
Property Specification Language

Reference Manual

Version 1.0

January 31, 2003

Copyright© 2003 by Accellera. All rights reserved.

No part of this work covered by the copyright hereon may be reproduced or used in any form or by any means --
- graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and
retrieval systems --- without the prior approval of Accellera.

Additional copies of this manual may be purchased by contacting Accellera at the address shown below.

Notices

The information contained in this manual represents the definition of the Property Specification Language as
reviewed and released by Accellera in January 2003.

Accellera reserves the right to make changes to the Property Specification Language and this manual in
subsequent revisions and makes no warranties whatsoever with respect to the completeness, accuracy, or
applicability of the information in this manual, when used for production design and/or development.

Accellera does not endorse any particular simulator or other CAE tool that is based on the Property Specification
Language.

Suggestions for improvements to the Property Specification Language and/or to this manual are welcome. They
should be sent to the Property Specification Language email reflector

vfv@eda.org

or to the address below.

The current Working Group’s website address is

www.eda.org/vfv

Information about Accellera and membership enrollment can be obtained by inquiring at the address below.

Published as: Property Specification Language Reference Manual
Version 1.0, January 31, 2003.

Published by: Accellera
1370 Trancas Street, #163
Napa, CA 94558
Phone: (707) 251-9977
Fax: (707) 251-9877

Printed in the United States of America.

Verilog® is a registered trademark of Cadence Design Systems, Inc.
ii Property Specification Language Reference Manual Version 1.0

The following individuals contributed to the creation, editing, and review of Property Specification Language
1.0

Ken Albin Motorola, Inc.

Thomas L. Anderson 0-In Design Automation, Inc.

Roy Armoni Intel, Corp.

Shoham Ben-David IBM Haifa Research Lab

Jayaram Bhasker Cadence Design Systems

Kuang-Chien (KC) Chen Verplex Systems, Inc.

Edmund M. Clarke Department of Computer Science,
Carnegie Mellon

Joe Daniels Technical Editor

Simon Davidmann Co-Design Automation, Inc

Bernard Deadman SDV, Inc

Surrendra Dudani Synopsys, Inc

Cindy Eisner IBM Haifa Research Lab

E. Allen Emerson University of Texas at Austin

Dana Fisman Weizmann Institute of Science,
IBM Haifa Research Lab

Tom Fitzpatrick Co-Design Automation, Inc

Limor Fix Intel, Corp.

Peter L. Flake Co-Design Automation, Inc.

Harry Foster Verplex Systems, Inc. Work Group Chair

Daniel Geist IBM Haifa Research Lab

Vassilios Gerousis Infineon Technologies

Michael J.C. Gordon University of Cambridge

John Havlicek Motorola, Inc.

Richard Ho 0-In Design Automation, Inc.

Yaron Kashai Verisity Design, Inc.

Joseph Lu Sun Microsystems

Adriana Maggiore TransEDA Technology Ltd

Erich Marschner Cadence Design Systems Work Group Co-Chair

Anthony McIsaac STMicroelectronics, Ltd.

Hillel Miller Motorola, Inc.

Carl Pixley Synopsys, Inc.

Ambar Sarkar Paradigm Works

Andrew Seawright 0-In Design Automation, Inc.

Sandeep K. Shukla University of California, Irvine

Michael Siegel Infineon Technologies

Bassam Tabbara Novas Software, Inc.

David Van Campenhout Verisity Design, Inc.

Moshe Y. Vardi Rice University

Bow-Yaw Wang Verplex Systems, Inc.

Yaron Wolfsthal IBM Haifa Research Lab
Version 1.0 Property Specification Language Reference Manual iii

Revision history:

Version 0.1, 1st draft 05/10/02

Version 0.1, 2nd draft 05/17/02

Version 0.7, 1st draft 08/14/02

Version 0.7, 2nd draft 08/16/02

Version 0.7, 3rd draft 08/23/02

Version 0.7, 4th draft 08/26/02

Version 0.7, 5th draft 08/30/02

Version 0.7, 6th draft 09/08/02

Version 0.7, 7th draft 09/10/02

Version 0.8, 1st draft 09/12/02

Version 0.9, 1st draft 01/21/03

Version 0.95, 1st draft 01/26/03

Version 1.0 01/31/03
iv Property Specification Language Reference Manual Version 1.0

