Advanced Systems Topics

Steven Hand

Lent Term 2010

Course Aims

This course aims to help students develop and understand
complex systems and interactions, and to prepare them for
emerging systems architectures.

It will cover a selection of topics including:

— internet routing protocols,

— operating systems,

— database systems,

— distributed storage systems,

— mobile and ad-hoc systems, and

— architecture and applications of sensor networks

On completing the course, students should be able to

— describe similarities and differences between current Internet
routing protocols

— describe three techniques supporting extensibility
— argue for or against distributed virtual memory
— discuss the challenges of sensor networking

IN

Course Qutline

e Partl: Internet Routing Protocols [TGG, 6L]
— Internet as a Distributed System
— Intra-domain routing (RIP, OSPF, ISIS)
— BGP: path vectors and live-lock.
— Convergence, scalability and stability.

e Part ll: Advanced Operating Systems [SMH, 6L]
— Distributed & Persistent Virtual Memory
— Microkernels & Extensible Operating Systems
— Virtual Machine Monitors
— Distributed Storage [3L]

e Partlll: Mobile and Sensor Systems [CM, 4L]
— Introduction
— Mobile & Ad Hoc Systems
— Sensors: Challenges and Applications

[S¥)

Recommended Reading

Singhal & Shivaratri, Advanced Concepts in
Operating Systems, McGraw-Hill, 1994

Stonebraker & Shivaratri, Readings in Database
Systems, Morgan Kaufmann (3rd ed.), 1998

Bacon and Harris, Operating Systems, Addison
Wesley, 2003

Hennessy & Patterson, Computer Architecture: a
Quantitative Approach, Morgan Kaufmann, 2003

Additional links and papers (via course web page)
— www.cl.cam.ac.uk/Teaching/current/AdvSysTop/

Process Communication Models

 Two primary models for communication in
concurrent / parallel programs:

e 1.Shared memory model:

— collection of “threads” sharing address space

— reads/writes on memory locations implicitly and
immediately globally visible

—eg Xx:=x+1
e 2. Message passing model:

— collection of “processes” (private address spaces)

— explicit coordination through messages, e.g

Process1 Process 2
send_msg(FETCH, “x”, P2); receive(&msg);

send_msg(VALUE, “x”, x, P1);
temp := receive_val(&msg);</

temp = temp +1;
send_msg(VALUE, “x”, temp, P2); X = receive_val(&msg);

18;]

Process Communication Models

 Both have advantages and disadvantages...
* Message passing:

— control & protection: separate address spaces
means sharing only happens when required

— performance: communicate min amount of data
— BUT: verbose, complicated, ugly ;-)

 Shared memory:
— ease of use: just read and write variables

— transparent scalability: just add processes
— BUT: race conditions, synchronisation, cost

[e)}

Distributed Shared Virtual Memory

e Memory model typically dictated by hardware:
— shared memory on tightly-coupled systems,
— message passing on loosely-coupled systems

e Radical idea: provide shared memory on clusters!
— each page has a “home” processor
— can be mapped into remote address spaces
— on read access, page in across network
— on write access, sort out ownership...

e OS/DSVM library responsible for:

— tracking current ownership
— copying data across network
— setting access bits to ensure coherence

IN

DSVM Model

Distributed Shared Virtual Address Space (e.g. 264 bits)

%I 10 1516017118719 (21|22

DSVM Library DSVM Library DSVM Library
read/write read-only read/write read-only read/write read-only
|ﬁe 03 22 page 10)
page 15 |page 1 page 10 page 16|
page 18 page 17 page 17
page 22 page 19,

page 21

Processor 1 Processor 2 Processor 3

* All processors share a single virtu
 this can be extremely large, e.g. 64-bits

e Physical address space is the aggregate of all local memory

* Mapping from virtual to physical managed by DSVM layer

e ensure at most 1 read/write copy of any page, but can safely
have multiple read-only copies

e (basically same as multi-processor cache coherence protocols)

I.A-A AN LAR U Sa SN

[e3]

Implementing DSVM

* Simplest case: centralized page manager

— single processor maintains 2 per-page data structures

1. owner(p) = the processor P that created — or which last
wrote to — the page p

2. copyset(p) = all processors with a copy of p
e can store copyset as a bitmap to save space

* Then on aread fault need four messages:

— (1) contact manager; (2) manager forwards to owner; (3)
owner sends page; (4) requester acks to manager

— If successful, manager updates copyset(p)
e On a write fault, need a bit more work:

— (1) contact manager; (2) manager invalidates copyset; (3)
manager contacts owner; (4) owner relinquishes page; (5)
requester acks to manager, who updates owner(p)

— Note that (2) may require many messages (or b’cast?)

o)

DSVM Optimizations

o Static distributed management:
— Aim to load-balance: manager(p) is Hash(p)
— Use centralized algorithm for each manager

 Dynamic distributed management:
— Aim to reduce messages: manager(p) = owner(p)

— Can broadcast to find manager(p) but needs care:
e E.g. consider concurrent write faults on P1 & P2
e P3 owns page: gets message from P1 & replies
* P3ignores message from P2 —no longer owner!
e P1 also ignores message from P2 — not yet owner!
e To fix need “atomic broadcast” (c/f distributed systems)

DSVM Optimizations

e A better solution is to keep per-processor hint:

— Each processor P maintains probOwner(p) = the
processor which P believes to be the owner

* |nitialized to a default value, e.g. Hash(p)

— If P1 takes a fault on p, contacts P2=probOwner(p)

* |f correct, P2 sends P1 the page; otherwise P2 forwards
the request to P3 = his probOwner(p)

e |n either case, if P1 requested write access, P2 updates
his probOwner(p) := P1

e Also update probOwner() if see a broadcast invalidate

— Can also allow non-owner to reply to a read
request if he has an up-to-date copy

e Updates local copyset => need multi-stage invalidate

Weaker Consistency

Even with optimizations, can be expensive, e.g. false-sharing:
— P1 owns p, P2 just has read-access
— P1 writes p -> copies to P2...
— ... but P2 doesn't care about this change
Can reduce traffic by using weaker memory consistency:
— so far assumed sequential consistency: every read sees latest write
— easy to use, but expensive
Instead can do e.g. release consistency:
— reads and writes occur locally
— explicit acquire & release for synchronization
— analogy with memory barriers in MP
Best performance by doing type-specific coherence:
— private memory -> ignore
— write-once -> just service read faults
— read-mostly -> owner broadcasts updates
— producer-consumer -> live at P, ship to C
— write-many -> release consistency & buffering
— synchronization -> strong consistency

DSVM: Evolution & Conclusions

mid 1980's: IVY at Princeton (Li)
— sequential consistency (used probOwner(), etc)
— some nice results for parallel algorithms with large data sets
— overall: too costly
early 1990's: Munin at Rice (Carter)
— type-specific coherence
— release consistency (when appropriate)
— allows optimistic multiple writers
— almost as fast as hand-coded message passing
mid 1990's: Treadmarks at Rice (Keleher)
— introduced “lazy release consistency”
— update not on release, but on next acquire
— reduced messages, but higher complexity
On clusters:
— can always do better with explicit messages
— complexity argument fails with complex DSVM

On non-ccNUMA multiprocessors: sounds good!

Persistence

Why is virtual memory volatile?

e Virtual memory means memory is (or at least may be)
backed by non-volatile storage.

