
Algorithms I
Dr Robert Harle

CST Paper I
(IA NST CS, PPS CS and CST)

Easter 2009/10

Algorithms I

 This course was developed by Dr Frank Stajano, who is
on sabbatical this year

 I'm the “substitute teacher” :-)

 Dr Stajano's notes are very good: you have a copy of
those as the handout. Those and the course textbook
are probably all you need.

 However, I will post an annotated PDF of the notes I
make in lectures as we go: check the course web page

 Three Parts
 Sorting Algorithms

 Algorithm Design

 Data Structures

The CLR(S) Book
 Intro. To Algorithms

 Cormen, Lieverson, Rivest,
(Stein)

 The course is loosely
based on this book
 Definitely read the relevant

bits of this book
 Most libraries should have

a copy
 It contains some good

exercises

Exercises

 There are some exercises dispersed
throughout the notes
 They aren't numbered
 Most are just meant to be done as you read,

rather than detailed problems

 There will be an exercise sheet available as a
PDF on the course website that you may wish to
use for supervisions.

Algorithms

 At its core, CS is really just about puzzle solving. But we
aren't just interested in finding a solution (or “algorithm”),
we're interested in finding the best solution given some
definition of 'best'

 Everything else (programming, maths) is just a set of tools
that turn out to be useful in supporting our puzzle solving.

 There is no “universal algorithm”; nor will there be.
 But you can learn a lot from studying how to solve a

variety of problems since many problems can be
broken down into smaller problems to which
established algorithms (or variants of) are appropriate

Algorithms Optimize Something

 We choose algorithms based on:
 How soon they give us output (performance)
 How much resource they use (space)
 How good the output is (quality)
 Combinations of the above

Algorithm
(magic)

Input Output

Example: Digital Cameras (JPEG)

 Digital cameras read in a load of pixels and
have to convert them into a JPEG image
 Performance: Need to do the conversion

quickly so you can take another picture
 Space: Need to do the conversion with

minimal space overheads (to keep camera
cost and size down)

 Quality: Need to produce a small file that is
still a good representation of the original
data

Example: Search Engines

Pages: A B C D E F G H I J K L

Index
GET A B F H
A G D K I J B D
FIRST G A
THIS E F I G A
YEAR C

 Algorithms:
 Look up the search term in the index
 Optionally combine the results (AND, OR)
 Arrange the results in some useful order

Part I: Sorting Algorithms

Why Sorting?

 There is an objective correct result
 Many sorting algorithms are available

 Some really simple
 Some more complex

 Sorting (and searching) are needed for most
large-scale algorithms

 You have already met some of this in FoCS,
but I'll recap anyway (it is revision time after
all)
 Plus you concentrated on sorting lists in

FoCS: here we look at sorting arrays

Memory Model

 We'll use the simple model from OOP

 Key points:
 Memory is addressed using numerical addresses

and therefore random access
 We will assume that we never run out of memory
 We will not worry about the capacity of each

memory slot (we'll assume any number can be
represented in any slot)

Memory

0 1 2 3 4 5 6 7 8

Insertion Sort

Insertion Sort

How 'good' is any algorithm?

 It's hard to put numbers to anything since the
performance is presumably heavily dependent
on the input

 As you know we usually study the limiting
behaviour using the asymptotic notation you
met in FoCS

Complexity Notations

Big-O: 0 ≤ f(n) ≤ k.g(n)

Θ: 0 ≤ k
1
.g(n) ≤ f(n) ≤ k

2
.g(n)

Ω: 0 ≤ k.g(n) ≤ f(n)

For n>N
K, k

1
, k

2
, N > 0

Notes

 log
a
(x) = log

b
(x)/log

b
(a)

 So the base of any logarithm in g(n) is
irrelevant

 The value of N above which the
bound holds could be very big
 i.e. Take care when comparing two

complexities for small n.

Examples

 Show (x+5)lg(3x2+7) is O(xlgx)

Examples

 Show n3+20n is Ω(n2)

Examples

 Show n2-3n is Θ(n2)

Relating to Running Time

 We assume:
 Any memory access takes unit time
 Any arithmetic takes unit time

 Thus the running time is linked to the
number of operations the algorithm
requires.

 Problem: this is often dependent on
the input

Worst, Average and Amortized costs

 Worst-case
 Analyse for the worst possible input. This gives you an

upper bound for the performance.

 Average-case
 Analyse for an 'average' input. Problem here is that

the notion of average assumes some probability
distribution of inputs, which we rarely have (and
which is application specific of course).

 Amortized analysis
 Sometimes we have a sequence of operations that

occur: in this case we may amortize the total cost to
run the sequence of operations so we get an
average cost per operation. e.g. Garbage collection.

