Algorithms |
Dr Robert Harle

CST Paper |
(IA NST CS, PPS CS and CST)
Easter 2009/10

Algorithms |

= This course was developed by Dr Frank Stajano, who is
on sabbatical this year

" |I'm the “substitute teacher” :-)

= Dr Stgjano's notes are very good: you have a copy of
those as the handout. Those and the course textbook
are probably all you need.

* However, | will post an annotated PDF of the notes |
make in lectures as we go: check the course web page

* Three Parts
= Sorfing Algorithms
= Algorithm Design
= Data Structures

The CLR(S) Book

" Intro. To Algorithms

= Cormen, Lieverson, Rivesf,]

Stein
(Stein) LY

* The course is loosely
based on this book

* Definitely read the relevant
bits of this book

* Most libraries should have
a Copy

" |t contains some good
exercises

Exercises

* There are some exercises dispersed
throughout the notes

* They aren't numbered

" Most are just meant to be done as you read,
rather than detailed problems

* There will be an exercise sheet available as @
PDF on the course welbsite that you may wish to
use for supervisions.

= Atits core, CSisreally just about puzzle solving. But we
aren't just interested in finding a solution (or “algorithm’),
we're interested in finding the best solution given some
definition of 'best’

= Everything else (programming, maths) is just a set of tools
that turn out to be useful in supporting our puzzle solving.

= There is no “universal algorithm”; nor will there be.

= But you can learn a lot from studying how to solve @
variety of problems since many problems can be
broken down into smaller problems to which
established algorithms (or variants of) are appropriate

Algorithms Optimize Something

=

= We choose algorithms based on:

* How soon they give us output (performance) s—
* How much resource they use (space)s—

* How good the output is (quality) s—

* Combinations of the above

= Digital cameras read in a load of pixels and
have to convert them into a JPEG image

* Performance: Need to do the conversion
quickly so you can take another picture

= Space: Need to do the conversion with
minimal space overheads (to keep camera
cost and size down)

" Quality: Need to produce a small file that is
still @ good representation of the original “

f =R

data

Example: Search Engines

\e_ . |\ooo 1!“”“" as
&U &v‘f\

Pages: ABCDEFGHIJKL pas 5o
(22°¢)
R 14 000,000, 007
Index | 40,009,000 B
 GET A B F H)
A G D K | J B D
lp FIRST [G A)
THIS E F | G A
| YEAR C G‘/Do‘}\& a\gm\ﬂb"_"é'
N 9oy nchs i Bzl G sy
" Algorithms: More, rreiy ™

" Look up the search term in the index z_Ma.(W
* Optionally combine the results (AND, OR) ,dnw(’ ics b
= Arrange the results in some useful order Mo B

Part |: Sorting Algorithms

There is an objective correct result
Many sorting algorithms are available
= Some really simple

= Some more complex

Sorting (and searching) are needed for most
large-scale algorithms

You have already met some of this in FOCS,
but l'll recap anyway (it is revision time after
all)

" Plus you concentrated on sorfing(lists in
FOCS: here we look at sortin o@

Memory Model

* We'll use the simple model from OOP

y” =)

Memory +—
< Vx4 o
0 1 2 3 4 5 6 7 8§ — X

= Key points:

" Memory is addressed using numerical addresses
and therefore random access

* We will assume that we never run out of memory

* We will not worry about the capacity of each
memory slot (we'll assume any number can be
represented in any slof)

Insertion Sort
e 4__r____->u»!\Sc(

316 £ .S 11 L
35 S

2 4G | 7
ﬁ/\,/\,/I\V,J -
24 D 2
B gl

| L 24 56

Insertion Sort

A
def insertSort(a): @A‘L‘I‘“"" B

0

1 ??’BEHAVIOUR: Run the insertsort algorithm on the integer on ‘,(\P«z\f'

2 array a, sorting it in place.

: Gf 1)

4 PRECONDITION: array a contains len(a) integer values.

5

6 POSTCONDITION: array a contains the same integer values as before,

7 but now they are sorted in ascending order.’’’] 0

8 x éoﬂ['\fﬁ‘\”" Pﬂ(—
9 for k from 0 to llen(a.)—2: o V\)(’\""[_ ‘{‘/L(,

10 fassert(the first k positions are already sorted)} l -l\ OAO
11 A 8 J)

12 # Pick up item k+1 (call it a[j]) and let it sink to its correct place

13 j = k+1

14 while j > 0 and a[j-1] > al[jl:

15 swap(alj-11, aljl)

16 j=]-1

How 'good' is any algorithmye

* |t's hard to put numbers to anything since the
performance is presumably heavily dependent
on the input

= As you know we usually study the limiting
behaviour using the asymptotic notation you
met in FOCS

Complexity Notations

Big-O: 0=f(n)=k.g(n)

@: 0 k].g(n) < f(ﬂ) < kQ.g(n) For n>N

K. k. k,N>0
Q: 0<k.g(n) <f(n) ; al*)
ksln) B() { ﬂn)

= log_(x) = log, (x)/log,_(a)
= SO the base of any logarithm in g(n) is
Irelevant (3 o "le"

* The value of N above which the
bound holds could be very big

* |.e. Take care when comparing two
complexities for small n.
0

()
Dol ot
/ 5

N —

= Show (x+5)Ig(3x°+7) is O(xIgx)

@HO (ﬁ (3;614»:7') \<_ (5C+§3¢) (3 (’Soc)"l’:l'fz) x >/

—

Examples

= Show n*+20n is(Q(nzﬂ

(ﬁ k‘\wl}eﬁ_

Nt 2o > ket

—_—

" — 0O
|
("\Mj\.« A»(n+§°—’~>_-/|~ggf_o §
praa dv\ ~ n“-

V\l =16 n= \‘;:'V%.S,

\Vi/;i kéj)> ?*r%f*—/ﬂ

_ N

Examples

= Show n*-3nis ©(n?) w
Lt & a5 & kb"ﬂ)

\

K,
L
e
{ -1
7 —o§
b @
|
&

Relating to Running Time

" We assume:
= Any memory access fakes unit time OO)
" Any arithmetic takes unit time (1)

* Thus the running time is linked to the
number of operations the algorithm
requires.

* Problem: this is often dependent on
the Input

= Worst-case]

= Analyse for the worst possible input. This gives you an
upper bound for the performance. _J

" Average-case

= Analyse for an 'average' input. Problem here is that
the notfion of average assumes some probability
distribution of inputs, which we rarely have (and

which is application specifi\cotgof course).
o —

= Amortized analysis / ﬂ i

= Sometimes we have a sequence of operations that
ocCcur: in this case we may amortize the total cost to
run the sequence of operations so we get an
average cost per operation. e.g. Garbage collection.