Table of Contents

1. Overview..1

1.1 Scope..1
1.2 Purpose...1

1.2.1 Motivation ...1
1.2.2 Goals..1

1.3 Usage ...1
1.3.1 Functional specification ..1
1.3.2 Functional verification ..2

1.4 Contents of this standard..4

2. References..7

3. Definitions ...9

3.1 Terminology...9
3.2 Acronyms and abbreviations ...12

4. Organization...13

4.1 Abstract structure...13
4.1.1 Layers ..13
4.1.2 Flavors ...13

4.2 Lexical structure ..14
4.2.1 Keywords...14
4.2.2 Operators ...15
4.2.3 Macros ...18
4.2.4 The %if construct ..19
4.2.5 Comments..19

4.3 Syntax ..20
4.3.1 Conventions...20
4.3.2 HDL dependencies ..21

4.4 Semantics ...23
4.4.1 Clocked vs. unclocked evaluation ...24
4.4.2 Safety vs. liveness properties ..24
4.4.3 Strong vs. weak operators ...24
4.4.4 Linear vs. branching logic ...24
4.4.5 Simple subset...25
4.4.6 Finite-length versus infinite-length behavior ..25

5. Boolean layer ...27

5.1 HDL expressions..27
5.2 PSL expressions ...28
5.3 Clock expressions ..28
5.4 Default clock declaration ...28

6. Temporal layer ...31
Version 1.0 Property Specification Language Reference Manual v

6.1 Sequential expressions .. 32
6.1.1 Sugar Extended Regular Expressions (SEREs).. 32
6.1.2 Named sequences ... 40
6.1.3 Named endpoints .. 42

6.2 Properties .. 43
6.2.1 FL properties... 44
6.2.2 Optional Branching Extension (OBE) properties... 63
6.2.3 Replicated properties .. 70
6.2.4 Named properties.. 72

7. Verification layer .. 75

7.1 Verification directives... 75
7.1.1 assert ... 75
7.1.2 assume .. 75
7.1.3 assume_guarantee... 76
7.1.4 restrict ... 77
7.1.5 restrict_guarantee.. 77
7.1.6 cover ... 77
7.1.7 fairness and strong fairness... 78

7.2 Verification units... 79
7.2.1 Verification unit binding .. 80
7.2.2 Verification unit inheritance... 81
7.2.3 Verification unit contents ... 82
7.2.4 Verification unit scoping rules ... 82

8. Modeling layer .. 85

8.1 The Verilog-flavored modeling layer ... 85
8.1.1 Integer ranges ... 85
8.1.2 Structures .. 85
8.1.3 Non-determinism.. 86
8.1.4 Built-in functions rose(), fell(), next(), prev() .. 87

8.2 Other flavors ... 89
8.2.1 The VHDL-flavored modeling layer .. 89
8.2.2 The EDL-flavored modeling layer ... 89

A. Syntax rule summary... 91

B. Formal syntax and semantics of the temporal layer .. 101

C. Bibliography.. 113
vi Property Specification Language Reference Manual Version 1.0

1

5

10

15

20

25

30

35

40

45

50

55
1. Overview

1.1 Scope

This document specifies the syntax and semantics for the Accellera Property Specification Language.

1.2 Purpose

1.2.1 Motivation

Ensuring that a design's implementation satisfies its specification is the foundation of hardware verification. Key
to the design and verification process is the act of specification. Yet historically, the process of specification has
consisted of creating a natural language description of a set of design requirements. This form of specification is
both ambiguous and, in many cases, unverifiable due to the lack of a standard machine-executable representa-
tion. Furthermore, ensuring that all functional aspects of the specification have been adequately verified (that is,
covered) is problematic.

The Accellera Property Specification Language (PSL) was developed to address these shortcomings. It gives the
design architect a standard means of specifying design properties using a concise syntax with clearly-defined for-
mal semantics. Similarly, it enables the RTL implementer to capture design intent in a verifiable form, while
enabling the verification engineer to validate that the implementation satisfies its specification through dynamic
(that is, simulation) and static (that is, formal) verification means. Furthermore, it provides a means to measure
the quality of the verification process through the creation of functional coverage models built on formally spec-
ified properties. Plus, it provides a standard means for hardware designers and verification engineers to rigor-
ously document the design specification (machine-executable).

