Artificial Intelligence I

Dr Sean Holden

Notes on constraint satisfaction problems (CSPs)

Copyright (© Sean Holden 2002-2010.

Constraint satisfaction problems (CSPs)

The search scenarios examined so far seem in some ways unsatisfac-
tory.

e States were represented using an arbitrary and problem-specific
data structure.

e Heuristics were also problem-specific.

e It would be nice to be able to transform general search problems
into a standard format.

CSPs standardise the manner in which states and goal tests are
represented...

Constraint satisfaction problems (CSPs)

By standardising like this we benefit in several ways:

e We can devise general purpose algorithms and heuristics.

e We can look at general methods for exploring the structure of the
problem.

e Consequently it is possible to introduce techniques for decompos-
1ng problems.

e We can try to understand the relationship between the structure
of a problem and the difficulty of solving 1t.

Note: another method of interest in Al that allows us to do similar
things involves transforming to a propositional satisfiability prob-
lem. We'll see an example of this in AI II.

Introduction to constraint satisfaction problems

We now return to the idea of problem solving by search and examine
it from this new perspective.

Aims:

e To introduce the idea of a constraint satisfaction problem (CSP)
as a general means of representing and solving problems by search.

e To look at a backtracking algorithm for solving CSPs.
e To look at some general heuristics for solving CSPs.

e To look at more intelligent ways of backtracking.

Reading: Russell and Norvig, chapter 5.

Constraint satisfaction problems

We have:

e A set of n variables Vi, Vs, ..., V,.
e For each V; a domain D; specifying the values that V; can take.

e A set of m constraints C;,Cy, ..., Cy.

Elach constraint C; involves a set of variables and specifies an allow-
able collection of values.

e A state 1s an assignment of specific values to some or all of the
variables.

e An assignment is consistent if it violates no constraints.

e An assignment is complete if it gives a value to every variable.

A solution i1s a consistent and complete assignment.

Example

We will use the problem of colouring the nodes of a graph as a
running example.

Elach node corresponds to a wariable. We have three colours and
directly connected nodes should have different colours.

Example

This translates easily to a CSP formulation:

e The variables are the nodes

V, = node 1

e The domain for each variable contains the values black, red and
cyan
Di — {B> R> C}

e The constraints enforce the idea that directly connected nodes
must have different colours. For example, for variables V; and V,
the constraints specify

(B,R), (B, C),(R,B),(R,C), (C,B), (C,R)

e Variable Vs is unconstrained.

Different kinds of CSP

This 1s an example of the simplest kind of CSP: it is discrete with
finite domains. We will concentrate on these.

We will also concentrate on binary constraints; that is, constraints
between pairs of variables.

e Constraints on single variables—unary constraints—can be han-
dled by adjusting the variable’s domain. For example, if we don’t
want V; to be red, then we just remove that possibility from D;.

e Higher-order constraints applying to three or more variables can
certainly be considered, but...

e ...when dealing with finite domains they can always be converted
to sets of binary constraints by introducing extra auziliary vari-
ables.

How does that work?

Auxiliary variables

Example: three variables each with domain {B, R, C}.

A single constraint

(C) C) C)) (R) B) B)) (B) R) B)) (B) B) R)

New, binary constraints:

The original constraint connects all
three variables.

Introducing auxiliary variable A with domain {1,2, 3,4} allows us to
convert this to a set of binary constraints.

Backtracking search

Consider what happens if we try to solve a CSP using a simple tech-
nique such as breadth-first search.

The branching factor i1s nd at the first step, for n variables each with

d possible values.

Step 2: (n—1)d

Step 3: (n—Z)d>

Step n.:]

\

/

Number of leaves =nd x (n—1)d x --- x 1
=n!d"

BUT': only d"™ assignments are possible.

The order of assignment doesn’t matter, and we should assign to one

variable at a time.

Backtracking search

Using the graph colouring example:

The search now looks something like this...

...and new possibilities appear.

Backtracking search

Backtracking search searches depth-first, assigning a single variable
at a time, and backtracking if no valid assignment 1s available.

1=B
2=R
3=C
4=B
5=R

Nothing is available for 7, so
either assign 8 or backtrack

Rather than using problem-specific heuristics to try to improve search-
ing, we can now explore heuristics applicable to general CSPs.

