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Constraint satisfa
tion problems (CSPs)The sear
h s
enarios examined so far seem in some ways unsatisfa
-tory.� States were represented using an arbitrary and problem-spe
i�
data stru
ture.� Heuristi
s were also problem-spe
i�
.� It would be ni
e to be able to transform general sear
h problemsinto a standard format .CSPs standardise the manner in whi
h states and goal tests arerepresented...



Constraint satisfa
tion problems (CSPs)By standardising like this we bene�t in several ways:� We 
an devise general purpose algorithms and heuristi
s.� We 
an look at general methods for exploring the stru
ture of theproblem.� Consequently it is possible to introdu
e te
hniques for de
ompos-ing problems.� We 
an try to understand the relationship between the stru
tureof a problem and the diÆ
ulty of solving it .Note: another method of interest in AI that allows us to do similarthings involves transforming to a propositional satis�ability prob-lem. We'll see an example of this in AI II.



Introdu
tion to 
onstraint satisfa
tion problemsWe now return to the idea of problem solving by sear
h and examineit from this new perspe
tive.Aims:� To introdu
e the idea of a 
onstraint satisfa
tion problem (CSP)as a general means of representing and solving problems by sear
h.� To look at a ba
ktra
king algorithm for solving CSPs.� To look at some general heuristi
s for solving CSPs.� To look at more intelligent ways of ba
ktra
king .Reading: Russell and Norvig, 
hapter 5.



Constraint satisfa
tion problemsWe have:� A set of n variables V1, V2, . . . , Vn.� For ea
h Vi a domain Di spe
ifying the values that Vi 
an take.� A set of m 
onstraints C1, C2, . . . , Cm.Ea
h 
onstraint Ci involves a set of variables and spe
i�es an allow-able 
olle
tion of values .� A state is an assignment of spe
i�
 values to some or all of thevariables.� An assignment is 
onsistent if it violates no 
onstraints.� An assignment is 
omplete if it gives a value to every variable.A solution is a 
onsistent and 
omplete assignment.



ExampleWe will use the problem of 
olouring the nodes of a graph as arunning example.
1 2 8

653 4
7 7

5 643
1 2 8

Ea
h node 
orresponds to a variable . We have three 
olours anddire
tly 
onne
ted nodes should have di�erent 
olours.



ExampleThis translates easily to a CSP formulation:� The variables are the nodes

Vi = node i� The domain for ea
h variable 
ontains the values bla
k, red and
yan

Di = {B, R,C}� The 
onstraints enfor
e the idea that dire
tly 
onne
ted nodesmust have di�erent 
olours. For example, for variables V1 and V2the 
onstraints spe
ify
(B, R), (B, C), (R, B), (R,C), (C,B), (C, R)� Variable V8 is un
onstrained.



Di�erent kinds of CSPThis is an example of the simplest kind of CSP: it is dis
rete with�nite domains . We will 
on
entrate on these.We will also 
on
entrate on binary 
onstraints ; that is, 
onstraintsbetween pairs of variables .� Constraints on single variables|unary 
onstraints|
an be han-dled by adjusting the variable's domain. For example, if we don'twant Vi to be red , then we just remove that possibility from Di.� Higher-order 
onstraints applying to three or more variables 
an
ertainly be 
onsidered, but...� ...when dealing with �nite domains they 
an always be 
onvertedto sets of binary 
onstraints by introdu
ing extra auxiliary vari-ables .How does that work?



Auxiliary variablesExample: three variables ea
h with domain {B, R,C}.A single 
onstraint

(C,C, C), (R, B, B), (B, R, B), (B, B, R)

V1 V1V2

V3The original 
onstraint 
onne
ts allthree variables.

V2

V3

A = 3

New, binary 
onstraints:
C1 : (1, C), (1, C), (1, C)

C3 : (3, B), (3, R), (3, B)
C4 : (4, B), (4, B), (4, R)

C2 : (2, R), (2, B), (2, B)

Introdu
ing auxiliary variable A with domain {1, 2, 3, 4} allows us to
onvert this to a set of binary 
onstraints.