1.2.2 Goals

PSL was specifically developed to fulfill the following general hardware functional specification requirements:

— easy to learn, write, and read
— concise syntax
— rigorously well-defined formal semantics
— expressive power, permitting the specification for a large class of real world design properties
— known efficient underlying algorithms in simulation, as well as formal verification

1.3 Usage

PSL is a language for the formal specification of hardware. It is used to describe properties that are required to
hold in the design under verification. PSL provides a means to write specifications which are both easy to read
and mathematically precise. It is intended to be used for functional specification on the one hand and as input to
functional verification tools on the other. Thus, a PSL specification is executable documentation of a hardware
design.

1.3.1 Functional specification

PSL can be used to capture requirements regarding the overall behavior of a design, as well as assumptions about
the environment in which the design is expected to operate. PSL can also capture internal behavioral require-
ments and assumptions that arise during the design process. Both enable more effective functional verification
and reuse of the design.
Version 1.0 Property Specification Language Reference Manual 1

Overview

1

5

10

15

20

25

30

35

40

45

50

55
One important use of PSL is for documentation, either in place of or along with an English specification. A PSL
specification can describe simple invariants (for example, signals read_enable and write_enable are
never asserted simultaneously) as well as multi-cycle behavior (for example, correct behavior of an interface
with respect to a bus protocol or correct behavior of pipelined operations).

A PSL specification consists of assertions regarding properties of a design under a set of assumptions. A prop-
erty is built from Boolean expressions, which describe behavior over one cycle, sequential expressions, which
describe multi-cycle behavior, and temporal operators, which describe relations over time between Boolean
expressions and sequences. For example, the Boolean expression

ena || enb

describes a cycle in which one of the signals ena and enb are asserted. The sequential expression

{req;ack;!cancel}

describes a sequence of cycles, such that req is asserted in the first, ack in the second, and cancel deasserted
in the third. They can be connected using the temporal operators always and next to get the property

always {req;ack;!cancel}(next[2] (ena || enb))

which means that following any sequence of {req;ack;!cancel} (i.e., always), either ena or enb is
asserted two cycles later (i.e., next[2]). Adding the directive assert as follows:

assert always {req;ack;!cancel}(next[2] (ena || enb));

completes the specification, indicating that this property is expected to hold in the design and that this expecta-
tion needs to be verified.

1.3.2 Functional verification

PSL can also be used as input to verification tools, for both verification by simulation, as well as formal verifica-
tion using a model checker or a theorem prover. Each of these is discussed below.

1.3.2.1 Simulation

A PSL specification can also be used to automatically generate checks of simulations. This can be done, for
example, by directly integrating the checks in the simulation tool; by interpreting PSL properties in a testbench
automation tool that drives the simulator; by generating HDL monitors that are simulated alongside the design;
or by analyzing the traces produced at the end of the simulation.

For instance, the following PSL property:

always (req -> next !req)

states that signal req is a pulsed signal — if it is high in some cycle, then it is low in the following cycle. Such
a property can be easily checked using a simulation checker written in some HDL which has the functionality of
the Finite State Machine (FSM) shown in Figure 1.
2 Property Specification Language Reference Manual Version 1.0

Overview

1

5

10

15

20

25

30

35

40

45

50

55
Figure 1—A simple (deterministic) FSM which checks the above property

For properties more complicated than the property shown above, manually writing a corresponding checker is
painstaking and error-prone, and maintaining a collection of such checkers for a constantly changing design
under development is a time-consuming task. Instead, a PSL specification can be used as input to a tool which
automatically generates simulatable checkers.

While all PSL properties can be in principle be checked for finite paths in simulation, the implementation of the
checks is often significantly simpler for a subset called the simple subset of PSL. Informally, in this subset, com-
position of temporal properties is restricted to ensure that time moves forward from left to right through a prop-
erty, as it does in a timing diagram. (See Section 4.4.5 for the formal definition of the simple subset.) For
example, the property

always (a -> next[3] b)

which states that, if a is asserted, then b is asserted three cycles later, belongs to the simple subset, because a
appears to the left of b in the property and also appears to the left of b in the timing diagram of any behavior that
is not a violation of the property. Figure 2 shows an example of such a timing diagram.

