Artificial Intelligence I

Dr Sean Holden

Notes on games (adversarial search)

Copyright (© Sean Holden 2002-2010.



Solving problems by search: playing games

How might an agent act when the outcomes of its actions are not
known because an adversary is trying to hinder 1t?

e This is essentially a more realistic kind of search problem because
we do not know the exact outcome of an action.

e This 1s a common situation when playing games: in chess, draughts,
and so on an opponent responds to our moves.

e We don’t know what their response will be, and so the outcome
of our moves is not clear.

Game playing has been of interest in Al because it provides an ide-
alisation of a world in which two agents act to reduce each other’s
well-being.



Playing games: search against an adversary

Despite the fact that games are an idealisation, game playing can be
an excellent source of hard problems. For instance with chess:

e The average branching factor is roughly 35.
e Games can reach 50 moves per player.

5100

e S0 a rough calculation gives the search tree 3 nodes.

e Fiven if only different, legal positions are considered it’s about
10%°.

So: w1n addition to the uncertainty due to the opponent:

e We can’t make a complete search to find the best move...

e ... so we have to act even though we're not sure about the best
thing to do.



Playing games: search against an adversary

And chess isn’t even very hard:

e (Go 1s much harder than chess.

e The branching factor i1s about 360.

Until very recently it has resisted all attempts to produce a good Al
player.

See:
senseis.xmp.net/?MoGo

and others.



Playing games: search against an adversary

It seems that games are a step closer to the complexities inherent in
the world around us than are the standard search problems considered
so far.

The study of games has led to some of the most celebrated applica-
tions and techniques in Al

We now look at:
e How game-playing can be modelled as search.
e The minimazx algorithm for game-playing.

e Some problems inherent in the use of minimax.

e The concept of x — 3 pruning.

Reading: Russell and Norvig chapter 6.



Perfect decisions in a two-person game

Say we have two players. Traditionally, they are called Maz and Min
for reasons that will become clear.

e We'll use noughts and crosses as an initial example.
e Max moves first.
e The players alternate until the game ends.

e At the end of the game, prizes are awarded. (Or punishments
administered— 1s starting up his favourite chain-
SEA

This 1s exactly the same game format as chess, Go, draughts and so
on.



Perfect decisions in a two-person game

Games like this can be modelled as search problems as follows:

e There 1s an n:tial state.

@ e

e There 1s a set of operators. Here, Max can place a cross in any
empty square, or Min a nought.

e There is a terminal test. Here, the game ends when three noughts
or three crosses are in a row, or there are no unused spaces.

e There 1s a utility or payoff function. This tells us, numerically,
what the outcome of the game is.

This 1s enough to model the entire game.



Perfect decisions in a two-person game

We can construct a tree to represent a game. From the initial state
Max can make nine possible moves:

Then 1t’s Min’s turn...



Perfect decisions in a two-person game

For each of Max’s opening moves Min has eight replies:

And so on...

This can be continued to represent all possibilities for the game.



Perfect decisions in a two-person game

At the leaves a player has won or there are no spaces. Leaves are
labelled using the utility function.



Perfect decisions in a two-person game

How can Max use this tree to decide on a move? Consider a much
simpler tree:

Labels on the leaves denote utility.
High values are preferred by Max.
2 i j g Low values are preferred by Min.

20 20 15 6 7

If Max is rational he will play to reach a position with the biggest
utility possible

But if Min is rational she will play to minimise the utility available
to Max.



The minimax algorithm

There are two moves: Max then Min. Game theorists would call this
one move, or two ply deep.

The minimaz algorithm allows us to infer the best move that the
current player can make, given the utility function, by working back-
ward from the leaves.

FEON

4 5 20 20 15

As Min plays the last move, she minimises the utility available to
Max.



The minimax algorithm

Min takes the final move:

e [f Min is in game position 1, her best choice is move 3.
Max's point of view this node has a utility of 2.

e [f Min is in game position 2, her best choice is move 3.
Max's point of view this node has a utility of 6.

e [f Min is in game position 3, her best choice is move 1.
Max’s point of view this node has a utility of 1.

e If Min 1s in game position 4, her best choice i1s move 4.
Max's point of view this node has a utility of 4.

So from

So from

So from

So from



The minimax algorithm

Moving one further step up the tree:

Y

FEON

4 5 2 20 20 15 6

We can see that Max’s best opening move is move 2, as this leads to
the node with highest utility.



The minimax algorithm

In general:

e Generate the complete tree and label the leaves according to the
utility function.

e Working from the leaves of the tree upward, label the nodes de-
pending on whether Max or Min i1s to move.

o If Mwn 1s to move label the current node with the minimum
utility of any descendant.

o If Mazxr 1s to move label the current node with the mazimum
utility of any descendant.

If the game 1s p ply and at each point there are g available moves
then this process has (surprise, surprise) O(qP) time complexity and
space complexity linear in p and q.



Making imperfect decisions

We need to avoid searching all the way to the end of the tree. So:

e We generate only part of the tree: instead of testing whether a
node is a leaf we introduce a cut-off test telling us when to stop.

e Instead of a utility function we introduce an evaluation function
for the evaluation of positions for an incomplete game.

The evaluation function attempts to measure the expected utility of
the current game position.



Making imperfect decisions

How can this be justified?

e This i1s a strategy that humans clearly sometimes make use of.

e For example, when using the concept of material value in chess.
e The effectiveness of the evaluation function is critical...

e ... but it must be computable in a reasonable time.

e (In principle it could just be done using minimax.)

The importance of the evaluation function can not be understated—it
1s probably the most important part of the design.



