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Solving problems by sear
h: playing gamesHow might an agent a
t when the out
omes of its a
tions are notknown be
ause an adversary is trying to hinder it?� This is essentially a more realisti
 kind of sear
h problem be
ausewe do not know the exa
t out
ome of an a
tion.� This is a 
ommon situation when playing games : in 
hess, draughts,and so on an opponent responds to our moves.� We don't know what their response will be, and so the out
omeof our moves is not 
lear.Game playing has been of interest in AI be
ause it provides an ide-alisation of a world in whi
h two agents a
t to redu
e ea
h other'swell-being.



Playing games: sear
h against an adversaryDespite the fa
t that games are an idealisation, game playing 
an bean ex
ellent sour
e of hard problems. For instan
e with 
hess:� The average bran
hing fa
tor is roughly 35.� Games 
an rea
h 50 moves per player.� So a rough 
al
ulation gives the sear
h tree 35100 nodes.� Even if only di�erent, legal positions are 
onsidered it's about

1040.So: in addition to the un
ertainty due to the opponent:� We 
an't make a 
omplete sear
h to �nd the best move...� ... so we have to a
t even though we're not sure about the bestthing to do.



Playing games: sear
h against an adversaryAnd 
hess isn't even very hard:� Go is mu
h harder than 
hess.� The bran
hing fa
tor is about 360.Until very re
ently it has resisted all attempts to produ
e a good AIplayer.See:

senseis.xmp.net/?MoGoand others.



Playing games: sear
h against an adversaryIt seems that games are a step 
loser to the 
omplexities inherent inthe world around us than are the standard sear
h problems 
onsideredso far.The study of games has led to some of the most 
elebrated appli
a-tions and te
hniques in AI.We now look at:� How game-playing 
an be modelled as sear
h .� The minimax algorithm for game-playing.� Some problems inherent in the use of minimax.� The 
on
ept of α − β pruning .Reading: Russell and Norvig 
hapter 6.



Perfe
t de
isions in a two-person gameSay we have two players. Traditionally, they are 
alledMax andMinfor reasons that will be
ome 
lear.� We'll use noughts and 
rosses as an initial example.� Max moves �rst.� The players alternate until the game ends.� At the end of the game, prizes are awarded. (Or punishmentsadministered|EVIL ROBOT is starting up his favourite 
hain-saw...)This is exa
tly the same game format as 
hess, Go, draughts and soon.



Perfe
t de
isions in a two-person gameGames like this 
an be modelled as sear
h problems as follows:� There is an initial state .

Max to move

� There is a set of operators . Here, Max 
an pla
e a 
ross in anyempty square, or Min a nought.� There is a terminal test . Here, the game ends when three noughtsor three 
rosses are in a row, or there are no unused spa
es.� There is a utility or payo� fun
tion. This tells us, numeri
ally,what the out
ome of the game is.This is enough to model the entire game.



Perfe
t de
isions in a two-person gameWe 
an 
onstru
t a tree to represent a game. From the initial stateMax 
an make nine possible moves:
.          .          .

Then it's Min's turn...



Perfe
t de
isions in a two-person gameFor ea
h of Max's opening moves Min has eight replies:
.          .          .

.          .          .

And so on...This 
an be 
ontinued to represent all possibilities for the game.



Perfe
t de
isions in a two-person game
.          .          .

.          .          .

+1
0

−1

At the leaves a player has won or there are no spa
es. Leaves arelabelled using the utility fun
tion.



Perfe
t de
isions in a two-person gameHow 
an Max use this tree to de
ide on a move? Consider a mu
hsimpler tree:

4 5 2 20 20 15 6 7 1 4 10 9 5 8 5 4

Labels on the leaves denote utility.High values are preferred by Max.Low values are preferred by Min.

If Max is rational he will play to rea
h a position with the biggestutility possibleBut if Min is rational she will play to minimise the utility availableto Max.



The minimax algorithmThere are two moves: Max then Min. Game theorists would 
all thisone move, or two ply deep.The minimax algorithm allows us to infer the best move that the
urrent player 
an make, given the utility fun
tion, by working ba
k-ward from the leaves.
4 5 20 20 15 7 4 10 9 5 8 52

2
6

6
1

1
4

4

As Min plays the last move, she minimises the utility available toMax.