An example of a property that is not in this subset is the property

always ((a & next[3] b) -> c)

which states that, if a is asserted and b is asserted three cycles later, then c is asserted (in the same cycle as a).
This property does not belong to the simple subset, because although c appears to the right of a and b in the prop-
erty, it appears to the left of b in a timing diagram that is not a violation of the property. Figure 3 shows an exam-
ple of such a timing diagram.

start

onereq

error

!req

req

!req

req

start

onereq

error

!req

req

!req

req
Version 1.0 Property Specification Language Reference Manual 3

Overview

1

5

10

15

20

25

30

35

40

45

50

55
Figure 2—A trace which satisfies "always (a -> next[3] b)"

Figure 3—A trace which satisfies "always ((a & next[3] b) -> c)"

1.3.2.2 Formal verification

PSL is an extension of the standard temporal logics LTL and CTL. A specification in the PSL Foundation Lan-
guage (respectively, the PSL Optional Branching Extension) can be compiled down to a formula of pure LTL
(respectively, CTL), possibly with some auxiliary HDL code, known as a satellite.

1.4 Contents of this standard

The organization of the remainder of this standard is

— Chapter 2 (References) provides references to other applicable standards that are assumed or required for
PSL.

— Chapter 3 (Definitions) defines terms used throughout this standard.
— Chapter 4 (Organization) describes the overall organization of the standard.
— Chapter 5 (Boolean layer) defines the Boolean layer.
— Chapter 6 (Temporal layer) defines the temporal layer.
— Chapter 7 (Verification layer) defines the verification layer.
— Chapter 8 (Modeling layer) defines the modeling layer.
— Appendix A (Syntax rule summary) summarizes the PSL syntax rules.

 0 1 2 3 4 5 6 7

a

b

 0 1 2 3 4 5 6 7

a

b

c

4 Property Specification Language Reference Manual Version 1.0

Overview

1

5

10

15

20

25

30

35

40

45

50

55
— Appendix B (Formal syntax and semantics of the temporal layer) defines the formal syntax and semantics
of the temporal layer.1

— Appendix C (Bibliography) provides additional documents, to which reference is made only for informa-
tion or background purposes.

1 The Accellera Property Specification Language is based upon the Sugar 2.0 property specification language. Appendix B presents the for-
mal syntax and semantics of Sugar 2.0, which in turn defines the formal syntax and semantics of the temporal layer of PSL. Specifically, the
formulas of the Sugar Foundation Language define the syntax and semantics of properties of the PSL Foundation Language, and the formulas
of the (Sugar) Optional Branching Extension define the syntax and semantics of properties of the PSL Optional Branching Extension.
Version 1.0 Property Specification Language Reference Manual 5

Overview

1

5

10

15

20

25

30

35

40

45

50

55
6 Property Specification Language Reference Manual Version 1.0

1

5

10

15

20

25

30

35

40

45

50

55
2. References

This standard shall be used in conjunction with the following publications. When any of the following standards
is superseded by an approved revision, the revision shall apply.

IEEE Std 1076-2002, IEEE Standard VHDL Language Reference Manual.

IEEE Std 1076.6-1999, IEEE Standard for VHDL Register Transfer Level (RTL) Synthesis.

IEEE Std 1364-2001, IEEE Standard for Verilog Hardware Description Language.

IEEE P1364.1 (Draft 2.2, April 26,2002), Draft Standard for Verilog Register Transfer Level Synthesis.
Version 1.0 Property Specification Language Reference Manual 7

References

1

5

10

15

20

25

30

35

40

45

50

55
8 Property Specification Language Reference Manual Version 1.0

1

5

10

15

20

25

30

35

40

45

50

55
3. Definitions

For the purposes of this standard, the following terms and definitions apply. The IEEE Standard Dictionary of
Electrical and Electronics Terms [B1] should be referenced for terms not defined in this standard.

3.1 Terminology

This section defines the terms used in this standard.

3.1.1 assertion: A statement that a given property is required to hold and a directive to verification tools to verify
that it does hold.

3.1.2 assumption: A statement that the design is constrained by the given property and a directive to verification
tools to consider only paths on which the given property holds.

3.1.3 behavior: A path.

3.1.4 Boolean: A Boolean expression.

3.1.5 Boolean expression: An expression that yields a logical value.

3.1.6 checker: An auxiliary process (usually constructed as a finite state machine) that monitors simulation of a
design and reports errors when asserted properties do not hold. A checker may be represented in the same HDL
code as the design or in some other form that can be linked with a simulation of the design.

3.1.7 completes: A sequential expression (or property) completes at the last cycle of any design behavior
described by that sequential expression (or property).

3.1.8 computation path: A succession of states of the design, such that the design can actually transition from
each state on the path to its successor.

