Additional Topics:

Computing Principles and Practice

of a

Blockbuster Video Game

esearch Lead
Core Technology Group
Black Rock Studio

The Walt Disney Company

Split/Second: Velocity

Released May 2010

'?E’GA“E”.EF @Disney

Video Game Industry

Digital Economy

— Creative Industries
* Growth

Retail Delivery

— Developing online
* Convenience

Blockbusters
— Modern Warfare £111m US
— Grand Theft Auto IV £108m GB (2008) gamedevmap.com
— FIFA £58m CAN
— Wii Fit £45m JPN
— Assassin’s Creed £36m CAN
— Need for Speed £18m GB
— Batman £15m GB [2009/2010 UK sales source Develop 100

Industry Trends

Data in cloud, persistence, levelling-up

Episodic and user generated content

Simple natural interfaces ——

Hyper-realism
— Photorealistic, stylised
— Can machines simulate interactive reality?

N
ol ek
5 il

Real-time

* Define

— 10hz : Interactive

— 24hz : Film

— 30hz : Games

— 60hz : High refresh rate critical games

— 120hz : High quality 3D stereoscopic games

— Needs to be constant, no spikes to break immersion
* |Input
* Latency

Jrogramming

of, orlented

sys ems

mathematical. methods

obJe

—

U

=
far

an.

multi-processors

operating. systems =
nefiorking =

atabasesbo "’algorlthms

Game Development

art1ﬁc1al al.intelligence

I‘OCESS]I]

g,

=

digi

CONCUrTENcy
omputer interaction

wordle.net

Application of many computing topics

Programmer Development Time

Hours
10000

1000
100
—+—Hours

10

1
1970 1980 1990 2000 2010 2020

* Exponential increase in programming time per game

This graph show the increase in number of man-hours spent programming on various
games over the years. The logarithmic hours scale shows just how dramatic this has
been with early games being completed with a day’s worth of programming,
increasing to over 900 hours in the last 12 years. Hikes in the graph can be seen to
follow generations of game console hardware where leaps in power and flexibility
demanded greatly increased development effort. For example, the introduction of 3D
graphics capable consoles in the mid/late nineties, and the high definition, multi-
processor era of current consoles.

librarjes.
ame: e Linguage T
A K code ‘__?‘_Ifgs fileg
e files O e o T code
age e e WA e e
Lanq\lf —————————— " 345040 C/Cs+ g, 1961 =
""" ”35 111023 g, o upp 295523
237 7 1
cHt jeader 104 17211 Bythop 243 48015
c/cHt 8 126!16 lua 9 643gp
625 T c}
ﬂ”"thon 2 sz 10o0ls+Pipeline:Python 75 :;’5"
By 35 785 [1 2 n
HTML sserist 9 ItT)) — 76 2178
Act3® 20 126 Runtime: C++ g o, el 1 150
c# g § 1 Mgy | o 9 10og
pos Batshen 1 Cog foripgg 35 383
Bgurﬂ‘;d gerift® oo 204 Shaders: CG, HLSL, ASM ™eascq, “ 1 299
i P 6 e Tl £ 1 145
MSBUR" L s,
soMi T T e fmy 3
- build: s :5\24017
utils: Language files cods . el
tools:
Language files code - 1o weore F— P o
Python 372 36345 Bourne Shell 21 27517
c++ 76 16487 c/C++ Header 89 8196 C+t 1782 328364
perl 26 3503 md 4 2169 C/C++ Header 1928 92168
/C++ Headex 58 2467 mma 16 6567 Fython e et
HTML 75 1580 Eython 26 2554 XML 22 1738
XML 12 1165 DOS Batch 6 1218 c 4 948
c# 10 1078 yace 2 503 cf 4 345
c 3 a1 css i 110 MsBuild scripts 1 180
Bourne Shell 12 329 Assembly N 287 Bm;:n- shell 1; 1:?
i : make
Jrascript :om o+ s 230 Teamcenter def 12 64
FHE 2 234 make 5 191 Perl 1 113
Visual Basic 2 176 1isp 1 163 o eateh 3 b
suM: 664 64771 suM 316 102081 suM: 3837 430530
http://cloc.sourceforge.net

From a snapshot in mid 2009, internally developed code in the studio amounts to
approximately 1.5 million lines of code plus 4.5 million lines of externally contributed
source, such as middleware. These break down into roughly a million lines of run
time game and library code, supported by % million lines of offline utility, build and
tools code. cloc doesn’t capture all stats though, missing build scripts, shader files,
etc.

Team Size

* Doom (1993)
— ~10 developers
* Harry Potter (2005)
— ~70 developers
— Brook’s vs “Potter’s” law
* Split/Second (2010)
— Peak ~150 dev staff
— Qutsourcing Gountooy Wi
— Short term contracts

Team size has also increased dramatically to account for increased development time
doubling on average every 5 years. Fred Brook’s law states that adding coders to a
project that is late will make it later. In the case of Prisoner of Azkaban, Potter’s law

prevailed, where project scope was cut to make the film’s release date and share
marketing budget.

Methods

* AGILE
— Small focused teams, responsive to changes
* Wiki use
— Efficient communication portal between teams
— Tasks, blogs, reports
* Automated testing infrastructure
— Test driven development
— Unit tests
— Continuous code & asset builds validating content
— Render & profiling deviation tests

As development effort has increased dramatically, team size has only increased at a

lesser rate. So, more efficient working methods have had to be adopted.