 Why not make this the default case?
— no more distinction between files and memory
— easier programmatic access to file system / DB
— can benefit from type system

 Orthogonal Persistence => manner in which data is
accessed is independent of how long it persists

e Two main options for implementation:
1. Functional/interpreted languages: fake out in runtime.
2. Imperative/compiled languages:
— prescribe way to access data (e.g. pure O0), or
— use the power of virtual memory...

Persistent Virtual Memory

e Actually a very old idea: e.g. Multics:
— developed 1964- by MIT, GE and AT&T Bell Labs

— no filesystem; user saw a number of segments =
orthogonal regions of virtual address space:
e backed by non-volatile secondary store
e created and named by users

e remained available until explicitly deleted

— tree of directories and non-directories (c/f Unix)
e directories contain set of branches (~= inodes)
e branches contain ACL plus ring bracket (b1 <= b2)
e branches also contain limit (| >= b2) and list of gates
e process running within limit can ‘jump’ through a gate

Persistent Virtual Memory

e Multics was not successful (for a number of
reasons!), but persistent VM idea lived on

e Assize of secondary storage grew, it became
impossible to directly name (refer to) all data

 One possible solution was pointer swizzling:
— e.g. the Texas portable C++ library
— can allocate objects on a special persistent heap
— data in persistent pages canonically addressed by
special 64-bit persistent pointers (PPtrs)
— ensure PPtrs are never directly accessed:

 mark any resident persistent page as invalid

e trap on access and for every PPtr p
— allocate a new page P and mark it invalid
— swizzle (rewrite) p to refer to P
— unprotect original page and resume

Recoverable Virtual Memory

RVM provides a (subset of) transactional semantics to
regions of virtual memory

— building block for filesystems, DBs, applications.

— best known work is lightweight RVM (SOSP '93)

LRVM just considers atomicity and durability
Processes map [32-bit] regions of persistent [64-bit]
segments into their virtual address space, and then:
— Start with t = begin_transaction(rmode)

— Invoke one or more set_range(t, base_addr, nbytes)

— Finally end_transaction(t, cmode)

Unless rmode is ‘norestore’ , LRVM copies the contents of
the range(s) to an undo log => restore on abort

On commit, write changes to redo log

— synchronous write unless cmode is ‘noflush’.

LRVM looks-aside into the redo log => can lazily flush
changes to segments on disk, and truncate log.

Making LRVM Faster...

LRVM remarkably successful:

— Less than 20% the size of previous systems, and
about 2x-3x faster

But still has (up to) 3 copies: undo, redo, trunc

Rio Vista (SOSP’97) used NVRAM to optimize:

— mapping a region is just mmap() on NVRAM
— set_range() makes copy to NVRAM

— no copy for redo (NVRAM) or truncate (NVRAM)
e on reboot, flush NVRAM contents to disk

— claimed 2000x speed up over LRVM
Authors required asbestos trousers ;-)

OS Structures

e Earliest operating systems were “monolithic”

e 1970s: Unix pioneered notion of the kernel
— Just the essentials in privileged mode
— Everything else (e.g. shell, login, etc) a process

e Number of structures since then:

— microkernels: put just the bare essentials in kernel,
everything else in (priv or unpriv) servers

— extensible OSes: let unpriv code run within kernel

— vertically structured OSes: put just the bare essentials
in kernel, everything else in unpriv libraries

— virtual machine monitors: run entire OS unprivileged
on top of privileged hypervisor

Kernels (lhs) & Microkernels (rhs)

o

! Device Driver :

{ Device Driver |

e New concept in early 1980°s: simplify kernel
— modularity: support multiprocessors, distributed computing
— move functions to user-space servers, access servers via (IPC)

Microkernel Benefits

Multiprocessor support:

— Servers can be scheduled anywhere

— Only require spin-locks in small microkernel
Real-time support:

— Small kernel allows predictable performance

— Use RM / EDF (aperiodic tasks for best effort)
Modularity:

— Easy to replace — or evolve — functionality

— (and get extensibility too via user-space servers)

Portability:

— Machine dependent code limited to kernel
Security:

— Small kernel easier to verify

The Mach Microkernel

Huser _____._.---'"

Process

O

O

0S8/2
database
software system
emulation
layer
tasks and virtual .
threads IPC memory scheduling

user-space
micro-kernel

Y

 Developed at CMU 1985- (Rashid, Bershad, ...)

 Aimed to support diverse architectures:
— including multiprocessors & heterogeneous clusters!
— hence used message-based IPC (as per RIG, Accent)

e Also targeted compatibility with 4.3BSD, 0S/2, ...

Mach Abstractions

task text region message
threads - - [LI
(>
| t
program-—| C - > ports
counter
> N/
data region secondary
a j — storage

memor
rarbjecfV

e Tasks (unit of protection) & Threads (unit of scheduling)

e |PC based on ports and messages:
— Port is a generic reference to a resource
— Implemented as a buffered communications channel
— |IPCis asynchronous: message passing between threads

Mach Implementation

All resources accessed via IPC

— Protection achieved via port capabilities

— send right, send-once right, receive right
e send of a receive right “teleports” endpoint

— Messages can be in-band if small, or passed by
reference if larger (i.e. via virtual address region)

(mostly) machine independent memory

manaocomaont vin memorv nhlar'l-c
IIIGIIQBCIIICIIL VIO 1T1ICITHTTIV Y UJC\;LJ

— Send IPC to memory object to satisfy page fault
— Since message-based, can even be over network!

Compatibility layers in unprivileged servers
— Mach ‘reflects’ system calls via IPC upcalls

Microkernel Reality

Looks good on paper, but in practice performance was

very poor:
— many user-kernel crossings => expensive
— flexible asynchronous IPC introduces latency
— machine-independent parts lack optimization
— e.g. Chen (SOSP'93) compared Mach to Ultrix:

* worse locality affects caches and TLBs
* large block copies thrash memory system

Other benefits all a bit “proof-by assertion”

— e.g. ‘small kernel” => simplicity, security, modularity, etc...

Basic dilemma:
— if too much in kernel, lose benefits
— if too little in kernel, too costly

By mid 90’s, most people had given up...

L3/L4: Making Microkernels Perform

Liedtke (SOSP'95) claims that problems were a
failure in implementation, not in concept

To fix, you simply have to:
1. minimise what should be in the kernel; and

2. make those primitives really fast.
The L3 (and L4, SOSP'97) systems provided just:
— recursive construction of address spaces
— threads and basic thread scheduling
— synchronous local IPC
— unique identifier support

Hand-coded in i486 assembly code!

L3/L4 Design & Implementation

Address spaces support by three primitives:
1. Grant: give pages to another address space
2. Map: share pages with another address space
3. Flush: take back mapped or granted pages
Threads execute with address space:
— characterised by set of registers
— micro-kernel manages thread -> address space binding
IPC is synchronous message passing between threads:
— highly optimised for i486 (3us vs Mach's 18us)
— interrupts handled as messages too

Does it work? '97 paper getpid() comparison:

Linux 1.68s 223
L4Linux 3.95s 526
MkLinux (Kernel) 15.41s 2050
MkLinux (User) 110.60s 14710

Q: are these micro-benchmarks useful? what about portability?

Extensible Operating Systems

e Extensibility is about building an OS which can be
“extended” (customized) at run time.

e Why do we care?
— Fixing mistakes.
— Supporting new features (or hardware).
— Efficiency, e.g.
e packet filters
e run-time specialisation
— Individualism, e.g.
e per-process thread scheduling algorithms.

e customizing replacement schemes.
e avoiding “shadow paging” (DBMS)

 One of the major OS research themes of the 90’s
— (Presupposes microkernels are The Wrong Way™ :-)

Kernel-Level Extensibility

 Most things can be handled just by allowed bits
of code to be “downloaded” into kernel
— e.g. Linux kernel modules

e requires dynamic relocation and linking
e support for [un]loading on demand

— e.g. NT (XP, Win7) services and device drivers
e well-defined entry / exit routines
e can control load time & behaviour
e Main problem is that we don’t know what the
hell this code will do!