The minimax algorithmMin takes the �nal move:� If Min is in game position 1, her best 
hoi
e is move 3. So fromMax's point of view this node has a utility of 2.� If Min is in game position 2, her best 
hoi
e is move 3. So fromMax's point of view this node has a utility of 6.� If Min is in game position 3, her best 
hoi
e is move 1. So fromMax's point of view this node has a utility of 1.� If Min is in game position 4, her best 
hoi
e is move 4. So fromMax's point of view this node has a utility of 4.



The minimax algorithmMoving one further step up the tree:
4 5 2 20 20 15 6 7 1 4 10 9 5 8 5 4

1 42 6 6

We 
an see that Max's best opening move is move 2, as this leads tothe node with highest utility.



The minimax algorithmIn general:� Generate the 
omplete tree and label the leaves a

ording to theutility fun
tion.� Working from the leaves of the tree upward, label the nodes de-pending on whether Max or Min is to move.� If Min is to move label the 
urrent node with the minimumutility of any des
endant.� If Max is to move label the 
urrent node with the maximumutility of any des
endant.If the game is p ply and at ea
h point there are q available movesthen this pro
ess has (surprise, surprise) O(qp) time 
omplexity andspa
e 
omplexity linear in p and q.



Making imperfe
t de
isionsWe need to avoid sear
hing all the way to the end of the tree. So:� We generate only part of the tree: instead of testing whether anode is a leaf we introdu
e a 
ut-o� test telling us when to stop.� Instead of a utility fun
tion we introdu
e an evaluation fun
tionfor the evaluation of positions for an in
omplete game.The evaluation fun
tion attempts to measure the expe
ted utility ofthe 
urrent game position.



Making imperfe
t de
isionsHow 
an this be justi�ed?� This is a strategy that humans 
learly sometimes make use of.� For example, when using the 
on
ept of material value in 
hess.� The e�e
tiveness of the evaluation fun
tion is 
riti
al ...� ... but it must be 
omputable in a reasonable time.� (In prin
iple it 
ould just be done using minimax.)The importan
e of the evaluation fun
tion 
an not be understated|itis probably the most important part of the design.



The evaluation fun
tionDesigning a good evaluation fun
tion 
an be extremely tri
ky:� Let's say we want to design one for 
hess by giving ea
h pie
e itsmaterial value: pawn = 1, knight/bishop = 3, rook = 5 and soon.� De�ne the evaluation of a position to be the di�eren
e betweenthe material value of bla
k's and white's pie
eseval(position) =
∑bla
k's pie
es pi

value of pi −
∑white's pie
es qi

value of qi

This seems like a reasonable �rst attempt. Why might it go wrong?



The evaluation fun
tionConsider what happens at the start of a game:� Until the �rst 
apture the evaluation fun
tion gives 0, so in fa
twe have a 
ategory 
ontaining many di�erent game positions withequal estimated utility.� For example, all positions where white is one pawn ahead.� The evaluation fun
tion for su
h a 
ategory should perhaps rep-resent the probability that a position 
hosen at random from itleads to a win.So in fa
t this seems highly naive...



The evaluation fun
tionIdeally, we should 
onsider individual positions .If on the basis of past experien
e a position has 50% 
han
e of win-ning, 10% 
han
e of losing and 40% 
han
e of rea
hing a draw, wemight give it an evaluation ofeval(position) = (0.5 × 1) + (0.1 × −1) + (0.4 × 0) = 0.4.Extending this to the evaluation of 
ategories, we should then weightthe positions in the 
ategory a

ording to their likelihood of o

ur-ring.Of 
ourse, we don't know what any of these likelihoods are...



The evaluation fun
tionUsing material value 
an be thought of as giving us a weighted linearevaluation fun
tion eval(position) =

n∑

i=1

wifiwhere the wi are weights and the fi represent features of the position.In this example

fi = value of the ith pie
e
wi = number of ith pie
es on the boardwhere bla
k and white pie
es are regarded as di�erent and the fi arepositive for one and negative for the other.



The evaluation fun
tionEvaluation fun
tions of this type are very 
ommon in game playing.There is no systemati
 method for their design.Weights 
an be 
hosen by allowing the game to play itself and usinglearning te
hniques to adjust the weights to improve performan
e.By using more 
arefully 
rafted features we 
an give di�erent eval-uations to individual positions .



α − β pruningEven with a good evaluation fun
tion and 
ut-o� test, the time 
om-plexity of the minimax algorithm makes it impossible to write a good
hess program without some further improvement.� Assuming we have 150 se
onds to make ea
h move, for 
hess wewould be limited to a sear
h of about 3 to 4 ply whereas...� ...even an average human player 
an manage 6 to 8.Lu
kily, it is possible to prune the sear
h tree without a�e
ting theout
ome and without having to examine all of it .