Backtracking search

Result backTrack(problem)
{
return bt ([], problem);

+

Result bt(assignmentList, problem)
{
if (assignmentList is complete)
return assignmentlList;
nextVar = getNextVar(assignmentList, problem);
for (every value v in orderVariables(nextVar, assignmentList, problem))
{
if (v is consistent with assignmentList)
{
add "mextVar = v" to assignmentList;
solution = bt(assignmentList, problem) ;
if (solution is not "fail")
return solution;
remove '"mnextVar = v" from assignmentList;

+
+

return "fail";

Backtracking search: possible heuristics

There are several points we can examine in an attempt to obtain
general CSP-based heuristics:

e In what order should we try to assign variables?

e In what order should we try to assign possible values to a vari-
able?

Or being a little more subtle:

e What effect might the values assigned so far have on later at-
tempted assignments?

e When forced to backtrack, is it possible to avoid the same failure
later on?

Heuristics I: Choosing the order of variable assignments and values

Say we have 1 = B and 2 =R

At this point there is only one possible assignment
for 3, whereas the others have more flexibility.

Assigning such variables first is called the minimum remaining val-
ues (MRV) heuristic.

(Alternatively, the most constrained variable or fail first heuristic.)

Heuristics I: Choosing the order of variable assignments and values

How do we choose a variable to begin with?

The degree heuristic chooses the variable involved in the most con-
straints on as yet unassigned variables.

\\1 Start with 3, 50r 7.

3

1

MRYV 1s usually better but the degree heuristic is a good tie breaker.

Heuristics I: Choosing the order of variable assignments and values

Once a variable i1s chosen, in what order should values be assigned?

Choosing 1 = C is bad as it removes
the final possibility for 3.

The heuristic prefers 1=B

The least constraining value heuristic chooses first the value that
leaves the maximum possible freedom in choosing assignments for the
variable’s neighbours.

Heuristics II: forward checking and constraint propagation

Continuing the previous slide’s progress, now add 1 = C.

C is ruled out as an assignment
2 and 3.

BEach time we assign a value to a variable, it makes sense to delete that
value from the collection of possible assignments to its neighbours.

This is called forward checking. It works nicely in conjunction with
MRV.

Heuristics II: forward checking and constraint propagation

We can visualise this process as follows:

1 2 3 4 5 6 7 8
Sstart | BRC | BRC | BRC | BRC | BRC | BRC | BRC | BRC

2=B| RC | = RC | RC | BRC | BRC | BRC | BRC
3=R| C | =B | =R | RC | BC |BRC| BC |BRC
6=B| C | = = RC C | = C | BRC
5=C| C | = = R [=C| = [| BRC

At the fourth step 7 has no possible assignments left.

However, we could have detected a problem a little earlier...

Heuristics II: forward checking and constraint propagation

...by looking at step three.

1 2 3 4 5 6 7 8
Sstart | BRC | BRC | BRC | BRC | BRC | BRC | BRC | BRC

2=B| RC | = RC | RC | BRC | BRC | BRC | BRC
3=R| C | = = RC | BC |BRC| BC | BRC
6=B| C | = = RC C | = C | BRC
5=C| C | = = R [=C| = [| BRC

e At step three, 5 can be C only and / can be C only.
e But 5 and / are connected.
e S0 we can’t progress, but this hasn’'t been detected.

e Ideally we want to do constraint propagation.

Trade-off: time to do the search, against time to explore constraints.

Constraint propagation

Arc consistency:

Consider a constraint as being directed. For example 4 — 5.

In general, say we have a constraint 1 — j and currently the domain
of i1s D; and the domain of j is D;.

1 — j 18 consistent if

Vd € D;,3d’ € D; such that 1 — j is valid

Constraint propagation

Example:

In step three of the table, D, = {R, C} and D5 = {C].

e 5 — 4 in step three of the table s consistent.
e 4 — 5 in step three of the table 1s not consistent.
4 — 5 can be made consistent by deleting C from D,.

Or in other words, regardless of what you assign to 1 you'll be able
to find something valid to assign to j.

Enforcing arc consistency

We can enforce arc consistency each time a variable 1 is assigned.

e We need to maintain a collection of arcs to be checked.

e Fach time we alter a domain, we may have to include further arcs
in the collection.