— A bad extension can crash/corrupt/subvert OS
— Above OSes ignore this issue (root, administrator)

e Plus issues with specificity; and interface stability

29

Guaranteeing Safety

 General problem is extremely hard

— viz. ensure extension code has no bugs (i.e.
conforms to some [formal] specification)

— also want to prove termination = tricky

e Some solutions include:
— Trusted Compiler & digital signatures (+ CA)

 Run extension code iff digital signature is kosher
e Kinda sidesteps the real issues, but still useful

— Proof-Carrying Code
— Sandboxing
— Using Language-Based Safety

Proof-Carrying Code

Take code, check it, and run iff checker says it's ok.
— “Ok” means cannot read, write or execute outside some logical

fault domain (subset of kernel virtual address space)

— (note that this is a quite weak notion of safety)
Problem: how do we check the code?

generating proof on fly tricky + time-consuming...
... S0 expect proof supplied and just check proof

Overall can get very complex, e.g. need:

formal specification language for safety policy
formal semantics of language for untrusted code
language for expressing proofs (e.g. LF)
algorithm for validating proofs

method for generating safety proofs

Possible though, see e.g.

Necula & Lee, Safe Kernel Extensions without Run-time
Checking, OSDI 1996; Necula, Proof Carrying Code, PPOPL 1997

Sandboxing

 PCC needs a lot of theory and a lot of work

e Sandboxing takes a more direct approach:
— take untrusted [binary] code as input
— transform it to make it safe
— run transformed code

* First work was Software-Fault Isolation (SFl)

— Scan code, and rewrite stores to make them safe;
“safe” means limit target to subset of kernel VAS, e.g.

sw $tl1, O($t0)-> Dbge $t0, top, fault
blt $t0, bottom, fault
sw $t1l, 0(%$t0)

— In practice, code could access one of a number of
“segments” (each a contiguous region of kernel VAS)

— SFI could also check for dangerous instructions...

Issues with SFI

1. Code expansion

— Each store becomes at least 4 instructions
* in the best case of a single aligned segment

— Spills registers, and can break some code (e.g. CAS)

— Certain static analysis techniques (e.g. DFA) can help
optimize, but still take a performance hit

2. Doesn’t handle reads

— “Safe” extension can still leak sensitive information
3. Doesn’t handle control flow

— Either within extension, or to/from rest of kernel

4. Limited / more difficult for non RISC machines
— Variable length instructions, ret, call gates (?)

Lots of subsequent work to improve this
— BGI (Cambridge) is most recent — see SOSP’09 paper

The SPIN Operating System

SPIN: a research OS designed for extensibility

— Aim to let extensions run in kernel with performance comparable with
procedure call => use language level (compiler checked) safety

SPIN kernel written (mostly) in Modula-3
— Type-safe, with strong interfaces & automatic memory mgt
— (some low-level kernel stuff in C/assembly)
Kernel resources referenced by capabilities
— A capability is an unforgeable reference to a resource
In SPIN, capabilities are Modula-3 pointers
— protection domain is enforced by language name space
— (not via regions of virtual address space as in previous systems)
Extensions based on defined interfaces, but somewhat ungeneral:
— define events and handlers
— applications register handlers for specific events
— e.g. handler for “select a runnable thread”
— what about unforseen needs?
Problems: trusted compiler, locks, termination. . .

The Vino Operating System

Set out to overcome perceived problems with SPIN

Download grafts written in C/C++ into kernel.

— free access to most kernel interfaces

— safety achieved by SFI (sandboxing)

— (must use trusted compiler, and trusted kernel linker)

Prevent quantitative resource abuse (e.g. memory hogging)
by resource quotas and accounting

Prevent resource starvation by timeouts

— grafts must be preemptible =>run in kernel threads

— decide “experimentally” how long graft can hold certain
resources (locks, ipl (?), cpu (?))

— if graft exceeds limits, terminate.
Safe graft termination “assured" by transactions:
— wrapper functions around grafts
— all access to kernel data via accessors
— two-phase locking + in-memory undo stack

The Exokernel (MIT, 1995-)

Application-Level Application Application
Code Code
Library Library
Operating Operating Operating
User-Level System System System

Kernel-Level Resource Mu|tip|ex0r Ex{]k{”*nﬁ'z

Frame Bu;‘?"eri TLB E Memory E GPUE Network E Disk

Hardware
e “Exterminate All OS Abstractions!” since they:
— deny application-specific optimization
— discourage innovation
— impose mandatory costs
e Leads to Exokernel: minimal resource multiplexor on top of
which applications “choose” their own OS abstractions...

Building an Exokernel

Key idea: separate concepts of protection and abstraction
— Protection is required for safety
— Abstraction is about convenience
— Typically conflated in existing OSes, e.g. filesystem instead of
block-device access; sockets instead of raw network
If protect at lowest level, can let applications choose their
own abstractions (file system or DB or neither; netw proto)

Exokernel itself just multiplexes “raw” hardware resources;
applications link against library OS to provide abstractions

=> anf nvfnnmhlllhl accountabilitv & pnrfnrm:nrn

I\‘\nll‘l”lll‘ u‘vv“ll‘u"lll‘

Still need some “downloading”:

— Describe packets you wish to receive using DPF; exokernel
compiles to fast, unsafe, machine code

— Untrusted Deterministic Functions (UDFs) allow exokernel to
sanity check block allocations.

Lots of cheezy performance hacks (e.g. Cheetah)

Nemesis (Cambridge, 1993-)

OS designed for soft

real-time applications |.........

Three principles:

Isolation: explicit
guarantees to apps

Exposure: multiplex
real resources
Responsibility: apps
must do data path

NTSC is minimal

resource multiplexor

— Just does real-time

scheduling & events
No device drivers

Alpha, x86, ARM

System
Process

Device
Driver

Nemesis versus Exokernel

Both are vertically-structured OSes:

— Small bit at bottom does secure multiplexing

— Applications choose functionality to suit them
Differences in motivation:

— Exokernel: extensibility & performance

— Nemesis: real-time (accountability) & minimality
Differences in virtual addressing:

— Exokernel: Unix-style address space per application

— Nemesis: Single address space (64 bits) shared by entire
system ... but protection domains per application

Differences in linkage:
— Exokernel: standard C library
— Nemesis: strongly-typed IDL, module name space

And of course, differences in marketing ;-)

Virtual Machine Monitors

e An alternative system software structure

e Use virtual machine monitor (or hypervisor)
to share h/w between multiple OSes

* Why virtualize?

. Virtual Machine : | Virtual Machine :

— H/W too powerful — -

— OSes too bloated
— Compatibility

— Better isolation
— Better manageability

— Cool and froody

IBMs VM/CMS

e VMM idea pioneered by IBM
— 1960’s: IBM researchers propose VM for OS 360
— 1970’s: implemented on System/370
—1990’s: VM/ESA for ES9000
— 2000’s: z/VM for System Z

e VMM provides OS with:

— Virtual console

— Virtual processor

— Virtual (physical) memory
— Virtual I/O devices

IBMs VM/CMS

Key technique is trap-and-emulate:
— Run guest OS (in virtual machine) in user mode
— Most instructions run directly on real hardware

— Privileged instructions trap to VMM, which
emulates the appropriate behaviour

Need some additional software to emulate
memory management h/w, |/O devices, etc

IBM’s VM provides complete virtualization
— can even run another VMM

— (and people do — up to 4-levels deep!!)
Success ascribed to extreme flexibility

And then...?