Ba
ktra
king sear
hConsider what happens if we try to solve a CSP using a simple te
h-nique su
h as breadth-�rst sear
h .The bran
hing fa
tor is nd at the �rst step, for n variables ea
h with
d possible values.Step 2: (n − 1)dStep 3: (n − 2)d...Step n: 1






Number of leaves = nd × (n − 1)d × · · · × 1

= n!dn

BUT: only dn assignments are possible.The order of assignment doesn't matter, and we should assign to onevariable at a time.



Ba
ktra
king sear
hUsing the graph 
olouring example:The sear
h now looks something like this...
1=B1=B1=B

2=R 2=R2=R
3=B 3=R 3=C

1=B 1= R 1=C

1=B 1=B 1=B
2=B 2=R 2=C

...and new possibilities appear.



Ba
ktra
king sear
hBa
ktra
king sear
h sear
hes depth-�rst, assigning a single variableat a time, and ba
ktra
king if no valid assignment is available.

1

2

3
4

5
6

7

8

1=B
2=R
3=C
4=B
5=R

6=B

Nothing is available for 7, so 
either assign 8 or backtrack

Rather than using problem-spe
i�
 heuristi
s to try to improve sear
h-ing, we 
an now explore heuristi
s appli
able to general CSPs.



Ba
ktra
king sear
h

Result backTrack(problem)

{

return bt ([], problem);

}

Result bt(assignmentList, problem)

{

if (assignmentList is complete)

return assignmentList;

nextVar = getNextVar(assignmentList, problem);

for (every value v in orderVariables(nextVar, assignmentList, problem))

{

if (v is consistent with assignmentList)

{

add "nextVar = v" to assignmentList;

solution = bt(assignmentList, problem);

if (solution is not "fail")

return solution;

remove "nextVar = v" from assignmentList;

}

}

return "fail";

}



Ba
ktra
king sear
h: possible heuristi
sThere are several points we 
an examine in an attempt to obtaingeneral CSP-based heuristi
s:� In what order should we try to assign variables?� In what order should we try to assign possible values to a vari-able?Or being a little more subtle:� What e�e
t might the values assigned so far have on later at-tempted assignments?� When for
ed to ba
ktra
k, is it possible to avoid the same failurelater on?



Heuristi
s I: Choosing the order of variable assignments and valuesSay we have 1 = B and 2 = R

1

2

3
4

5
6

8

?

7

At this point there is only one possible assignmentfor 3, whereas the others have more 
exibility.

Assigning su
h variables �rst is 
alled the minimum remaining val-ues (MRV) heuristi
.(Alternatively, themost 
onstrained variable or fail �rst heuristi
.)



Heuristi
s I: Choosing the order of variable assignments and valuesHow do we 
hoose a variable to begin with?The degree heuristi
 
hooses the variable involved in the most 
on-straints on as yet unassigned variables.
1

2

3
4

5
6

8

Start with 3, 5 or 7.

7

MRV is usually better but the degree heuristi
 is a good tie breaker.



Heuristi
s I: Choosing the order of variable assignments and valuesOn
e a variable is 
hosen, in what order should values be assigned?

1

2

3
4

5
6

8

?
The heuristic prefers 1=B

7

Choosing 1 = C is bad as it removesthe �nal possibility for 3.

The least 
onstraining value heuristi
 
hooses �rst the value thatleaves the maximum possible freedom in 
hoosing assignments for thevariable's neighbours.



Heuristi
s II: forward 
he
king and 
onstraint propagationContinuing the previous slide's progress, now add 1 = C.
3

4

5
6

8

2 and 3.

7

C is ruled out as an assignment to 

2

1

Ea
h time we assign a value to a variable, it makes sense to delete thatvalue from the 
olle
tion of possible assignments to its neighbours .This is 
alled forward 
he
king . It works ni
ely in 
onjun
tion withMRV.



Heuristi
s II: forward 
he
king and 
onstraint propagationWe 
an visualise this pro
ess as follows:1 2 3 4 5 6 7 8Start BRC BRC BRC BRC BRC BRC BRC BRC

2 = B RC = B RC RC BRC BRC BRC BRC

3 = R C = B = R RC BC BRC BC BRC

6 = B C = B = R RC C = B C BRC

5 = C C = B = R R = C = B ! BRCAt the fourth step 7 has no possible assignments left .However, we 
ould have dete
ted a problem a little earlier...