3.1.9 constraint: A condition (usually on the input signals) which limits the set of behavior to be considered. A
constraint may represent real requirements (e.g., clocking requirements) on the environment in which the design
is used, or it may represent artificial limitations (e.g., mode settings) imposed in order to partition the verification
task.

3.1.10 count: A number or range.

3.1.11 coverage: A measure of the occurrence of certain behavior during (typically dynamic) verification and,
therefore, a measure of the completeness of the (dynamic) verification process.

3.1.12 cycle: An evaluation cycle.

3.1.13 describes: A Boolean expression, sequential expression, or property describes the set of behavior for
which the Boolean expression, sequential expression, or property holds.

3.1.14 design: A model of a piece of hardware, described in some hardware description language (HDL). A
design typically involves a collection of inputs, outputs, state elements, and combinational functions that com-
pute next state and outputs from current state and inputs.

3.1.15 design behavior: A computation path for a given design.
Version 1.0 Property Specification Language Reference Manual 9

Definitions

1

5

10

15

20

25

30

35

40

45

50

55
3.1.16 dynamic verification: A verification process in which a property is checked over individual, finite
design behavior that are typically obtained by dynamically exercising the design through a finite number of eval-
uation cycles. Generally, dynamic verification supports no inference about whether the property holds for a
behavior over which the property has not yet been checked.

3.1.17 evaluation: The process of exercising a design by iteratively applying values to its inputs, computing its
next state and output values, advancing time, and assigning to the state variables and outputs their next values.

3.1.18 evaluation cycle: One iteration of the evaluation process. At an evaluation cycle, the state of the design
is recomputed (and may change).

3.1.19 extension: An extension of a path is a path that starts with precisely the succession of states in the given
path.

3.1.20 False: An interpretation of certain values of certain data types in an HDL.
In the Verilog flavor, the single bit value 1'b0 is interpreted as the logical value False. In the VHDL
flavor, the values STD.Standard.Boolean'(False), STD.Standard.Bit'('0'), and
IEEE.std_logic_1164.std_logic'('0') are all interpreted as the logical value False. In the
EDL flavor, the Boolean value 'false' and bit value 0B are both interpreted as the logical value
False.

3.1.21 finite range: A range with a finite high bound.

3.1.22 formal verification: A verification process in which analysis of a design and a property yields a logical
inference about whether the property holds for all behavior of the design. If a property is declared true by a for-
mal verification tool, no simulation can show it to be false. If the property does not hold for all behavior, then the
formal verification process should provide a specific counterexample to the property, if possible.

3.1.23 holds: A term used to talk about the meaning of a Boolean expression, sequential expression or property.
Loosely speaking, a Boolean expression, sequential expression, or property holds in the first cycle of a path iff
the path exhibits the behavior described by the Boolean expression, sequential expression, or property. The def-
inition of holds for each form of Boolean expression, sequential expression, or property is given in the appropri-
ate subsection of Chapter 6.

3.1.24 holds tightly: A term used to talk about the meaning of a sequential expression (SERE). Sequential
expressions are evaluated over finite paths (behavior). Loosely speaking, a sequential expression holds tightly
along a finite path iff the path exhibits the behavior described by the sequential expression. The definition of
holds tightly for each form of SERE is given in the appropriate subsection of Section 6.1.

3.1.25 liveness property: A property that specifies an eventuality that is unbounded in time. Loosely speaking,
a liveness property claims that "something good" eventually happens. More formally, a liveness property is a
property for which any finite path can be extended to a path satisfying the property. For example, the property
"whenever signal req is asserted, signal ack is asserted some time in the future" is a liveness property.

3.1.26 logic type: An HDL data type that includes values that are interpreted as logical values. A logic type may
include both logical values and metalogical values. Such a logic type usually represents a multi-valued logic.

3.1.27 logical value: A value in the set {True, False}.

3.1.28 metalogical value: A value of a (multi-valued) logic type that is not interpreted as a logical value.

3.1.29 model checking: A type of formal verification.

3.1.30 monitor: See: checker.
10 Property Specification Language Reference Manual Version 1.0

Definitions

1

5

10

15

20

25

30

35

40

45

50

55
3.1.31 number: A non-negative integer value, and a statically computable expression yielding such a value.

3.1.32 occurs, occurrence: A Boolean expression is said to “occur” in a cycle if it holds in that cycle. For exam-
ple, “the next occurrence of the Boolean expression” refers to the next cycle in which the Boolean expression
holds.