VMMs incredibly successful in industry, but
mostly ignored by academic researchers

— Instead did microkernels (& extensibility, etc)
Can be ascribed to a difference in focus
VMMS:

— Focus on pragmatism, i.e. make it work!
— Little design freedom (hardware is the spec)
— Few chances to write research papers

Microkernels:
— Focus on ‘architectural purity’

— Design whatever you want
— Write a paper about each design decision ;-)

Similarities and Differences

Both approaches advocate:

— A small lowest layer with simple well-defined interfaces,

— Strong isolation/security between components; and

— Claim benefits of modularity, extensibility, robustness, security
But: Different entity multiplexed by lowest layer:

— VMMs: operating systems (few, big)

— ukKerns: tasks or threads (many, small)

But: Different basic abstractions provided:
— VINMMec: clocelv alioned with hardware co have exnlicit CPlI
VW IVIIVIJD. UIUJ\—IY UIIBII\.—M VVIRLIT TITUT AVWVWUIT W DWWV TT1TUuvw \.al\rlll\all. Nl \J
upcalls, maskable asynchronous events, etc
— uKerns: somewhat higher level, so get threads, transparent
preemption, capabilities, synchronous IPC
But: Different support for address spaces:
— VMMis: >1 address space per scheduled entity

— uKerns: >1 scheduled entity per address space

Disco (Stanford, 1995)

e VMM idea regained popularity in mid 90’s
e Disco was desighed to support cc-NUMA:
— Commodity OSes didn’t do well on NUMA

— Tricky to modify them successfully...
— ... but even trickier to write a new OS from scratch

* Instead use Disco hypervisor (VMM):

— Disco manages inter-processor interconnect,
remote memory access, allocation, etc

— Fakes out UP or SMP virtual machine on top
— (Mostly) unmodified commodity OS runs in VM

Disco Architecture

20|)| [@)]] [

0S SMP-0S 0S 0S Thin OS

PE PE PE PE PE PE PE PE

% InterConnect 5

e Virtual CPU looks like a real MIPS 10000

— Trap-and-emulate for privileged instruction (including
TLB fill: ‘physical’->‘machine’ mapping)

— Some changes to OS (buffer cache, NIC) for sharing
e Also enables use of special-purpose OSes...

VMware

Startup founded 1998 by Stanford Disco dudes
Basic idea: virtual machines for x86

One problem: x86 not classically virtualizable!
— Visibility of privileged state.
e e.g. guest can observe its privilege level via %cs.

— Not all sensitive instructions trap.

e e.g. privileged execution of popf (pop flags) modifies on-chip
privileged state... but doesn’t trap if executed in user mode!

e => cannot just use trap-and-emulate
To address this, use dynamic binary rewriting
— only of kernel; user-mode code executes unmodified

Also need to manage guest copy of hardware
page-tables (and other gory x86 stuff)

— Use shadow page tables

VMware Implementation

e DBR: translate at run-time, and on-demand
— Use trap-and-emulate to track execution mode
— Engage translation when enter kernel mode

e Works on translation units (TUs): up to 12 x86
instructions (or less if hit control flow insn)
— Translate from x86 to { safe-subset of x86 }

— Sensitive instructions replaced with either explicit
traps, or user-space emulation code

— Each TU turns into a compiled code fragment: CCF
— CCF’s linked together / optimized over time

e e.g.to amortize cost of traps

* Can be fragile (imprecise) => not 100% compat

VMware Implementation

I”

Shadow page tables used to track the “physica
to “machine” address mapping:

— Need to translate guest page tables into usable ones

— Much more difficult than Disco (MIPS) since x86 has
hardware defined page tables

e e.g. accessed and dirty bits; 32/PAE/64; superpages; etc.
— Similar tricks needed for segmentation

DBR and shadowing lead to a performance hit...

Emulating I/O devices hurts even more

— VMware address this by writing special device drivers
for display, NIC, etc

Modern CPUs have hardware support to help
with various aspects (VT/SVM, EPT/NPT)

— But a good s/w VMM can sometimes outperform

Denali (U. Washington, 2001)

Motivation: new application domains

— pushing dynamic content code to caches, CDNs
— application layer routing (or peer-to-peer)

— deploying measurement infrastructures

Use VMM as an isolation kernel

— security isolation: no sharing across VMs

— performance isolation: VMM supports fairness mechanisms (e.g. fair
gueuing and LRP on network path), static memory allocation

Aim for decent overall performance by using paravirtualization
— full x86 virtualization needs gory tricks

— instead invent “new” x86-like ISA

— write/rewrite OS to deal with this

Only a proof of concept implementation:

— Isolation kernel based on Flux OSKit

— Can only run copies of one specially-constructed single-user guest OS
with user-space TCP/IP stack plus user-level threads package

— (cannot run commodity operating systems)
— No SMP, no protection, no disk, no QoS

XenoServers (Cambridge, 1999-)

Vision: XenoServers scattered across globe,

usable by anyone to host services, applications, ...

— Location is key, not cycles (so not quite ‘the cloud’)

Use Xen hypervisor to allow the running of
arbitrary untrusted code (including OSes)

— No requirement for particular language or framework
Crucial insight:

— use SRT techniques to guarantee resources in time
and space, and then charge for them.

— share and protect CPU, memory, network, disks
Sidestep Denial of Service

Use paravirtualization, but real operating systems

Xen 1.0

Work on Xen started in late 2001 / early 2002

Xen 1.0 was small (<50K LOC):
— 16-bit start-up code (re-used from linux)
— SRT scheduler (BVT), scheduler activations and events
— device drivers for timers, NICs, IDE, SCSI.
Special guest OS (Domain 0) started at boot time:
— privileged interface to Xen to manage other domains
Physical memory allocated at start-of-day:
— guest uses buffered updates to manipulate page-tables
— aware of “real” addresses => bit awkward
Interrupts converted into events:
— write to event queue in domain
— domain “sees” events only when activated
GuestOSes run own scheduler off virtual or real-time timer

Asynchronous queues used for network and disk

Xen 1.0 Architecture

Domain O Domain 1 Domain 2 Domain 3

User User User

Unmodified User-
Software Software Software

Level Application
Software

GuestOS GuestOS GuestOS
(XenoLinux) (XenoBSD) (XenoXP)

Xeno-Aware Xeno-Aware Xeno-Aware IE-HU-AWErE
Device Drivers Device Drivers Device Drivers Device rivers

Ported ‘Guest’
Operating Systems

Xen Hypervisor

Hardware

(Xen 1.0 Figure from SOSP 2003 Paper)

Relative score to Linux

Xen 1.0: System Performance

11

567
567
554
550
263
P71
1714
518
514

1633

1.0

0.9

0.8

0.7

0.6

0.5

0.4

172

0.3

306

0.2

0.1

0.0
L X \Y, U L X \Y, U L X \% U L X Vv U

SPEC INT2000 (score) Linux build time (s) OSDB-OLTP (tup/s) SPEC WEB99 (score)

Benchmark suite running on Linux (L), Xen (X), VMware Workstation (V), and UML (U)

 Aim to compare real workloads

The Evolution of Xen

e Xen 2 (Nov 04) included many changes, e.g

— Moved device drivers into driver domains

— Support for live migration of virtual machines

, _Iterative Progress of Live Migration: SPECweb99

500 =

400

Transfer Rate (Mbit/sec)
=

1350 Clients (90% of max load), B00MB VM

Total Data Transmitted: 960MB (x1.20)

Area of Bars:
] ¥M memary transfared

Memory dirtied during this iteration

In the final iteration, the domain is suspended. The remaining
18.2 MB of dirty pages are sent and the VM resumes execution
on the remote machine. In addition to the 201ms required to
copy the last round of data, an additional 9ms elapse while the
VM starts up. The tofal downtime for this experiment is 201ms.

