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1 IntroductionThese notes provide a simple explanation of why the multipli
ation of fa
tors in the mannersuggested works, and why it avoids dupli
ating the 
omputation of sub-expressions.
1.1 Why it worksLet's drop any referen
e to probabilities for the moment and just look at general summationsinvolving fun
tions. Say you have three �nite sets X = {x1, . . . , xp}, Y = {y1, . . . , yq} and
Z = {z1, . . . , zr}, and you want to 
ompute a summation like

f(x, y) =
∑

z∈Z

g(x, y, z)h(y, z) (1)for values x ∈ X and y ∈ Y. The sum will look like
f(x, y) = g(x, y, z1)h(y, z1) + · · · + g(x, y, zr)h(y, zr)In other words, the produ
ts you need to 
ompute are the ones for whi
h values of z 
oin
ide.This, in a nutshell, is what the pro
ess of 
ombining fa
tors a
hieves. In this example, wewould write the fa
tors in the sum as

x y z Fx(x, y, z)

x1 y1 z1 g(x1, y1, z1)

x1 y1 z2 g(x1, y1, z2)... ... ... ...
xp yq zr g(xp, yq, zr)and

y z Fy(y, z)

y1 z1 h(y1, z1)

y1 z2 h(y1, z2)... ... ...
yq zr h(yq, zr)When the fa
tors are multiplied we mat
h up and multiply the table entries for whi
h variables
ommon to both have mat
hing values. So for example

x y z Fx,y(x, y, z)

x1 y1 z1 g(x1, y1, z1)h(y1, z1)

x1 y1 z2 g(x1, y1, z2)h(y1, z2)... ... ... ...
xp yq zr g(xp, yq, zr)h(yq, zr)1



In order to deal with the summation to form the fa
tor Fx,y(x, y) we now form sums of theentries in Fx,y(x, y, z) over all values for z, so
x y Fx,y(x, y)

x1 y1

∑
z∈ZFx,y(x1, y1, z)

x1 y2

∑
z∈ZFx,y(x1, y2, z)... ... ...

xp yq

∑
z∈ZFx,y(xp, yq, z)Expanding out one of these summations results in something like

Fx,y(x1, y2) =
∑

z∈Z

g(x1, y2, z)h(y2, z) (2)Comparing equations 1 and 2 we see that the entries in the fa
tor Fx,y(x, y) are just the valuesof the summation for ea
h possible pair of values x and y.
1.2 The relationship to probabilitiesSo: the tabular pro
ess using fa
tors is just a way of keeping tra
k of the values neededto 
ompute the sum. In the probabilisti
 inferen
e algorithm the fun
tions f, g, h andso on are all just (
onditional) probability distributions, and be
ause we're dealing the thede
omposition Pr(X1, . . . , Xn) =

n∏

i=1

Pr(Xi|parents(Xi))on a dire
ted, a
y
li
 graph we start o� with a fa
tor for ea
h RV, and ea
h time we get to asummation we sum out the 
orresponding variable. (The above example does not have thisstru
ture, whi
h is why the summing out notation Fx,y,z does not appear, but the pro
ess isidenti
al.)
1.3 Why it avoids duplicationReverting now to probabilities, say we have a Bayes network that represents the de
ompositionPr(X, Y1, Y2, E1, E2) = Pr(E1|Y1, Y2)Pr(E2|Y2)Pr(Y2|X)Pr(X)Pr(Y1)(Exer
ise: draw it.) Now we attempt to 
ompute the inferen
ePr(X|e1, e2) =

1

Z
Pr(X)

∑

y1∈Y1

Pr(Y1)
∑

y2∈Y2

Pr(Y2|X)Pr(e1|Y1, Y2)Pr(e2|Y2)The repetition of 
omputations arises in summations like this be
ause|handled in the naiveway using re
ursive depth-�rst evaluation|the summation
∑

y2∈Y2

Pr(Y2|X)Pr(e1|Y1, Y2)Pr(e2|Y2)will involve 
omputing the produ
t Pr(Y2|X)Pr(e2|Y2) for ea
h value of Y1. This problem willrepeat itself for ea
h value of X. By 
omputing and storing ea
h of the produ
ts needed onlyon
e the method based on fa
tors avoids this.2