Heuristi
s II: forward 
he
king and 
onstraint propagation...by looking at step three.1 2 3 4 5 6 7 8Start BRC BRC BRC BRC BRC BRC BRC BRC

2 = B RC = B RC RC BRC BRC BRC BRC

3 = R C = B = R RC BC BRC BC BRC

6 = B C = B = R RC C = B C BRC

5 = C C = B = R R = C = B ! BRC� At step three, 5 
an be C only and 7 
an be C only.� But 5 and 7 are 
onne
ted.� So we 
an't progress, but this hasn't been dete
ted.� Ideally we want to do 
onstraint propagation .Trade-o�: time to do the sear
h, against time to explore 
onstraints.



Constraint propagationAr
 
onsisten
y:Consider a 
onstraint as being dire
ted . For example 4→ 5.In general, say we have a 
onstraint i→ j and 
urrently the domainof i is Di and the domain of j is Dj.

i→ j is 
onsistent if

∀d ∈ Di,∃d ′ ∈ Dj su
h that i→ j is valid



Constraint propagationExample:In step three of the table, D4 = {R, C} and D5 = {C}.� 5→ 4 in step three of the table is 
onsistent .� 4→ 5 in step three of the table is not 
onsistent .
4→ 5 
an be made 
onsistent by deleting C from D4.Or in other words, regardless of what you assign to i you'll be ableto �nd something valid to assign to j.



Enfor
ing ar
 
onsisten
yWe 
an enfor
e ar
 
onsisten
y ea
h time a variable i is assigned.� We need to maintain a 
olle
tion of ar
s to be 
he
ked .� Ea
h time we alter a domain, we may have to in
lude further ar
sin the 
olle
tion.This is be
ause if i→ j is in
onsistent resulting in a deletion from Diwe may as a 
onsequen
e make some ar
 k→ i in
onsistent.Why is this?



Enfor
ing ar
 
onsisten
y

i→ j is not 
onsistent sodelete R from the domainof i.

{B} kK→ i is 
onsistent but

kK = B 
an only be pairedwith i = R. {B} kK→ i is no longer 
onsistentbe
ause kK = B 
an only be pairedwith i = R, and R is no longer available.
i→ j is now 
onsistent.

{R, C} {C} {C}{C}
ji

...

k1

k2

kK

ji

...

k1

k2

kK

� i→ j in
onsistent means removing a value from Di.� ∃d ∈ Di su
h that there is no valid d ′ ∈ Dj so delete d ∈ Di.However some d ′′ ∈ Dk may only have been pairable with d.We need to 
ontinue until all 
onsequen
es are taken 
are of.



The AC-3 algorithm

NewDomains AC-3 (problem)

{

Queue toCheck = all arcs i->j;

while (toCheck is not empty) {

i->j = next(toCheck);

if (removeInconsistencies(Di,Dj)) {

for (each k that is a neighbour of i)

add k->i to toCheck;

}

}

}

Bool removeInconsistencies (domain1, domain2)

{

Bool result = false;

for (each d in domain1) {

if (no d’ in domain2 valid with d) {

remove d from domain1;

result = true;

}

}

return result;

}



Enfor
ing ar
 
onsisten
yComplexity:� A binary CSP with n variables 
an have O(n2) dire
tional 
on-straints i→ j.� Any i→ j 
an be 
onsidered at most d times where d = maxk |Dk|be
ause only d things 
an be removed from Di.� Che
king any single ar
 for 
onsisten
y 
an be done in O(d2).So the 
omplexity is O(n2d3).Note: this setup in
ludes 3SAT.Consequen
e: we 
an't 
he
k for 
onsisten
y in polynomial time,whi
h suggests this doesn't guarantee to �nd all in
onsisten
ies.



A more powerful form of 
onsisten
yWe 
an de�ne a stronger notion of 
onsisten
y as follows:� Given: any k−1 variables and any 
onsistent assignment to these.� Then: We 
an �nd a 
onsistent assignment to any kth variable.This is known as k-
onsisten
y .Strong k-
onsisten
y requires the we be k-
onsistent, k−1-
onsistentet
 as far down as 1-
onsistent.If we 
an demonstrate strong n-
onsisten
y (where as usual n is thenumber of variables) then an assignment 
an be found in O(nd).Unfortunately, demonstrating strong n-
onsisten
y will be worst-
ase exponential .