10

Stages

Pre-production

1. Artstyle, x-movie, R&D, proof of concept

2. Tools production, mature pipeline, vertical slice build
Production

1. Large art/design/outsourced content team

2. User testing and feedback

3. Optimization, polish, quality assurance testing
Post-production

n. Downloadable content (DLC), community, patch

11

Platforms
* Focus .“

— Relatively aligned
— Qutsourced ports

n

Platform Xbox 360 Playstation 3
CPU 3.2GHz 3.2 GHz
3 CPU 2 threads each 1 Core (2 threads)"‘ 6 SPUS
GPU shader model 3 shader model 3
Main RAM | 512 MB 256 VB
Bandwidth 21.2 GB/s 25 GB/s
VRAM 10 MB (E) 256 VB
Bandwidth 256 GB/s 25 GB/s

For this generation of consoles we’ve chosen to develop on relatively aligned console
platforms with similar levels of performance and features.

This allows us to focus on generating the best technology for the game without
worrying about the details of ports to other platforms, which are gratefully
outsourced.

360 is essentially a symmetric parallel processor comprising 3 CPUs with 2 threads
each and a unified memory model. Whereas PS3 is an asymmetric parallel processor
with one primary processing unit and 6 useful cell synergistic processing units. Video
memory is much faster on 360, at the cost of being much smaller.

12

Bottlenecks

Build

— Code, Assets, Live Update
Memory

— Media, RAM, VRAM
Simulation

— Al, animation, physics
Rendering

— Geometry
— Shading

13

Not Bottlenecks (unless...)

* Game logic, control, progression

— Increasing to 1000s of entities
* Simple joypad input

— Image processing, skeletal tracking, biometrics
* Audio

— Speech recognition, synthesis, voice location

14

Optimization

* Knuth/Hoare
— ‘Premature optimization is the root of all evil’
* ‘Moore’s law is dead’, Gordon Moore
— Increase use of parallelism to multi-core and many-core
* Amdahl’s law
— Parallel speed up is limited by sequential portion of process
* Gustafson’s law

— Sequential portion relatively small when massively parallel

Gustafson’s law is most relevant to video game performance challenges such as
rendering.

Game Parallel Processing

Directed graph of task & data parallel steps

Data Parallel

— Performs same task on
+ Separate blocks of a large dataset

— Physics, Geometry & Shading
Task Parallel

— Performs different tasks on
+ Same or separate data

— Audio, Particles, Visibility
Instruction Parallel

— Pipelining, superscalar

— Out-of-order execution (n/a)

16

Pipelining

* Pipelined (temporal) parallelism

* Pipeline * Pipeline * Pipeline

Stage Stage Stage
One Two Three

* Parallel (spatial) CIE—

* Parallel Process One

g CPU 2 "

* Parallel Process Two

o CPU 3 —

« Parallel Process
Three

Ideally we'd like to process all tasks in the game in parallel on separate CPUs,
sometimes known as spatial parallelism, but there’s typically dependencies between
tasks which prevent this. Pipelined (or temporal) parallelism permits sequential
processing of dependent tasks in parallel. Above CPUs 1-3 denote separate parallel
processing units.

Pipelined Game Processing

CPU1 - CPU1 — CPU1 e

* Simulation * Simulation * Simulation
Process 1 Process 2 Process 3
CPU2 — CcPU2 — CPU2 —
* Visibility * Visibility

Process 1 Process 2

cPU3 e cPU3 — e —

* Drawing
Process 1

* Increases throughput, but introduces latency

Taking a simple game’s simulation and rendering loop for example, we know the
drawing process is dependent on visibility processing and that in turn depends on
simulation processing. If we pipeline these processes across three stages, we can
achieve parallel processing of these tasks. This yields the ideal throughput
performance speed up of performing the three tasks in parallel, but the lag that has

been introduced means it takes three stages to see the response of simulation
updates.

Latency

» Stages of an interactive loop
— Player
* Sensory impulses -> reaction time -> motor control
— Input
* Physical input -> device capture -> signal process
— Simulation
* Interpretinput -> compute response -> update state
— Render
* Dispatch drawing commands -> video signal -> display lag
*+ 1to 5 frames depending on

— Requiredresponsiveness
— Device and hardware characteristics

19

Elements of a Blockbuster

Shading
Lighting
Physics
Particle
Cameras

Speed

20

* 2 Tone Paint
— Fresnel
— Clear coat
— Dynamic
reflection
* Damage
— Smoke

— Lacquer
scratches

— Scrapes
— Glass

Car Shading

21

Lighting

* Deferred Shading

— Reduces per-pixel shading cost to only visible surfaces

* First Pass " ol
— G-Buffer
* Shading Pass

— Dynamic

Normals

— Many lights

22

* Rigs
— Day
— Night

Lighting

23

Lighting

* Some lighting elements baked offline
— Static global illumination
— Too costly to compute (our R&D work)

© Disney

24

Lighting

* Tiled classification of image elements permits
reduced shading cost
— Soft shadow edge filtering
— Geometry edge anti-aliasing

25

* Grey box
* Prototype simulat
* Billboard particles

Rock Blast

ion

26

Rock Blast

» Textured
» Validate fracture visuals

27

Rock Blast

* Apply particle effects

28

Rock Blast

* Combine with environment

29

* Ingame

— Debris away from track, interactive boulders, particles

Rock Blast

30

Particles

* Non-interactive particles add to the visual composition

e

© Disney

31

Interactive Physics

* Distorting particles
— Apply turbulence force of volume displaced by cars

© Disney

32

Rubber Neck Camera

» Accentuate highlights with bullet time camera zoom

33

3 Way Track Changes

» Destructive events change track layout
— Updating Al car paths and collision geometry

© Disney

34

1.5Km of Destruction

* 1000+ animating joints processed in parallel on SPUs

35

1.5Km of Destruction

* Pushing the edge of floating-point precision for
collision volumes

© Disney

36

Velocity

37

Questions?

* Thanks to the Black Rock Studio Team

Kenny.Mitchell@disney.com

Dawn.Beasley@disney.com

38

