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1 IntroductionThese notes provide a reminder of some further simple manipulations that are needed tounderstand the appli
ation of Bayes' theorem to supervised learning. They should be read in
onjun
tion with the earlier Part I of the supplementary notes. On
e again, random variablesare assumed to be dis
rete, but all the following results still hold for 
ontinuous randomvariables, with sums repla
ed by integrals where ne
essary.
1.1 Some (slightly) unconventional notationIn the ma
hine learning literature there is a 
ommon notation intended to make it easy tokeep tra
k of whi
h random variables and whi
h distributions are relevant in an expression.While this notation is 
ommon within the �eld, it's rarely if ever seen elsewhere; it is howeververy useful.A statisti
ian would de�ne the expe
ted value of the random variable X as

E [X] =
∑

x∈X

xP(x)Here, it is impli
it that the probability distribution for X is P. With 
omplex expressionsinvolving 
ombinations of fun
tions de�ned on random variables with multiple underlyingdistributions it 
an be more tri
ky to keep tra
k of whi
h distributions are relevant. Thusthe notation
Ex∼P(X) [f(X)]where f is some fun
tion de�ned on X is intended to indi
ate expli
itly that the distributionof X is P, in situations where we don't write out the full de�nition

Ex∼P(X) [f(X)] =
∑

x∈X

f(x)P(x)to make it 
lear.
1.2 Expected value and conditional expected valueThe standard de�nition of the expe
ted value of a fun
tion f of a random variable X is

Ex∼P(X) [f(X)] =
∑

x∈X

f(x)P(x)as already noted. We 
an also de�ne the 
onditional expe
ted value of f(X) given Y as
Ex∼P(X|Y) [f(X)] =

∑

x∈X

f(x)P(x|Y)1



Now here's an important point: the value of this expression depends on the value of Y.Thus, the 
onditional expe
ted value is itself a fun
tion of the random variable Y. What isits expe
ted value? Well
Ey∼P(Y)

[

Ex∼P(X|Y) [f(X)]
]

=
∑

y∈Y

Ex∼P(X|Y) [f(X)] P(y)

=
∑

y∈Y

∑

x∈X

f(x)P(x|y)P(y)

=
∑

y∈Y

∑

x∈X

f(x)P(x, y)

=
∑

x∈X

f(x)
∑

y∈Y

P(x, y)

=
∑

x∈X

f(x)P(x)

= Ex∼P(X) [f(X)]or in the more usual notation
E [E [f(X)|Y]] = E [f(X)]

1.3 Expected value of the indicator functionFor any b ∈ {true, false} the indi
ator fun
tion I is de�ned as
I(b) =

{ 1 if b = true0 if b = falseLet f be a boolean-valued fun
tion on a random variable X. Then
Ex∼P(X) [I(f(x))] =

∑

x∈X

I(f(x))P(x)

=
∑

x∈X,f(x) is true I(f(x))P(x) +
∑

x∈X,f(x) is false

I(f(x))P(x)

=
∑

x∈X,f(x) is true P(x)

= Prx∼P(x) [f(x) = true]This provides a standard method for 
al
ulating probabilities by evaluating expe
ted values.So for example if we roll a fair die and 
onsider f(X) to be true if and only if the out
ome iseven then Pr(out
ome is even) = E [I(f(X))] = 1/6 + 1/6 + 1/6 = 1/2as expe
ted.
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