18.2 MB &

15.3 MB
14.2 MB

The first iteration involves a long, relatively low-rate transfer of
the VM's memory. In this example, 676.8 MB are transfered in
54.1 seconds. These early phases allow non-writable working

16.7 MB

7

set data to be transfered with a low impact on active services. SeaMEE
126.7 MB 30.0MB

0
0 // s:o 5'5 B0 65
Elapsed Time (sec)

The Evolution of Xen

Xen 3 (Dec 05) included:

— SMP guests

— H/W-assisted full virtualization (VT, SVM)

— 32/36/64-bit support

Many enhancements since:

— 32-on-64, COW storage, XSM, VTD, instruction

emulation, shadow2, HAP, NUMA, page sharing, ...

— Releases for client (XClI) and cloud (XCP)
Latest stable release: Xen 3.4 (May 09)
Development (-unstable) approaching 4.0...

More info (and code!) from
http://www.xen.org/

VMMs: Conclusions

e Old technique having recent resurgence:
— really just 1 VMM between 1970 and 1995
— now at least 10 under development

e Why popular today?

— OS static size small compared to memory

— (sharing can reduce this anyhow)

— security at OS level perceived to be weak

— flexibility (and “extensibility”) as desirable as ever
e Emerging applications:

— Internet suspend-and-resume:

e run all applications in virtual machine
* at end of day, suspend VM to disk, copy to other site, & resume

— Multi-level secure systems:

* many people run VPN from home to work, but machine shared for
personal use => risk of viruses, information leakage, etc

* instead run VM with only VPN access
— Data-center management & The Cloud™

Persistent Storage

e File-systems and databases (and users!) want
big, fast, reliable persistent storage

e Disks are cheap, so can scale amount of
storage by just using a bunch of disks (JBOD)

— But: reduced reliability if any disk fails

 RAID = Redundant Array of Inexpensive Disks
— Set of techniques for building better volumes
— Increase performance through striping

— More reliable via redundancy
e Simple mirroring (replication)
e Generalized parity (Reed-Solomon)

Example: RAID-5 Storage

RAID 5

AlBlocks B|Blocks C|Blocks D|Blocks E|Blocks

— D

Parity
Generation

COFYRIGHT & 1955, 1997, 1998, 1555 ADVANCED COMPUTER & NETWORK CORPORATION

Generate parity via XOR on writes, check on reads
Faster reads (five spindles active at a time), and maybe

faster writes — depends on read/modify/write issues
Additional reliability (tolerate failure of one disk)
Overall: provides scalable high quality storage

Distributed Storage

Even better if make storage distributed
Separate data management from applications

Why is this a good idea?
— Centralized data management

e Provisioning, Security, Backup, etc
— Even more scalability
— Location fault tolerance
— Client mobility (remote access)

Two may options here: NAS and SAN

NAS: Network Attached Storage

e Distributes storage at the FS/DBMS level
e Runs over regular TCP/IP (or NetBIOS)

e Server (regular PC or specialized box) provides
access via NFS, CIFS, SQl, ...

SAN: Storage Area Network

Distributes storage at the block level, accessed via
encapsulated SCSI commands

Runs over specialized fiber channel network (or, more
recently: iSCSI, ATAoE, FCoE)

File-systems / DBMS run directly on hosts

NAS versus SAN

 NAS is the most commonly used
— e.g. NFS server, CIFS server, NetApp filer, etc
— Fairly simple RPC-based client software
e To read “/etc/passwd” just issue two RPCs to server

* SAN more high-end (SSS and performance)

— Performance due to:
e Custom (lossless, non-blocking) network, RDMA
* High-end storage arrays with lots of NVRAM cache
e And partly architectural (bottleneck avoidence)
— Cost from dedicated HBAs + switches (and admins)
can be reduced with gigE.. but also lower perf
— Storage arrays still mostly extremely expensive

— To read “/etc/passwd” issue a whole bunch of SCSI
commands...

Distributed Storage: Topics

 We'll look at a number of systems and issues
for both NAS and SAN systems

e Challenges include:
— Handling failures (node, network, disk);
— Providing strong (or reasonable) consistency;
— Availability of data under various circumstances;
— Security (confidentiality, integrity, deniability); and
— Performance (local- or wide-area or both)

e First up: classic client-server systems

NFS: Networked File System

 NFS, developed by Sun, aimed to provide
distributed filing by remote access (RPC)

e Key design decisions:
— High degree of transparency
— Tolerant of node crashes or network failure

e First public version, NFS v2 (1989), did this by:
— Unix file system semantics (or almost)
— Integration into kernel (including mount)
— Simple stateless client/server architecture

NFS: Simple Client Server

Client side Server Side

User Program

Syscall Level Syscall Level
VES Layer VFS Layer
\@\ 3 / \@
Local FS NFS Client NFS Server Local FS

@ RPC Request T
RPC Response

* Client uses opaque file handles to refer to files
e Server translates these to local inode numbers
e SunRPC with XDR running over UDP (originally)

NFS: Mounting

/ /
/N N
/tmp /mnt /home /bin

x/ \V

e Dedicated mount RPC protocol which:
— Performs authentication (if any);
— Negotiates any optional session parameters; and
— Returns root filehandle

NFS is Stateless

Key NFS design decision to make fault
recovery easier
Stateless means:

— Doesn’t keep any record of current clients
— Doesn’t keep any record of current file accesses

Hence server can crash + reboot, and clients
shouldn’t have to do anything (except wait ;-)

Clients can crash, and server doesn’t need to
do anything (no cleanup etc)

Implications of Stateless-ness

No “open” or “close” operations
— use lookup(<pathname>)

No implicit arguments

— e.g. cannot support read(fd, buf, 2048)
— Instead use read(fh, buf, offset, 2048)

Note this also makes operations idempotent
— Can tolerate message duplication in network / RPC

Challenges in providing Unix FS semantics...

Semantic Tricks

e File deletion tricky — what if you discard pages
of a file that a client has “open”?
— NFS changes an unlink() to a rename()

— Only works for same client (not local delete, or
concurrent clients — “stale filehandle”)

e Stateless file locking seems impossible
— Add two other daemons: rpc.lockd and rpc.statd
— Server reboot => rpc.lockd contacts clients
— Client reboot => server’s rpc.statd tries contact

Performance Problems

* Neither side knows if other is alive or dead

— All writes must be synchronously committed on
server before it returns success

e Very limited client caching...

— Risk of inconsistent updates if multiple clients
have file open for writing at the same time

e These two facts alone meant that NFS v2 had
truly dreadful performance

NFS Evolution

e NFSv3(1995): mostly minor enhancements
— Scalability

e Remove limits on path- and file-name lengths
e Allow 64-bit offsets for large files
e Allow large (>8KB) transfer size negotiation
— Explicit asynchrony
e Server can do asynchronous writes (write-back)
e Client sends explicit commit after some #writes

— Optimized operations (readdirplus, symlink)

e But had major impact on performance

NFS Evolution (2)

e NFS v4 (2003): major rethink

— Single stateful protocol (including mount, lock)
— TCP (or at least reliable transport) only

— Explicit open and close operations

— Share reservations

— Delegation

— Arbitrary compound operations

e Actual success yet to be seen...