α − β pruningReturning for a moment to the earlier, simpli�ed example:
4 5 2 20 20 15 6 7 1 4 10 9 5 8 5 4

The sear
h is depth-�rst and left to right.



α − β pruningThe sear
h 
ontinues as previously for the �rst 8 leaves.
4 5 2 20 20 15 6 7 1 4 10 9 5 8 5 4

2 6 ≤ 1

Then we note: if Max plays move 3 then Min 
an rea
h a leaf withutility at most 1.So: we don't need to sear
h any further under Max's openingmove 3. This is be
ause the sear
h has already established thatMax 
an do better by making opening move 2.



α − β pruning in general
m

Tree= Player= Opponent

nm ′

then this node will never be rea
hed.If n < m or n < m ′ here

So: on
e you've established that n is suÆ
iently small, you don'tneed to explore any more of the 
orresponding node's 
hildren.



α − β pruning in general
m

Tree= Player= Opponent

nm ′

then this node will never be rea
hed.If n > m or n > m ′ here

So: on
e you've established that n is suÆ
iently large, you don'tneed to explore any more of the 
orresponding node's 
hildren.



α − β pruning in generalThe sear
h is depth-�rst, so we're only ever looking at one paththrough the tree .We need to keep tra
k of the values α and β where
α = the highest utility seen so far on the path for Max
β = the lowest utility seen so far on the path for MinAssume Max begins . Initial values for α and β are

α = −∞and

β = +∞.



α − β pruning in generalSo: we start with the fun
tion 
all

max(−∞, +∞, root)where max is the fun
tion

max(alpha,beta,node)

{

if (node is at cut-off)

return evaluation(node);

else

{

for (each successor n’ of node)

{

alpha = maximum(alpha,min(alpha,beta,n’));

if (alpha >= beta)

return beta; // pruning happens here.

}

return alpha;

}

}



α − β pruning in generalThe fun
tion min is

min(alpha,beta,node)

{

if (node is at cut-off)

return evaluation(node);

else

{

for (each successor n’ of node)

{

beta = minimum(beta,max(alpha,beta,n’));

if (beta <= alpha)

return alpha; // pruning happens here.

}

return beta;

}

}



α − β pruning in generalApplying this to the earlier example and keeping tra
k of the valuesfor α and β you should obtain:
4 5 2 20 20 15 6 7 1

2 6

Return 2

α = −∞ = 2 = 6

β = +∞Return 6

α = 2

β = +∞ = 6

α = −∞

β = +∞ = 2

α = 6

β = +∞ = 1

Return 6



How e�e
tive is α − β pruning?(Warning: the theoreti
al results that follow are somewhat idealised.)A qui
k inspe
tion should 
onvin
e you that the order in whi
hmoves are arranged in the tree is 
riti
al.So, it seems sensible to try good moves �rst:� If you were to have a perfe
t move-ordering te
hnique then α − βpruning would be O(qp/2) as opposed to O(qp).� so the bran
hing fa
tor would e�e
tively be √
q instead of q.� We would therefore expe
t to be able to sear
h ahead twi
e asmany moves as before .However, this is not realisti
: if you had su
h an ordering te
hniqueyou'd be able to play perfe
t games!



How e�e
tive is α − β pruning?If moves are arranged at random then α − β pruning is:� O((q/ log q)p) asymptoti
ally when q > 1000 or...� ...about O(q3p/4) for reasonable values of q.In pra
ti
e simple ordering te
hniques 
an get 
lose to the best 
ase.For example, if we try 
aptures, then threats, then moves forwardet
.Alternatively, we 
an implement an iterative deepening approa
h anduse the order obtained at one iteration to drive the next.



A further optimisation: the transposition tableFinally, note that many games 
orrespond to graphs rather thantrees be
ause the same state 
an be arrived at in di�erent ways.� This is essentially the same e�e
t we saw in heuristi
 sear
h: re
allgraph sear
h versus tree sear
h .� It 
an be addressed in a similar way: store a state with its evalua-tion in a hash table|generally 
alled a transposition table|the�rst time it is seen.The transposition table is essentially equivalent to the 
losed listintrodu
ed as part of graph sear
h.This 
an vastly in
rease the e�e
tiveness of the sear
h pro
ess, be-
ause we don't have to evaluate a single state multiple times.
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