Ba
kjumpingThe basi
 ba
ktra
king algorithm ba
ktra
ks to the most re
ent as-signment . This is known as 
hronologi
al ba
ktra
king . It is notalways the best poli
y:

2

3
4

5
6

8

7

1

3

5

7

4

1

???

Say we've assigned 1 = B, 3 = R, 5 = C and 4 = B and now wewant to assign something to 7. This isn't possible so we ba
ktra
k,however re-assigning 4 
learly doesn't help.



Ba
kjumpingWith some 
areful bookkeeping it is often possible to jump ba
kmultiple levels without sa
ri�
ing the ability to �nd a solution.We need some de�nitions:� When we set a variable Vi to some value d ∈ Di we refer to thisas the assignment Ai = (Vi ← d).� A partial instantiation Ik = {A1, A2, . . . , Ak} is a 
onsistent setof assignments to the �rst k variables...� ... where 
onsistent means that no 
onstraints are violated.Hen
eforth we shall assume that variables are assigned in the order

V1, V2, . . . , Vn when formally presenting algorithms.



Gas
hnig's algorithmGas
hnig's algorithm works as follows. Say we have a partial in-stantiation Ik:� When 
hoosing a value for Vk+1 we need to 
he
k that any 
andi-date value d ∈ Dk+1, is 
onsistent with Ik.� When testing potential values for d, we will generally dis
ard oneor more possibilities, be
ause they 
on
i
t with some member of

Ik� We keep tra
k of the most re
ent assignment Aj for whi
h thishas happened.Finally, if no value for Vk+1 is 
onsistent with Ik then we ba
ktra
kto Vj.If there are no possible values left to try for Vj then we ba
ktra
k
hronologi
ally .



Gas
hnig's algorithmExample:

2

3
4

5
6

8

7

1

1

3

5

4

7

Ba
ktra
k to 5
7 = 7 = 7 =

82
???

If there's no value left to try for 5 then ba
ktra
k to 3 and so on.



Graph-based ba
kjumpingThis allows us to jump ba
k multiple levels when we initially dete
ta 
on
i
t .Can we do better than 
hronologi
al ba
ktra
king thereafter?Some more de�nitions:� We assume an ordering V1, V2, . . . , Vn for the variables.� Given V ′ = {V1, V2, . . . , Vk} where k < n the an
estors of Vk+1 arethe members of V ′ 
onne
ted to Vk+1 by a 
onstraint.� The parent P(V) of Vk+1 is its most re
ent an
estor.The an
estors for ea
h variable 
an be a

umulated as assignmentsare made.Graph-based ba
kjumping ba
ktra
ks to the parent of Vk+1.



Graph-based ba
kjumping
2

3
4

5
6

8

7

1

1

3

1

3

5

4

1

3

5

1

3

5

4

7

{1}

{3}

{1} {1}

{3}

{5}

{1}

{3}

{5}

{4}

{1, 3, 4, 8}

{1, 3, 5}

82
???

At this point, ba
kjump to the parent for 7, whi
h is 5.



Ba
kjumping and forward 
he
kingIf we use forward 
he
king : say we're assigning to Vk+1 by making
Vk+1 = d:� Forward 
he
king removes d from the Di of all Vi 
onne
ted to

Vk+1 by a 
onstraint.� When doing graph-based ba
kjumping, we'd also add Vk+1 to thean
estors of Vi.In fa
t, use of forward 
he
king 
an make some forms of ba
kjumpingredundant .Note: there are in fa
t many ways of 
ombining 
onstraint propa-gation with ba
kjumping , and we will not explore them in furtherdetail here.



Ba
kjumping and forward 
he
king
2

3
4

5
6

8

7

1

3

5

7

4

1

8 − {}

3 − {1}

1 − {}

3

4 − {  }

6 − {  }
7 − {1,    ,  }5

5
5 − {  }3

5

32 − {1,  , 4}

An
estors???

1 2 3 4 5 6 7 8Start BRC BRC BRC BRC BRC BRC BRC BRC

1 = B = B RC RC BRC BRC BRC RC BRC

3 = R = B C = R BRC BC BRC C BRC

5 = C = B C = R BR = C BR ! BRC

4 = B = B C = R BR = C BR ! BRCForward 
he
king �nds the problem before ba
ktra
king does .



