to
discriminate direct vs. indirect gene-gene
relationships

e Perturbations: gene knockouts, over-expression, etc.
Method:

1. For each gene & ,compare the control experiment to
perturbed experiment and identify the differentially
expressed genes

2. Use the most parsimonious graph that yields the
graph of 1. as its reachable graph

1/23/10

68

A)

O)

The figure iIIustratthree graphs (Figs. B,C,D) with thame accessibility list Acc (Fig. A).
There is one graph (Fig. D) that has Acc as its accessibility list and is simpler than all other
graphs, in the sense that it has fewer edges. Let’s call Gpars the most parsimonious network
compatible with Acc.

(a)
Ly @ i .
An example il A
* (a) gene network ¥ 4%
* (b) adjacency list b
* (c) accessibility list L
* Goal: (¢) -> (a) SN D
60 512 6: 025121416
217 T 2817
\;_ 01 : O125610121415161820
10: 120 10 2561214161820
1 20 [l 6121416 18 20
12: 14 12: 021416
13 517 12: 817
14 o 14: 0216
15: 0 15: 0216
16: 2 16: 2
17: S 17: 8
18: 18:
19: s 19: 8
20: 618 200 025612141618
Algorithm

* Stepl: Graphs without cycles only (acyclic directed
graph)
» Step2: Graphs with cycles

S

~o—e@

* Step 1: Shortcut:

* A shortcut-free graph compatible with an accessibility
list is a unique graph with the fewest edges among all
graphs compatible with the accessibility list, i.e, a
shortcut-free graph is the most parsimonious graph.

Stepl

* Atheorem: Let Acc(G) be the accessibility list and Adj

(G) be the adjacency list at an acyclic directed graph,
its mos&parsimonious graph, and V() the sét-of all
nodes of . Then thedollowing identity holds

ViEV(Gpm) Adj(i)=Acc(i)\ UAcc(j)

jEAce(i)

In words, for each node i the adjacency list Adj(i) of the most parsimonious genetic
network is equal to the accessibility list Acc(i) after removal of all nodes that are
accessible from any node in Acc(i).

1/23/10

69

1/23/10

An example Step 1

* A Corollary: Let i, j, and k be any three pairwise
different nodes of an acyclic directed shortcut-free
graph G. If j is accessible from i, then no node k
accessible from j is adjacent to /.

. Adj(1) = Acc(1) -
\ (Acc(2) + Acc(3)
‘ + Acc(4) + Acc(5)
+Acc(6))
/ =(2,3,4,5,6) —
© | (BU(56M6)

. =(2,4)

1 for all nodes i/ of G
2 Adji)=Acc(i) (d)
3 for all nodes i of G 0: 1234
4 if node 7 has not been visited 1: 0234
5 call PRUNE_ACC(i) 2: 0134
6 end if 3: 0124

4: 0123
7 PRUNE_ACC()
8 for all nodes j s Accii)
9 if Accijl=2
10 declare ;j as visited.
11 else
12 call PRUNE_ACC(j)
13 end if X o X

* Two different cycles have the same accessibility list

14 for all nodes j € Acc(i)
15 for all nodes k < Adj(j) * Perturbations of any gene in the cycle influences the activity of all
16 ifkeAcc(i) i
" TT—— other genes in the same cycle.
18 end if e Can’t decide a unique graph if cycle happens
19 declare node / as visited . . . L. .
20 end PRUNE_ACC(i) - Not an algorithmic but an experimental limitation 250

70

The algorithm of step 2

* Basic idea: Shrink each cycles (strongly

connected components) into one node and

apply the algorithm of step 1.

The algorithm of step 2

* A corollary: Let i and j (i #j) be two nodes of a
directed graph G. i andj are in the same
component iff i€Acc(j) and jeAcc(i).

* A graph after shrinking all the cycles into nodes is
called a condensation graph.

Rl R - R e O

The algorithm of step 2

for all nodes i of
if com

[i] has not been defined
new node x of &

e wtfij=x

for all nodes

ifie.

¢
end if

end if

for all nodes i of &
Acc (Z‘f.‘.'="‘

for all nodes i of +
for all nodes
if com

cor

end if
end if

Missing genes and messy data

* Some genes are difficult to perturb

* Problem: some information is missing for certain
genes. How well does the algorithm perform in such
cases?

* Simulation: Randomly generate graphs with pre-
specified nodes and edges. Then eliminate pre-
specified fraction of nodes from the accessibility list.
Apply the algorithm to both graphs without
elimination and with elimination.

1/23/10

71

Limitation of the algorithm

Unable to resolve cycled graphs

Require more data than conventional methods using gene expression
correlations.

There are many networks consistent with the given accessibility list. The
algorithm construct the most parsimonious one.

The same problem was proposed around 1980 which is called “transitive
reduction”.

The transitive reduction of a directed graph G is the directed graph G' with
the smallest number of edges such for every path between vertices in G, G'
has a path between those vertices.

An O(V) algorithm for computing transitive reduction of a planar acyclic
digraph was proposed by Sukhamay Kundu. (V is the number of nodes in G)

BioInformatics lecture 12

System Biology

1. Large scale integration of information on molecules, genes,
cell, tissue, organ, organism, health

2. Markup language
-- development of SBML (Systems Biology Markup Language) for
representing biochemical networks and CellML for
electrophysiology, mechanics, energetics and general pathway.
SBML is an XML-based markup language for describing the
biochemical network models that arise in Systems Biology.

3. Computational models

-- development of models that are “anatomically based” and
“biophysically based” to link gene, protein, cell, tissue ,organ and
whole body systems physiology.

Methodologies: differential equations and stochastic algorithms

The Gillespie algorithm

A reaction rate w; is associated to each reaction step. W 3
These probabilites are related to the kinetics constants. A B

Initial number of molecules of each species are

W, N
specified. B+C D

The time interval is computed stochastically according W
the reation rates. D—=>F+F

At each time interval, the reaction that occurs is
chosen randomly according to the probabilities w; and
both the number of molecules and the reaction rates
are updated.

Gillespie algorithm

A— 5B
w.
Probability that reaction r occurs B+C——D
p__ W D sE+F
, E?:l w;
Reaction r occurs if
P_,<zn<P_1+P, T —
Time step to the next reaction ot
c,/CT
1 1 C,/CxT
At = ——In— 0 et —
Zi:l Wi %2 ' C; ’ C, ’ C, Cr

Gillespie D.T. (1977) Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81: 2340-2361.
Gillespie D.T., (1976) A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical
Reactions. J. Comp. Phys., 22: 403-434. 288

1/23/10

72

Gillespie algorithm

In practice...

1. Calculate the transition probability w; and the variables X;
(A,B,C etc).

2. Generate z; and z, and calculate the reaction that occurs as
well as the time till this reaction occurs.

3. Increase tby Atand adjust X to take into account the
occurrence of the reaction that just occured.

reaction 1 reaction 2 reaction 3
(Ax=+1) (Ax=+1) (Ax=-2)

1/23/10

73