The Andrew File System (1983)

A different approach to remote file access

Meant to service a large organization
— Scaling is a major goal
Basic AFS model:

— Files are stored permanently at file server
machines

— Users work from workstation machines
e With their own private namespace
— Andrew provides mechanisms to cache user’s files
from shared namespace

Even “local” accesses go via client

Vice, Virtue and Venus...

program

UNIX kernel

User Venus
program

UNIX kernel
||

=

Venus
~User

program

UNIX kernel

Virtue RPC
Virtue RPC

Virtue RPC

Virtue RPC
Virtue RPC

UNIX kernel

UNIX kernel

Basic Idea: Whole File Caching

 Andrew caches entire files from the system.
— On open Venus caches files from Vice
— On close, [modified] copies are written back

 Reading and writing bytes of a file are done on
the cached copy by the local kernel

e \Venus also caches contents of directories and
symbolic links, for path-name translation

— Exceptions for modifications to made directly on
the server responsible for that directory

Why do Whole-File Caching?

Minimizes communications with server

— Less network traffic

— Better performance

Most files used in entirety anyway (prefetch)
Simpler cache management

However does requires substantial free disk
space on workstations

— Can be an issue for huge files
— Later versions allow caching part of a file

Andrew Shared Namespace

An AFS installation provides a single, globally
shared file-system namespace

A fid identifies a Vice file or directory

A fid is 96 bits long; three 32-bit components:
— volume number (a unit holding files of a single client)
— vnode number (~=an inode for a single volume)

— uniquifier (generation number for vnode numbers,
thereby keeping certain data structures compact)

High degree of name and location transparency
— Fids do not embed any notion of location

— Every server stores volume->server mapping

AFS Consistency

Aiming to provide “local” semantics

Implemented by callbacks:

— On open, Venus checks if client already has copy

— If not, then requests from Vice server that is
custodian of that particular file

— Server returns contents along with a callback
promise (and logs this to durable storage)

Whenever a client sends back an updated
copy (e.g. on close), invoke all callbacks

Same scheme used for volume map

AFS Pros and Cons (1)

Performance

— Most file operations are done locally (and most files
typically have one writer in a time window)

— Little load on servers beyond open/close timescales
Location transparency

— Indirection via volume map makes it easy to move
volumes

— Also can do limited replication (read-only files)
Scalability

— Initial design aimed for 200:1 client-server ratio

— Indirection and caching makes this easily achievable
“Single System Image”

— Clients (workstations) essentially interchangeable

AFS Pros and Cons (2)

 Good Security

— Client machines untrusted

e only Vice servers trusted
— Strong initial authentication via Kerberos
— Can use encryption used to protect transmissions

e But:

— Complex and invasive (“take over the world”)

— Usability issues, e.g. ticket expiration, weird “last
close wins” semantics for concurrent update

 Ultimately AFS popular only in niche domains

Coda (CMU, 1987+)

e A system supporting optimistic replication
— Allow copies of data which may not be up-to-date
— Essentially client/server (developed from AFS)

 Motivated by the emergence of laptops

— When connected to network, laptop operated just
like any other andrew workstation

— When disconnected, however, AFS allowed no file
updates once the leases expired

— This was fine for temporary outages in AFS (e.g.
reboot or network glitch), but not for mobile use

Coda Operation

e Change the Venus cache manager to operate
in three different modes:

1. Hoarding

— “Normal” operation

2. Emulating

— Disconnected - >

3. Reintegrating
— Reconciling changes back to the server

 Few changes required to Vice or Virtue

Coda: Hoarding

|H

 “Normal” operation a little different than AFS

— Aggressively cache copies of files on local disk

e Add a Hoard Database (HDB) to Coda clients

— Specifies files to be cached on local disk
— User can tweak HDB, and add priorities

e Laptop disks were small back in the day

— Files actually cached a function of hoard priority
and actual usage — can pickup dependencies

Do hoard walk periodically (or on request)
— ensure disk has only highest priority files

Coda: Emulating

e When disconnected, attempts to access files
not in the cache appear as failures to apps

e All changes made to anything are written in a
persistent log (the client modification log)

— In implementation was managed by using
lightweight recoverable virtual memory (LRVM)

— Simplifies Venus itself

e Venus purges unnecessary entries from the
CML (e.g. updates to files later deleted)

Coda: Reintegrating

e Once a coda client is reconnected, it initiates
a reintegration process
— Performed one volume at a time
— Venue ships replay to each volume
— Volumes execute a log replay algorithm
— Basic conflict detection and ‘resolution’

e Lessons learned:

— Reintegration can take a long time (need to have a
fast network)

— Conflicts rare in practice (0.75% chance of update
of same file by two users within 24 hours)

Coda: Summary

 Generally better than AFS
— Inherits most AFS advantages, but adds more
— e.g. replicated Vice servers with writable replicas

— e.g. CML can end up coalescing updates (or
removing them entirely) => less traffic, server load

* Much simpler than earlier schemes (e.g. Ficus)
— Client only needs to reconcile with “its” server
— Servers themselves strongly connected + robust
— Garbage collection straightforward

File Systems for SANs

Recall that SAN has a bunch of “disks” (volumes)
accessible via encapsulated SCSI

But most file-systems don’t expect multiple
independent clients => need coordination

Two main ways to build a shared-disk file-system:
asymmetric or symmetric

Asymmetric simplest:

— Have dedicated metadata server (or servers) with
exclusive access to metadata disk (or disks)

— Clients do directory / inode lookups and allocation
requests via the metadata server

— Once have information, can directly read/write disks

Symmetric SDFS

e Unfortunately asymmetric systems can suffer
from performance bottlenecks / failures

A symmetric shared disk file system instead
manages coordination between set of clients
— Requires distributed lock manager, etc
— Care needed to avoid deadlock
e Becoming more mature; examples include:
— RedHat Global File System [GFS]; and
— IBMs General Parallel File System [GPFS]

e Also get hybrid systems using object storage...

Redhat GFS

e Splits problem into two layers:

 Bottom layer: network-accessible logical volumes

— Assume basic LUN (or volume or disk) is accessible by
all nodes; range of solutions for price points

e GNBD: software to export partions/disks of linux boxes
e i{SCSI: encapsulated SCSI to unix server or low-end array
e Fiber channel: encapsulated SCSI to high perf array

— Can add multipath software/hardware for greater
fault tolerance (and potentially throughput)

— Build cluster LVM on top of this:

e Allows creation of logical volumes which span many LUNs
e Software layer supports striping, resize, snapshot, etc

Redhat GFS

File system layer sits on top of logical volumes
Almost standard Unix semantics

GLUM (or other) distributed lock management
required for metadata updates and allocation

— Uses “linux-ha” (heartbeat2) for transparent
failover between replicas of lock managers

Performance can be good, but metadata
managers are complex and slow

Network Attached Secure Disks (CMU)

* NASD: basic idea is a less stupid SAN

e Still have shared disks, but:
— Disks export a variable length object interface
— Disk does create, read, write (including allocation)
— Can use this to build DBMS, file system, etc

e “Secure”?
— confidentiality and integrity for transfers

— Disks know (a little) about access control
* File manager issues clients capabilities
e Updates NASD[s] to enable direct access
e Revocation possible too (“password capabilities”)

NASD Summary

Basically gives a “half way house” between
symmetric and asymmetric SAN systems

Data path is fast and secure

Off loads work from file-manager
— E.g. NFS on NASD requires 10x less mgr cycles

Can get parallelism (multiple NASDs can be
accessed in parallel)

Commercially available via Panasus (FAST'08)

Serverless Network File Systems

e New network technologies are much faster,
with much higher bandwidth

— Going over the net can be quicker than local disk!

e Serverless network file systems exploit this:
— Peer machines providing file service for each other
— High degree of location independence
— Make use of all machine’s caches
— Provide reliability in case of failures

Example: xFS (Berkely)

e Part of the NOW project
— Designed for high-speed LANs

— Fully distributed file system — no single server
— (Think P2P in the local area)

* |Inherits ideas from several sources
— Log-structured file systems

— Zebra (network raid)
— Multiprocessor cache coherence

How can we distribute a file server?

