Additional Topics:

Computing Principles and Practice of a Blockbuster Video Game

Kenny Mitchell
Research Lead
Core Technology Group
Black Rock Studio
The Walt Disney Company
Split/Second: Velocity
Released May 2010
Video Game Industry

• Digital Economy
 – Creative Industries
 • Growth

• Retail Delivery
 – Developing online
 • Convenience

• Blockbusters
 – Modern Warfare £111m US
 – Grand Theft Auto IV £108m GB (2008)
 – FIFA £58m CAN
 – Wii Fit £45m JPN
 – Assassin’s Creed £36m CAN
 – Need for Speed £18m GB
 – Batman £15m GB
 (2009/2010 UK sales source Develop 100)
Industry Trends

• Data in cloud, persistence, levelling-up
• Episodic and user generated content
• Simple natural interfaces
• Hyper-reality
 – Photorealistic, stylised
 – Can machines simulate interactive reality?
Real-time

• Define
 – 10hz : Interactive
 – 24hz : Film
 – 30hz : Games
 – 60hz : High refresh rate critical games
 – 120hz : High quality 3D stereoscopic games
 – Needs to be constant, no spikes to break immersion

• Input

• Latency
Game Development

- mathematical methods
- object oriented programming
- databases
- systems
- concurrency
- human-computer interaction
- algorithms
- digital signal processing
- operating systems
- networking
- multi-processors
- artificial intelligence
Programmer Development Time

- Exponential increase in programming time per game
Code

Tools+Pipeline: Python

Runtime: C++

Shaders: CG, HLSL, ASM

Game

<table>
<thead>
<tr>
<th>Language</th>
<th>files</th>
<th>code</th>
</tr>
</thead>
<tbody>
<tr>
<td>C++</td>
<td>2375</td>
<td>111023</td>
</tr>
<tr>
<td>C/C++ Header</td>
<td>104</td>
<td>12607</td>
</tr>
<tr>
<td>XML</td>
<td>205</td>
<td>6256</td>
</tr>
<tr>
<td>Python</td>
<td>2</td>
<td>5072</td>
</tr>
<tr>
<td>HTML</td>
<td>35</td>
<td>785</td>
</tr>
<tr>
<td>ActionScript</td>
<td>9</td>
<td>172</td>
</tr>
<tr>
<td>C</td>
<td>20</td>
<td>126</td>
</tr>
<tr>
<td>DOS Batch</td>
<td>8</td>
<td>74</td>
</tr>
<tr>
<td>Bourne Shell</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>MSBuild scripts</td>
<td></td>
<td>4946</td>
</tr>
<tr>
<td>SUM:</td>
<td></td>
<td>528445</td>
</tr>
</tbody>
</table>

Libraries

<table>
<thead>
<tr>
<th>Language</th>
<th>files</th>
<th>code</th>
</tr>
</thead>
<tbody>
<tr>
<td>C++</td>
<td>1961</td>
<td>295523</td>
</tr>
<tr>
<td>C/C++ Header</td>
<td>2408</td>
<td>148015</td>
</tr>
<tr>
<td>HTML</td>
<td>243</td>
<td>64380</td>
</tr>
<tr>
<td>Lua</td>
<td>96</td>
<td>5060</td>
</tr>
<tr>
<td>C#</td>
<td>75</td>
<td>4871</td>
</tr>
<tr>
<td>XML</td>
<td>11</td>
<td>2178</td>
</tr>
<tr>
<td>Python</td>
<td>76</td>
<td>2150</td>
</tr>
<tr>
<td>Bourne Shell</td>
<td>1</td>
<td>145</td>
</tr>
<tr>
<td>DOS Batch</td>
<td>9</td>
<td>1008</td>
</tr>
<tr>
<td>MSBuild scripts</td>
<td>35</td>
<td>383</td>
</tr>
<tr>
<td>CSS</td>
<td>1</td>
<td>290</td>
</tr>
<tr>
<td>Teamcenter def</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>SUM:</td>
<td></td>
<td>4916</td>
</tr>
</tbody>
</table>