This 1s because if 1 — j 1s inconsistent resulting in a deletion from D;
we may as a consequence make some arc k — 1 inconsistent.

Why 1s this?

Enforcing arc consistency

i1 — j is not consistent so
delete R from the domain

1 — j is now consistent.

kk — 1 is consistent but kx — 1 is no longer consistent
kx = B can only be paired because kx = B can only be paired
with i =R. with 1 =R, and R is no longer available.

e i — j inconsistent means removing a value from D;.

e 1d € D; such that there is no valid d’ € D; so delete d € D;.

However some d” € Dy may only have been pairable with d.

We need to continue until all consequences are taken care of.

The AC-3 algorithm

NewDomains AC-3 (problem)
{
Queue toCheck = all arcs i->j;
while (toCheck is not empty) {
i->j = next(toCheck);
if (removeInconsistencies(Di,Dj)) {
for (each k that is a neighbour of i)
add k->i to toCheck;

Bool removelnconsistencies (domainl, domain2)
{
Bool result = false;
for (each d in domainil) {
if (no d’ in domain2 valid with d) {
remove d from domainil;
result = true;
+
}

return result;

+

Enforcing arc consistency

Complezity:

e A binary CSP with n variables can have O(n?) directional con-
straints 1 — j.

e Any 1 — j can be considered at most d times where d = max,; |Dy|
because only d things can be removed from D;.

e Checking any single arc for consistency can be done in O(d?).
So the complexity is O(n?d?).
Note: this setup includes 3SAT.

Consequence: we can’t check for consistency in polynomial time,
which suggests this doesn’t guarantee to find all inconsistencies.

A more powerful form of consistency

We can define a stronger notion of consistency as follows:

e Given: any k—1 variables and any consistent assignment to these.
e Then: We can find a consistent assignment to any kth variable.
This 1s known as k-consistency.

Strong k-consistency requires the we be k-consistent, k—1-consistent
etc as far down as I-consistent.

If we can demonstrate strong n-consistency (where as usual n is the
number of variables) then an assignment can be found in O(nd).

Unfortunately, demonstrating strong mn-consistency will be worst-
case exponential.

Backjumping

The basic backtracking algorithm backtracks to the most recent as-
signment. This 1s known as chronological backtracking. It is not
always the best policy:

Say we've assigned 1 = B, 3 = R, 5 = C and 4 = B and now we
want to assign something to /. This isn’t possible so we backtrack,
however re-assigning 4 clearly doesn’t help.

Backjumping

With some careful bookkeeping it is often possible to jump back
multiple levels without sacrificing the ability to find a solution.

We need some definitions:

e When we set a variable V; to some value d € D; we refer to this
as the assignment A; = (V; <« d).

e A partial instantiation I, = {Aq, Ay, ..., Ay} 1s a consistent set
of assignments to the first k variables...

® ... Where consistent means that no constraints are violated.

Henceforth we shall assume that variables are assigned in the order
Vi, Vs, ..., V., when formally presenting algorithms.

Gaschnig’s algorithm

Gaschnig’s algorithm works as follows. Say we have a partial in-
stantiation I:

e When choosing a value for V., we need to check that any candi-
date value d € Dy, 1s consistent with Iy.

e When testing potential values for d, we will generally discard one

or more possibilities, because they conflict with some member of
[y

e We keep track of the most recent assignment A; for which this
has happened.

Finally, if no value for Vi.; is consistent with I, then we backtrack
to V;.

If there are no possible values left to try for V; then we backtrack
chronologically.

Gaschnig’s algorithm

Example:

If there’s no value left to try for 5 then backtrack to 3 and so on.

Graph-based backjumping

This allows us to jump back multiple levels when we wnitially detect
a conflict.

Can we do better than chronological backtracking thereafter?

Some more definitions:

e We assume an ordering Vi, V>, ..., V, for the variables.

e Given V' ={V;,V,, ..., Vi} where k < n the ancestors of V. are
the members of V'’ connected to Vi.,; by a constraint.

e The parent P(V) of Vi, is its most recent ancestor.

The ancestors for each variable can be accumulated as assignments
are made.

Graph-based backjumping backtracks to the parent of Vi;.

Graph-based backjumping

At this point, backjump to the parent for /, which is 5.