3.1.33 path: A succession of states of the design, whether or not the design can actually transition from one state
on the path to its successor.

3.1.34 positive count: A positive number or a positive range.

3.1.35 positive number: A number that is greater than zero (0).

3.1.36 positive range: A range with a low bound that is greater than zero (0).

3.1.37 prefix: A prefix of a given path is a path of which the given path is an extension.

3.1.38 property: A collection of logical and temporal relationships between and among subordinate Boolean
expressions, sequential expressions, and other properties that in aggregate represent a set of behavior.

3.1.39 range: A series of consecutive numbers, from a low bound to a high bound, inclusive, such that the low
bound is less than or equal to the high bound. In particular, this includes the case in which the low bound is equal
to the high bound. Also, a pair of statically computable integer expressions specifying such a series of consecu-
tive numbers, where the left expression specifies the low bound of the series, and the right expression specifies
the high bound of the series.

3.1.40 required (to hold): A property is required to hold if the design is expected to exhibit behavior that is
within the set of behavior described by the property.

3.1.41 restriction: A statement that the design is constrained by the given sequential expression and a directive
to verification tools to consider only paths on which the given sequential expression holds.

3.1.42 safety property: A property that specifies an invariant over the states in a design. The invariant is not
necessarily limited to a single cycle, but it is bounded in time. Loosely speaking, a safety property claims that
"something bad" does not happen. More formally, a safety property is a property for which any path violating the
property has a finite prefix such that every extension of the prefix violates the property. For example, the prop-
erty, "whenever signal req is asserted, signal ack is asserted within 3 cycles" is a safety property.

3.1.43 sequence: A sequential expression that is enclosed in curly braces.

3.1.44 sequential expression: A finite series of terms that represent a set of behavior.

3.1.45 SERE: A sequential expression.

3.1.46 simulation: A type of dynamic verification.

3.1.47 starts: A sequential expression starts at the first cycle of any behavior for which it holds. In addition, a
sequential expression starts at the first cycle of any behavior which is the prefix of a behavior for which it holds.
For example, if a holds at cycle 7 and b holds in every cycle from 8 onward, then the sequential expression
{a; b[*] ;c} starts at cycle 7.

3.1.48 strictly before: Before, and not in the same cycle as.

3.1.49 strong operator: A temporal operator, the (non-negated) use of which creates a liveness property.
Version 1.0 Property Specification Language Reference Manual 11

Definitions

1

5

10

15

20

25

30

35

40

45

50

55
3.1.50 terminating condition: A Boolean expression, the occurrence of which causes a property to complete.

3.1.51 terminating property: A property that, when it holds, causes another property to complete.

3.1.52 True: An interpretation of certain values of certain data types in an HDL.
In the Verilog flavor, the single bit value 1'b1 is interpreted as the logical value True. In the VHDL fla-
vor, the values STD.Standard.Boolean'(True), STD.Standard.Bit'('1'), and
IEEE.std_logic_1164.std_logic'('1') are all interpreted as the logical value True. In the
EDL flavor, the Boolean value 'true' and bit value 1B are both interpreted as the logical value True.

3.1.53 verification: The process of confirming that, for a given design and a given set of constraints, a property
that is required to hold in that design actually does hold under those constraints.

3.1.54 weak operator: A temporal operator, the (non-negated) use of which does not create a liveness property.

3.2 Acronyms and abbreviations

This section lists the acronyms and abbreviations used in this standard.

BNF extended Backus-Naur Form
cpp C pre-processor
CTL computation tree logic
EDA electronic design automation
EDL Environment Description Language
FL Foundation Language
FSM finite state machine
HDL hardware description language
iff if and only if
LTL linear-time temporal logic
PSL Property Specification Language
OBE Optional Branching Extension
RTL Register Transfer Level
SERE Sugar Extended Regular Expression
VHDL VHSIC Hardware Description Language
12 Property Specification Language Reference Manual Version 1.0

1

5

10

15

20

25

30

35

40

45

50

55
4. Organization

4.1 Abstract structure

PSL consists of four layers, which cut the language along the axis of functionality. PSL also comes in three fla-
vors, which cut the language along the axis of HDL compatibility. Each of these is explained in detail in the fol-
lowing sections.

4.1.1 Layers

PSL consists of four layers: Boolean, temporal, verification, and modeling.

