
1



2



3



4



5



Application of many computing topics

6



This graph show the increase in number of man-hours spent programming on various 
games over the years. The logarithmic hours scale shows just how dramatic this has 
been with early games being completed with a day’s worth of programming, 
increasing to over 900 hours in the last 12 years. Hikes in the graph can be seen to 
follow generations of game console hardware where leaps in power and flexibility 
demanded greatly increased development effort. For example, the introduction of 3D 
graphics capable consoles in the mid/late nineties, and the high definition, multi-
processor era of current consoles.

7



From a snapshot in mid 2009, internally developed code in the studio amounts to 
approximately 1.5 million lines of code plus 4.5 million lines of externally contributed 
source, such as middleware. These break down into roughly a million lines of run 
time game and library code, supported by ½ million lines of offline utility, build and 
tools code. cloc doesn’t capture all stats though, missing build scripts, shader files, 
etc.

8



Team size has also increased dramatically to account for increased development time 
doubling on average every 5 years. Fred Brook’s law states that adding coders to a 
project that is late will make it later. In the case of Prisoner of Azkaban, Potter’s law 
prevailed, where project scope was cut to make the film’s release date and share 
marketing budget.

9



As development effort has increased dramatically, team size has only increased at a 
lesser rate. So, more efficient working methods have had to be adopted.

10



11



For this generation of consoles we’ve chosen to develop on relatively aligned console 
platforms with similar levels of performance and features.
This allows us to focus on generating the best technology for the game without 
worrying about the details of ports to other platforms, which are gratefully 
outsourced.
360 is essentially a symmetric parallel processor comprising 3 CPUs with 2 threads 
each and a unified memory model. Whereas PS3 is an asymmetric parallel processor 
with one primary processing unit and 6 useful cell synergistic processing units. Video 
memory is much faster on 360, at the cost of being much smaller.

12



13



14



Gustafson’s law is most relevant to video game performance challenges such as 
rendering.

15



16



Ideally we’d like to process all tasks in the game in parallel on separate CPUs, 
sometimes known as spatial parallelism, but there’s typically dependencies between 
tasks which prevent this. Pipelined (or temporal) parallelism permits sequential 
processing of dependent tasks in parallel. Above CPUs 1-3 denote separate parallel 
processing units.

17



Taking a simple game’s simulation and rendering loop for example, we know the 
drawing process is dependent on visibility processing and that in turn depends on 
simulation processing. If we pipeline these processes across three stages, we can 
achieve parallel processing of these tasks. This yields the ideal throughput 
performance speed up of performing the three tasks in parallel, but the lag that has 
been introduced means it takes three stages to see the response of simulation 
updates.

18



19



20



21



22



23



24



25



26



27



28



29



30



31



32



33



34



35



36



37



38