 Well what does a file server actually do?
— Stores file data blocks on its disks
— Maintains file location information
— Maintains cache of data blocks
— Returns data to clients on request
— Manages cache consistency for its clients
* XFS nodes work in collaboration to provide the
above functions:
— Any data/metadata can be located at any machine
— Each machine takes on one or more roles

Example: xFS (Berkely)

Client

Manager

Manager

Storage

server

Client

Storage
server

Storage
server

Client

Manager

* Roles include client, manager & storage server
— Client is just the client of the system as usual
— Manger handles metadata + cache coherence
— Storage server stores blocks

e All machines can also cache and clean (see later)

So how does it work?

 Assume client has looked up file in a directory
— Results in index number (equivalent to inode #)

e Client uses manager map to find the metadata
manager for this file/directory:
— Manager map is globally replicated

— Maps clusters of index numbers to managers;
so << than #files (and can avoid updating)

e Client can now send request (e.g. read N bytes
from offset O) to manager

— Assuming it’s not locally cached already

What does manager do?

e Manager maintains two data structures
— IMAP translates index numbers to log addresses
— Cache map tracks who has copy of data

* |f manager receives a request, it first checks

the cache map — if someone already has data
cached, then redirect request to them

— Always prefer cached to disk, even over network

Getting a Block from a Remote Cache

o

» »
» »

Request Block —

Manager Cache Unix
Map Consistency State Cache
Client MetaData Server Caching Machine

What if we need to go to disk?

e XFS combines two previous techniques to handle
persistent storage:
— Network RAID via stripe groups
— Log-structured storage
e Stripe groups pretty simple:
— Take e.g. 4 storage servers as a stripe group
— Write blocks 0O, 1, 2 on servers 0, 1, 2; parity on 3
— A stripe group defines a logical volume

e Set of inodes, etc

— Track stripe groups in globally replicated stripe map
e Limited in size, and with a fixed stripe size
e (However can recursively mount volumes as per Unix)

Log-Structured Storage

e Based on LFS (Selzer)

— Argues that file-system performance is poor
mostly due to seeks (reads mostly cached)

— Hence consider disk as infinite append-only log
— All writes (data and metadata appended to log)

— Need some extra structures to locate inodes, most
recent version of data blocks, etc

e XFS uses this technique for stripe groups
— Chiefly to avoid read/modify/write issues

Batched updates with xFS

Log segment

Fragment

\

€— Client splits segment
and computes parity

fragment

Parity fragment

v

1

Storage servers

K"’/R

w e W

2] 3] [
?

Send fragments to storage servers

Back to example: what if cache misses?

e Manager for this file must consult its IMAP
— IMAP translates from index# to address of inode

e “Address” is a log address, which is a triple:
— <stripe group id, segment id, segment offset>
— Segments are chunks of log managed separately
— (log overall is chained list of segments)

e After reading the inode, have log address of
relevant blocks for read...

Reading a block from Disk

Directory Manager lmap Stripe Disk
map group
map

Inode

‘:x. 3 i » Data
6 block

Stripe Disk

group
map

 Writes operate in a similar fashion:

e Simply append updated data block(s) if overwriting;
e Or write new inode & data block(s) otherwise

Other Issues

 Cache coherence
— XFS manages this on per [logical] block basis

— To write a block, client requests token from the
relevant metadata server

— Metadata server retrieves token from whoever
currently has it, and invalidates other caches

* Log cleaning
— Append-only storage will eventually fill up
— XFS relies on responsible distributed cleaners

XFS Summary

Novel system aspects include:

— Serverless design

— Aggressive cooperative caching

— Combined log-based / striped storage

Performance results on early prototype
showed up to 10x improvement over NFS

— Though only compared against single NFS server
But only partial story on fault tolerance
And relies on trusting quite a lot of machines...

Farsite (MSR, OSDI 2002)

A more recent serverless file system

— Designed to exploit large number of desktop
machines in universities / corporations

— Less trusting than xFS ;-)
e Basic model puts machines into one of 3 roles
— Client machines: access data
— Directory group members: handle lookups
— File (storage) hosts: store data

e Usually a machine has at most two roles

Farsite Operation

Client machines interact with the user

Directory groups collectively manage file
information using PBFT:

— BFT = Byzantine Fault Tolerance:

— Every machine has own copy of file metadata
— 3f+1 machines can tolerate up to f faults

Conceptually clients issue read requests to
directory groups who reply with data; when client
updates a file, send update to directory group

However high replication cost for BFT (e.g. 7 or
10) would mean high storage costs

Farsite Enhancements

e To solve this, Farsite introduces file hosts

— Directory groups just maintain cryptographic hash
of file contents => can detect byzantine file host

— Hence can tolerate N-1 failures of file hosts, and
so can replicated these to a smaller degree

e Farsite also allows whole file caching at clients
— Directory group can issue lease to client (c/f AFS)
— Client can then delay pushing updates => big win
— Get both exclusive and read-only variants

~
~
(=

Scaling a Farsite System

e Design aimed for 10° hosts
— Must avoid directory group performance bottleneck
— (Availability can also be an issue)

e Farsite solves this by allowing DG quorum to
delegate part of its name space to a new DG

— Due to hierarchical namespace nature, clients cache
hints about which DG owns which prefix

— If contact DG for path /a/b/c/.../z.txt, it replies with
delegate info for longest prefix it knows

— Subsequently use this DG directly for similar accesses
— If stale, DG will inform client, who invalidates hint

~

Farsite: Summary

Security/trust focused serverless system

In addition to BFT, makes extensive use of PKI
— Every user and machine has key pair
— Used to validate machine roles and user accesses

Did implementation on NT

— Stacked approach with “switch” kernel module
choosing between local and remote (CIFS)

— Performance eval with 4 node DG and 1 client

Anecd
— Des

otal evidence that it didn’t work well
ktop machines turned off a lot (green!)

— Cou

d be “fixed” by having dedicated file hosts

~
~
N

LBFS (MIT, SOSP 2001)

e Motivation:

— More an more people have devices with wireless
access (laptops & PDAs, cellular modems or WiFi)

— However NFS/CIFS suck over high latency / low bw
e LBFS is file system for such networks

— Avoids optimistic caching to avoid conflict issues
— Eschews remote login since very limited use cases
e Key idea:

— Extremely aggressive compression in the air

~
~
w

Aggressive Compression?