Backjumping and forward checking

If we use forward checking: say we'’re assigning to Vi.; by making
Vi = d:

e Forward checking removes d from the D; of all V; connected to
Vi1 by a constraint.

e When doing graph-based backjumping, we'd also add Vi.; to the
ancestors of V..

In fact, use of forward checking can make some forms of backjumping
redundant.

Note: there are in fact many ways of combining constraint propa-

gation with backjumping, and we will not explore them in further
detail here.

Backjumping and forward checking

Ancestors
1-{}

2 -{1,3, 4}
3-{1}
4-{}
5-{3}

6-{}
7-{1,3,
8-{}

1 2 3 4 5 6 7 8
Sstart | BRC | BRC | BRC | BRC | BRC | BRC | BRC | BRC
1=B| =B | RC | RC | BRC |BRC | BRC| RC | BRC

3=R| = C | = BRC | BC | BRC| C |BRC
5=C| = C | = BR | = BR [| BRC
4=B| = C | = BR | = BR [| BRC

Forward checking finds the problem before backtracking does.

Graph-based backjumping

We're not quite done yet though. What happens when there are no
assignments left for the parent we just backjumped to?

Backjumping from V; to V, is fine. However we shouldn’t then just
backjump to V>, because changing V; could fix the problem at V5.

Graph-based backjumping

To describe an algorithm in this case is a little involved.

Leaf dead-end variable V-

Leaf dead-end
Ig.

Given an instantiation I, and V)., if there is no consistent d € Dy
we call Iy a leaf dead-end and Vi, a leaf dead-end variable.

Graph-based backjumping

Also

Leaf dead-end variable V-

Internal dead-end
I4.
0?77/ Internal dead-end variable V;,
Leaf dead-end
I¢.

If V; was backtracked to from a later leaf dead-end and there are no
more values to try for V; then we refer to it as an internal dead-end
variable and call I;_; an internal dead-end.

Graph-based backjumping

To keep track of exactly where to jump to we also need the definitions:

e The session of a variable V begins when the search algorithm vis-
its it and ends when it backtracks through it to an earlier variable.

e The current session of a variable V is the set of all variables
visiting during its session.

e In particular, the current session for any V contains V.

e The relevant dead-ends for the current session R(V) for a vari-
able V are:

1. If V is a leaf dead-end variable then R(V) = {V].

2. If V was backtracked to from a dead-end V' then R(V) = R(V)U
R(V).

And we're not done yet...

Graph-based backjumping

Example:

Session of V7 = {V-}.

R(V7) ={V7} ()
Session starts
Session of V4 = {V4, V5, Vg, V7.
Session starts R(V4) = {V7}

As expected, the relevant dead-end for V, is {V7].

Graph-based backjumping

One more bunch of definitions before the pain stops. Say Vi is a
dead-end:

e The induced ancestors ind(Vy) of Vi are defined as

ind(Vi) ={Vi, Vo,..., k11 N U ancestors(V)
VER(Vk)

e The culprit for Vi is the most recent V' € ind(V4).

Note that these definitions depend on R(V,).

FINALLY: graph-based backjumping backjumps to the culprit.

Graph-based backjumping

Example:

Backjump from V;
to V4.

Session of V4 = {V4, V5, Vg, V7.

Nothing left to try! A R(Vy) = {V5)
ind(V4) ={Vs}

As expected, we back jump to V3 instead of V,. Hooray!

Conflict-directed backjumping

Gaschnig’s algorithm and graph-based backjumping can be combined
to produce confiict-directed backjumping.

We will not explore conflict-directed backjumping in this course.

For considerable further detail on algorithms for CSPs see:

“Constraint Processing,” Rina Dechter. Morgan Kaufmann,
2008.

Varieties of CSP

We have only looked at discrete CSPs with finite domains. These
are the simplest. We could also consider:

1. Discrete CSPs with infinite domains:

e We need a constraint language. For example
V3 < Vip+5

e Algorithms are available for integer variables and linear con-
straints.

e There 1s no algorithm for integer variables and nonlinear con-
straints.

2. Continuous domains—using linear constraints defining convex re-
gions we have linear programmang. This 1s solvable in polynomaial
time in n.

3. We can introduce preference constraints in addition to absolute
constraints, and in some cases an objective function.