Utilities

<table>
<thead>
<tr>
<th>Language</th>
<th>files</th>
<th>code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Python</td>
<td>372</td>
<td>36345</td>
</tr>
<tr>
<td>C++</td>
<td>76</td>
<td>16487</td>
</tr>
<tr>
<td>Perl</td>
<td>26</td>
<td>3503</td>
</tr>
<tr>
<td>C/C++ Header</td>
<td>58</td>
<td>2467</td>
</tr>
<tr>
<td>HTML</td>
<td>75</td>
<td>1580</td>
</tr>
<tr>
<td>XML</td>
<td>12</td>
<td>1165</td>
</tr>
<tr>
<td>C#</td>
<td>10</td>
<td>1078</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>419</td>
</tr>
<tr>
<td>Bourne Shell</td>
<td>12</td>
<td>329</td>
</tr>
<tr>
<td>Javascript</td>
<td>2</td>
<td>303</td>
</tr>
<tr>
<td>Java</td>
<td>2</td>
<td>291</td>
</tr>
<tr>
<td>PHP</td>
<td>2</td>
<td>234</td>
</tr>
<tr>
<td>Visual Basic</td>
<td>2</td>
<td>176</td>
</tr>
<tr>
<td>SUM:</td>
<td>664</td>
<td>64771</td>
</tr>
</tbody>
</table>

ld:

<table>
<thead>
<tr>
<th>Language</th>
<th>files</th>
<th>code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bourne Shell</td>
<td>21</td>
<td>27517</td>
</tr>
<tr>
<td>++ Header</td>
<td>89</td>
<td>8196</td>
</tr>
<tr>
<td>HTML</td>
<td>16</td>
<td>6567</td>
</tr>
<tr>
<td>Python</td>
<td>26</td>
<td>2554</td>
</tr>
<tr>
<td>DOS Batch</td>
<td>6</td>
<td>1218</td>
</tr>
<tr>
<td>yacc</td>
<td>4</td>
<td>7169</td>
</tr>
<tr>
<td>CSS</td>
<td>1</td>
<td>410</td>
</tr>
<tr>
<td>Assembly</td>
<td>9</td>
<td>387</td>
</tr>
<tr>
<td>C++</td>
<td>5</td>
<td>230</td>
</tr>
<tr>
<td>make</td>
<td>5</td>
<td>191</td>
</tr>
<tr>
<td>Lisp</td>
<td>1</td>
<td>163</td>
</tr>
<tr>
<td>SUM:</td>
<td>131</td>
<td>46976</td>
</tr>
</tbody>
</table>

Tools:

<table>
<thead>
<tr>
<th>Language</th>
<th>files</th>
<th>code</th>
</tr>
</thead>
<tbody>
<tr>
<td>C++</td>
<td>1782</td>
<td>328364</td>
</tr>
<tr>
<td>C/C++ Header</td>
<td>1928</td>
<td>92168</td>
</tr>
<tr>
<td>HTML</td>
<td>29</td>
<td>3379</td>
</tr>
<tr>
<td>Python</td>
<td>23</td>
<td>2984</td>
</tr>
<tr>
<td>XML</td>
<td>22</td>
<td>1738</td>
</tr>
<tr>
<td>C#</td>
<td>4</td>
<td>948</td>
</tr>
<tr>
<td>MSBuild scripts</td>
<td>11</td>
<td>180</td>
</tr>
<tr>
<td>Bourne Shell</td>
<td>12</td>
<td>169</td>
</tr>
<tr>
<td>Teamcenter def</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>SUM:</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

SUM:

<table>
<thead>
<tr>
<th>Tools</th>
<th>files</th>
<th>code</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUM:</td>
<td>316</td>
<td>102081</td>
</tr>
<tr>
<td>SUM:</td>
<td>4916</td>
<td>524017</td>
</tr>
</tbody>
</table>

http://cloc.sourceforge.net
Team Size

• Doom (1993)
 – ~10 developers

• Harry Potter (2005)
 – ~70 developers
 – Brook’s vs “Potter’s” law

• Split/Second (2010)
 – Peak ~150 dev staff
 – Outsourcing
 – Short term contracts

Courtesy Michael Carr
Methods

• AGILE
 – Small focused teams, responsive to changes
• Wiki use
 – Efficient communication portal between teams
 – Tasks, blogs, reports
• Automated testing infrastructure
 – Test driven development
 – Unit tests
 – Continuous code & asset builds validating content
 – Render & profiling deviation tests
Stages

Pre-production
1. Art style, x-movie, R&D, proof of concept
2. Tools production, mature pipeline, vertical slice build

Production
1. Large art/design/outsourced content team
2. User testing and feedback
3. Optimization, polish, quality assurance testing