The evaluation function

Designing a good evaluation function can be extremely tricky:

e Let’s say we want to design one for chess by giving each piece its
material value: pawn = 1, knight/bishop = 3, rook = 5 and so
on.

e Define the evaluation of a position to be the difference between
the material value of black’s and white’s pieces

eval(position) = Z value of p; — Z value of g;

black’s pieces p; white’s pieces g

This seems like a reasonable first attempt. Why might it go wrong?



The evaluation function

Consider what happens at the start of a game:

e Until the first capture the evaluation function gives O, so in fact
we have a category containing many different game positions with
equal estimated utility.

e For example, all positions where white is one pawn ahead.

e The evaluation function for such a category should perhaps rep-
resent the probability that a position chosen at random from it
leads to a win.

So 1n fact this seems highly naive...



The evaluation function

Ideally, we should consider individual positions.

If on the basis of past experience a position has 50% chance of win-
ning, 10% chance of losing and 40% chance of reaching a draw, we
might give 1t an evaluation of

eval(position) = (0.5 x 1) + (0.1 x —1) + (0.4 x 0) = 0.4.

Extending this to the evaluation of categories, we should then weight
the positions in the category according to their likelihood of occur-
ring.

Of course, we don’t know what any of these likelihoods are...



The evaluation function

Using material value can be thought of as giving us a weighted linear
evaluation function

eval(position) = Z wifi

where the w; are weights and the f; represent features of the position.
In this example
f; = value of the ith piece

w; = number of ith pieces on the board

where black and white pieces are regarded as different and the f; are
positive for one and negative for the other.



The evaluation function

Eivaluation functions of this type are very common in game playing.
There 1s no systematic method for their design.

Weights can be chosen by allowing the game to play itself and using
learning techniques to adjust the weights to improve performance.

By using more carefully crafted features we can give different eval-
uations to imndividual positions.



& — [3 pruning

Even with a good evaluation function and cut-off test, the time com-
plexity of the minimax algorithm makes it impossible to write a good
chess program without some further improvement.

e Assuming we have 150 seconds to make each move, for chess we
would be limited to a search of about 3 to 4 ply whereas...

e ...even an average human player can manage 6 to 8.

Luckily, 1t 1s possible to prune the search tree without affecting the
outcome and without having to examine all of it.



& — [3 pruning

Returning for a moment to the earlier, simplified example:

Idoiind,

20 20 15 6 7

The search 1s depth-first and left to right.



& — [3 pruning

The search continues as previously for the first 3 leaves.

Then we note: if Maz plays move 3 then Min can reach a leaf with
utility at most 1.

So: we don’t need to search any further under Max’s opening
move 3. This is because the search has already established that
Maz can do better by making opening move 2.



& — [3 pruning in general

A = Player

v B If n<morn<m here
= Opponent then this node will never be reached.

So: once you've established that n 1s sufficiently small, you don’t
need to explore any more of the corresponding node’s children.



& — [3 pruning in general

v = Player

If n>morn>m' here
A = Opponent then this node will never be reached.

So: once you've established that n 1s sufficiently large, you don’t
need to explore any more of the corresponding node’s children.



& — [3 pruning in general

The search is depth-first, so we’re only ever looking at one path
through the tree.

We need to keep track of the values o« and [3 where
« = the highest utility seen so far on the path for Maz
3 = the lowest utility seen so far on the path for Mwn

Assume Maz begins. Initial values for « and [3 are
X = —00

and
B = +oo.



& — [3 pruning in general

So: we start with the function call
max(—oo, +00, root)
where max 1s the function

max (alpha,beta,node)

{
if (node is at cut-off)

return evaluation(node) ;

else
{
for (each successor n’ of node)
{
alpha = maximum(alpha,min(alpha,beta,n’));
if (alpha >= beta)
return beta; // pruning happens here.
+
return alpha;
+



& — [3 pruning in general

The function min is

min(alpha,beta,node)

{
if (node is at cut-off)
return evaluation(node) ;

else
{
for (each successor n’ of node)
{
beta = minimum(beta,max(alpha,beta,n’));
if (beta <= alpha)
return alpha; // pruning happens here.
+
return beta;
+



& — [3 pruning in general

Applying this to the earlier example and keeping track of the values
for o« and [3 you should obtain:

Return 2

Return 6




How effective is « — 3 pruning?

(Warning: the theoretical results that follow are somewhat idealised.)

A quick inspection should convince you that the order in which
moves are arranged in the tree is critical.

S0, 1t seems sensible to try good moves first:

e [f you were to have a perfect move-ordering technique then o« — 3
pruning would be O(qP/?) as opposed to O(qP).

e so the branching factor would effectively be ,/q instead of q.

e We would therefore expect to be able to search ahead twice as
many moves as before.

However, this 1s not realistic: if you had such an ordering technique
you’'d be able to play perfect games!



How effective is « — 3 pruning?

If moves are arranged at random then & — 3 pruning is:

e O((q/log q)?) asymptotically when g > 1000 or...

e ...about O(q’"/*) for reasonable values of q.

In practice simple ordering techniques can get close to the best case.
For example, if we try captures, then threats, then moves forward
etc.

Alternatively, we can implement an iterative deepening approach and
use the order obtained at one iteration to drive the next.



A further optimisation: the transposition table

Finally, note that many games correspond to graphs rather than
trees because the same state can be arrived at in different ways.

e This is essentially the same effect we saw in heuristic search: recall
graph search versus tree search.

e It can be addressed in a similar way: store a state with its evalua-
tion in a hash table—generally called a transposition table—the
first time 1t is seen.

The transposition table is essentially equivalent to the closed list
introduced as part of graph search.

This can vastly increase the effectiveness of the search process, be-
cause we don’t have to evaluate a single state multiple times.