Need to compress an order of magnitude
oetter than traditional techniques

e How can we do this?
e Key idea:

— Exploit similarities between server file-system and
client persistent cache

— Essentially have massive “codebook” we can use
e LBFS identifies ‘chunks’ of files by hash value

— Instead of transferring chunk, just send hash

~
~
BN

In More Detail

Client maintains persistent cache on disk
Server maintains full file system

Both divide files into chunks, and for each chunk
computes secure SHA-1 hash

Both have index from hashes to file chunks
Then when a client wants to e.g. write a portion
of a file, just transfers hashes

— |If server already has those chunks can use them;
replies to client with any misses, and client sends data

— Can do similar thing on read (server sends hashes...)

~
~
9]

This is going to work but...

File X

File X after
one insertion

=== The two files do not have a single block in common!

e Also affects fetch of files never seen before...

~
=~
(o))

So here’s the clever bit

e Rather than split files into fixed-size chunks,
LBFS divides them based on content

e Compute Rabin fingerprint over every
overlapping 48-byte region of a file
— Incremental “stream hash” so computing fast

* Define chunk boundary when low-order 13
bits of hash hits a magic (system wide) value
— If hash uniform, expect 8K chunks on average
— Use min (2K) and max (64K) for pathological cases

[
N

How it works

A file X partitioned into three chunks...

Same file X after one insertion inside middle chunk

k New Chunk v

Chunk boundaries are arbitrary and identified
by the content of their boundary regions

Y
~
(%]

LBFS Protocol

 NFS with some changes:
— Uses leases for close-to-open consistency

e callbacks with limited lifetime; a few seconds
— Practices aggressive pipelining of RPC calls
— Compresses (gzip) all RPC traffic

 Reads/writes use additional calls not in NFS

— GETHASH for reads
— MKTMPFILE, and three others for writes

e Server ensures atomicity of updates by
writing them first into a temporary file

~
~
©

Implementation

chunk ___ LBFS P _ LBFS___ chunk
index client Server index
_ xfs NFS
client Server

e Stateful transport for leases/callbacks etc

— need modified/proxy TCP for ok perf on wireless

 Chunk database consistency requires some effort

Evaluation (I)

e Compared upstream and downstream
bandwidth of LBFS with those of

— CIFS (Common Internet File System)
— NFS
— AFS

— LBFS with leases and gzip but w/o chunking
e Used a variety of “productivity” workloads
 Downstream benefits most from chunking

Evaluation (I1)

Mormahzed bandwid dh

CIFS
NFS

[AFS
[] Leases+Gzip

LBFS, new DB
Il LEBFS

1.0 -

0.5 7

0.0-

MSWord oce ed

* |[n each case:
—first four bars show upstream bandwidth;
—second four show downstream bandwidth

122

LBFS Summary

Designed for low bandwidth (and possibly
high latency) networks

Achieves one order of magnitude less
bandwidth than conventional file systems
— Beats Shannon unless you’re careful ;-)
Related work includes:

— rsync (rabin fingerprints);

— and some ideas from web caching (e.g. transmit
the address of data in the cache of the receiver)

Still pretty cool though!

Venti (FAST 2002)

 Motivation: Archival Storage (viz. backup)

— Traditionally uses tapes or optical drives, but these
are slow (and weird to access)

— Why not use magnetic disks? Cheap & fast
e But subject to overwrite
e Ventiidea: use magnetic disks to produce an
immutable (write-once) store
— Every file update is a new ‘version’
— (c/f Elephant, Plan 9, etc)

e But what about directories?

Key Idea: Content Hash Addressing

-
=

Root H(P,) —s

eavWaa

File contents are just a
set of blocks

Inode is a table/tree of
block content hashes

Directories map names
to inode content hash

And so on recursively...

Some nice properties

e |f a file changes (say one block), then that
blocks content hash changes

— Hence inode changes; and directory changes;
— And so on right up the tree

 Hence fingerprint (= hash) of root directory
uniquely captures entire file system!

e Same applies for any arbitrary subtree
— Venti used this to implement ‘vac’ archival tool
— Just creates 45 byte file including fingerprint ;-)

(=
N
[e))

Implementation Challenges

 If all blocks are addressed by content hashes,
how do we actually find them on the disk?

e Venti uses log-based (append only) storage
— Storage is arranged as an log of arenas

— Each arena has a header and trailer each with
some metadata (and also used for recovery)

— Arena stores data blocks from the front (after
header), and “directory” blocks from the back

e “directory” here is just used to locate particular data
blocks in this arena based on hash value

(=
N

Storage Layout

data log arena data blocks
arena, header _header, |
arena, data
arena, data header, [€

blocks \ ----- data

directory
directory .. header,
trailer offset
header,
oftset

/

block header

magic

e Ok, but still need to scan to locate blocks?

Caches and Indexes

Network .
Yentt Server

Block Index e
Cache Cache m

@ Index

 To improve performance, Venti adds:

| s

Client

Client

Client

— On disk index (hash->log location)
— Index cache (in memory cache of index)
— Block cache (direct hash->block function)

Evaluation

Applied Venti to historical log of two plan-9
file servers, bootes and emelie

— Spanning 1990 to 2001
— Used plan-9 since does write-once storage

522 user accounts, 50-100 active all the time
Numerous development projects hosted

Several large data sets in used

— Astronomical data, satellite imagery,
multimedia files

Venti versus Plan-9 & Active FS

Jukebox
—m— eanti

——

—e— Active file system

Emelie: storage size

Bootes: storage size

L Juk0

FJan-01

- Juk00

F Jan-00

FJukgb

+ Jan-99

L Jul-88

- Jan-98

b Julkg7

Jan-98
Julg7
Jan-87
Julss
Jan-95
Juhg5
Jan-85
Jul-s4
Jan-84
Julkgd
Jan-93
Jukg2
Jan-82

Juki

Jan-81

Jul-80

qgT—-——-—-——-——-"—-—--" - - - - - - - - - — — — - - — - - - — =

20

qg+----—-—-——-" - - - - - — - — — — —

a+——————— — — —

_
_
_
_
_
_
_
_
_
_
_
_
_
_
)
i

—r

1

(g9)ozig

Emelie: ratio of archival to active data

| to active data

io of archiva

Bootes: rat

—E—Vanti / Active

E Jul01

F Jan-01

 Jul00

- Jan-00

L Jul-88

L Jan-88

L Jul-88

- Jan-58

FoJul&y

Jan-87

TT——————————————————— =& Jukebox/ Active

[i=]

rJukar
- Jan-87
- Juk8s
[Jan-t6
- Juk8s
rJan-85
rJuk94
- Jan-84
rJuk83
rJan-g3
- Julk8z
M Jan-52
Juk81

- Jan-81

Jul-80

=]

131

Venti: Summary

Addresses blocks by SHA-1 hash of contents
— Entire directory sub-tree defined by 20 byte hash!

Write once model

— Reduces accidental or malicious data loss
— Simplifies administration

— Simplifies caching

|V|agﬂct|\. diaka as sto

r-l-

laYa ~
CuLlIniv

0‘2

— Large capacity at Iow price; fast random access

Reduces archive storage size by 50-75%
— Due to de-duplication, defrag and compression.

Summary & Outlook

We've seen a selection of systems topics:

Distributed and persistent virtual memory
Microkernels (Mach, L3/L4])
Extensible operating systems (SPIN, Vino)

Vertically-structured operating systems
(Exokernel, Nemesis)

Virtual machine monitors (VM/CVS, Disco,
VMWare, Denali, Xen)

Distributed storage and filesystems (NAS, SANSs,
NFS, AFS, Coda, NASD, xFS, Farsite, LBFS, Venti)

Lots more research ongoing in most of the above!