Post-production
n. Downloadable content (DLC), community, patch
Platforms

- **Focus**
 - Relatively aligned
 - Outsourced ports

<table>
<thead>
<tr>
<th>Platform</th>
<th>Xbox 360</th>
<th>Playstation 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>3.2 GHz</td>
<td>3.2 GHz</td>
</tr>
<tr>
<td></td>
<td>3 CPU 2 threads each</td>
<td>1 Core (2 threads) + 6 SPUs</td>
</tr>
<tr>
<td>GPU</td>
<td>shader model 3</td>
<td>shader model 3</td>
</tr>
<tr>
<td>Main RAM</td>
<td>512 MB</td>
<td>256 MB</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>21.2 GB/s</td>
<td>25 GB/s</td>
</tr>
<tr>
<td>VRAM</td>
<td>10 MB (E)</td>
<td>256 MB</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>256 GB/s</td>
<td>25 GB/s</td>
</tr>
</tbody>
</table>
Bottlenecks

• Build
 – Code, Assets, Live Update

• Memory
 – Media, RAM, VRAM

• Simulation
 – AI, animation, physics

• Rendering
 – Geometry
 – Shading
Not Bottlenecks (unless...)

• Game logic, control, progression
 – Increasing to 1000s of entities

• Simple joypad input
 – Image processing, skeletal tracking, biometrics

• Audio
 – Speech recognition, synthesis, voice location
Optimization

• Knuth/Hoare
 – ‘Premature optimization is the root of all evil’
• ‘Moore’s law is dead’, Gordon Moore
 – Increase use of parallelism to multi-core and many-core
• Amdahl’s law
 – Parallel speed up is limited by sequential portion of process
• Gustafson’s law
 – Sequential portion relatively small when massively parallel
Game Parallel Processing

- Directed graph of task & data parallel steps
- Data Parallel
 - Performs same task on
 - Separate blocks of a large dataset
 - Physics, Geometry & Shading
- Task Parallel
 - Performs different tasks on
 - Same or separate data
 - Audio, Particles, Visibility
- Instruction Parallel
 - Pipelining, superscalar
 - Out-of-order execution (n/a)
Pipelining

- Pipelined (temporal) parallelism
 - CPU 1
 - Pipeline Stage One
 - CPU 2
 - Pipeline Stage Two
 - CPU 3
 - Pipeline Stage Three

- Parallel (spatial)
 - CPU 1
 - Parallel Process One
 - CPU 2
 - Parallel Process Two
 - CPU 3
 - Parallel Process Three
Pipelined Game Processing

- Increases throughput, but introduces latency
Latency

• Stages of an interactive loop
 – Player
 • Sensory impulses -> reaction time -> motor control
 – Input
 • Physical input -> device capture -> signal process
 – Simulation
 • Interpret input -> compute response -> update state
 – Render
 • Dispatch drawing commands -> video signal -> display lag

• 1 to 5 frames depending on
 – Required responsiveness
 – Device and hardware characteristics
Elements of a Blockbuster

• Shading
• Lighting
• Physics
• Particle
• Cameras
• Speed
Car Shading

- 2 Tone Paint
 - Fresnel
 - Clear coat
 - Dynamic reflection

- Damage
 - Smoke
 - Lacquer scratches
 - Scrapes
 - Glass

© Disney
Lighting

- Deferred Shading
 - Reduces per-pixel shading cost to only visible surfaces
- First Pass
 - G-Buffer
- Shading Pass
 - Dynamic
 - Many lights
Lighting

• Rigs
 – Day
 – Night
Lighting

• Some lighting elements baked offline
 – Static global illumination
 – Too costly to compute (our R&D work)
Lighting

• Tiled classification of image elements permits reduced shading cost
 – Soft shadow edge filtering
 – Geometry edge anti-aliasing
Rock Blast

- Grey box
- Prototype simulation
- Billboard particles
Rock Blast

- Textured
- Validate fracture visuals
Rock Blast

- Apply particle effects

© Disney
Rock Blast

• Combine with environment
Rock Blast

- In game
 - Debris away from track, interactive boulders, particles
Particles

- Non-interactive particles add to the visual composition
Interactive Physics

- Distorting particles
 - Apply turbulence force of volume displaced by cars

© Disney
Rubber Neck Camera

• Accentuate highlights with bullet time camera zoom
3 Way Track Changes

• Destructive events change track layout
 – Updating AI car paths and collision geometry
1.5Km of Destruction

• 1000+ animating joints processed in parallel on SPUs
1.5Km of Destruction

• Pushing the edge of floating-point precision for collision volumes
Velocity
Questions?

• Thanks to the Black Rock Studio Team

• Kenny.Mitchell@disney.com
• Dawn.Beasley@disney.com