Graph-based ba
kjumpingWe're not quite done yet though. What happens when there are noassignments left for the parent we just ba
kjumped to?
V4

V3

V2

V1

V7

V6

V5

V4

V3

V2

V1

???
???

Ba
kjumping from V7 to V4 is �ne. However we shouldn't then justba
kjump to V2, be
ause 
hanging V3 
ould �x the problem at V7.



Graph-based ba
kjumpingTo des
ribe an algorithm in this 
ase is a little involved.

Leaf dead-end

I6.
Leaf dead-end variable V7

V4

V3

V2

V1

V6

V5

V4

V3

V2

V1

???
???

Given an instantiation Ik and Vk+1, if there is no 
onsistent d ∈ Dk+1we 
all Ik a leaf dead-end and Vk+1 a leaf dead-end variable .



Graph-based ba
kjumpingAlso
Leaf dead-end Internal dead-end

I4.

I6.
Leaf dead-end variable V7

Internal dead-end variable V4V4

V3

V2

V1

V6

V5

V4

V3

V2

V1

???
???

If Vi was ba
ktra
ked to from a later leaf dead-end and there are nomore values to try for Vi then we refer to it as an internal dead-endvariable and 
all Ii−1 an internal dead-end .



Graph-based ba
kjumpingTo keep tra
k of exa
tly where to jump to we also need the de�nitions:� The session of a variable V begins when the sear
h algorithm vis-its it and ends when it ba
ktra
ks through it to an earlier variable.� The 
urrent session of a variable V is the set of all variablesvisiting during its session.� In parti
ular, the 
urrent session for any V 
ontains V.� The relevant dead-ends for the 
urrent session R(V) for a vari-able V are:1. If V is a leaf dead-end variable then R(V) = {V}.2. If V was ba
ktra
ked to from a dead-end V ′ then R(V) = R(V)∪

R(V ′).And we're not done yet...



Graph-based ba
kjumpingExample:

Session of V4 = {V4, V5, V6, V7}.

Session starts
Session starts

Session of V7 = {V7}.

R(V7) = {V7}

R(V4) = {V7}

As expe
ted, the relevant dead-end for V4 is {V7}.



Graph-based ba
kjumpingOne more bun
h of de�nitions before the pain stops. Say Vk is adead-end:� The indu
ed an
estors ind(Vk) of Vk are de�ned as

ind(Vk) = {V1, V2, . . . , Vk−1} ∩





⋃

V∈R(Vk)

an
estors(V)





� The 
ulprit for Vk is the most re
ent V ′ ∈ ind(Vk).Note that these de�nitions depend on R(Vk).FINALLY: graph-based ba
kjumping ba
kjumps to the 
ulprit .



Graph-based ba
kjumpingExample:

Session of V4 = {V4, V5, V6, V7}.

Ba
kjump from V7to V4.

R(V4) = {V7}ind(V4) = {V3}

Nothing left to try!

As expe
ted, we ba
k jump to V3 instead of V2. Hooray!



Con
i
t-dire
ted ba
kjumpingGas
hnig's algorithm and graph-based ba
kjumping 
an be 
ombinedto produ
e 
on
i
t-dire
ted ba
kjumping .We will not explore 
on
i
t-dire
ted ba
kjumping in this 
ourse.For 
onsiderable further detail on algorithms for CSPs see:\Constraint Pro
essing," Rina De
hter. Morgan Kaufmann,2003.



Varieties of CSPWe have only looked at dis
rete CSPs with �nite domains . Theseare the simplest. We 
ould also 
onsider:1. Dis
rete CSPs with in�nite domains :� We need a 
onstraint language . For example
V3 ≤ V10 + 5� Algorithms are available for integer variables and linear 
on-straints.� There is no algorithm for integer variables and nonlinear 
on-straints.2. Continuous domains|using linear 
onstraints de�ning 
onvex re-gions we have linear programming . This is solvable in polynomialtime in n.3. We 
an introdu
e preferen
e 
onstraints in addition to absolute
onstraints , and in some 
ases an obje
tive fun
tion .

44