4.1.1.1 Boolean layer

This layer is used to build expressions which are, in turn, used by the other layers. Although it contains expres-
sions of many types, it is known as the Boolean layer because it is the supplier of Boolean expressions to the
heart of the language — the temporal layer. Boolean expressions are evaluated in a single evaluation cycle.

4.1.1.2 Temporal layer

This layer is the heart of the language; it is used to describe properties of the design. It is known as the temporal
layer because, in addition to simple properties, such as “signals a and b are mutually exclusive”, it can also
describe properties involving complex temporal relations between signals, such as, “if signal c is asserted, then
signal d shall be asserted before signal e is asserted, but no more than eight clock cycles later.” Temporal expres-
sions are evaluated over a series of evaluation cycles.

4.1.1.3 Verification layer

This layer is used to tell the verification tools what to do with the properties described by the temporal layer. For
example, the verification layer contains directives that tell a tool to verify that a property holds or to check that a
specified sequence is covered by some test case.

4.1.1.4 Modeling layer

This layer is used to model the behavior of design inputs (for tools, such as formal verification tools, which do
not use test cases) and to model auxiliary hardware that is not part of the design, but is needed for verification.

4.1.2 Flavors

PSL comes in three flavors: one for each of the hardware description languages Verilog, VHDL, and EDL. The
syntax of each flavor conforms to the syntax of the corresponding HDL in a number of specific areas — a given
flavor of PSL is compatible with the corresponding HDL's syntax in those areas.

4.1.2.1 Verilog flavor

In this flavor, all expressions of the Boolean layer, as well as modeling layer code, are written in Verilog syntax
(see IEEE Std 1364-2001)2. The Verilog flavor also has limited influence on the syntax of the temporal layer.
For example, ranges of the temporal layer are specified using the Verilog-style syntax i:j.

2For more information on references, see Chapter 2.
Version 1.0 Property Specification Language Reference Manual 13

Organization

1

5

10

15

20

25

30

35

40

45

50

55
4.1.2.2 VHDL flavor

In this flavor, all expressions of the Boolean layer, as well as modeling layer code, are written in VHDL syntax.
(See IEEE Std 1076-2002). The VHDL flavor also has some influence on the syntax of the temporal layer. For
example, ranges of the temporal layer are specified using the VHDL-style syntax i to j.

4.1.2.3 EDL flavor

In this flavor, all expressions of the Boolean layer, as well as modeling layer code, are written in EDL syntax.
The EDL flavor also has some influence on the syntax of the temporal layer. For example, ranges of the tempo-
ral layer are specified using the EDL-style syntax i..j.

4.2 Lexical structure

This section defines the keywords, operators, macros, and comments used in PSL.

4.2.1 Keywords

Keywords in PSL are case-sensitive, regardless of the underlying HDL rules for identifiers. Keywords are
reserved words in PSL, so an HDL name that is a PSL keyword cannot be referenced directly, by its simple
name, in an HDL expression used in a PSL property. However, such an HDL name can be referenced indirectly,
using a hierarchical name or qualified name as allowed by the underlying HDL.

The keywords used in PSL are shown in Table 1.

Table 1—Keywords

A
AF
AG
AX
abort
always
anda

assert
assume
assume_guarantee

before
before!
before!_
before_
boolean

clock
const
cover

default

E
EF

aand is a keyword only in the VHDL flavor; see the flavor macro AND_OP (4.3.2).

EG
EX
endpoint
eventually!

F
fairness
fell
forall

G

in
inf
inherit
isb

never
next
next!
next_a
next_a!

bis is a keyword only in the VHDL flavor; see the flavor macro DEF_SYM (4.3.2).

next_e
next_e!
next_event
next_event!
next_event_a!
next_event_e!
notc

ord

property
prev

restrict
restrict_guarantee
rose

sequence
strong

toe

U

cnot is a keyword only in the VHDL flavor; see the flavor macro NOT_OP (4.3.2).
dor is a keyword only in the VHDL flavor; see the flavor macro OR_OP (4.3.2).

union
until
until!
until!_
until_

vmode
vprop
vunit

W
whilenot
whilenot!
whilenot!_
whilenot_
within
within!
within!_
within_

X
X!
14 Property Specification Language Reference Manual Version 1.0

Organization

1

5

10

15

20

25

30

35

40

45

50

55
4.2.2 Operators

Various operators are available in PSL. Each operator has a precedence relative to other operators. In general,
operators with a higher relative precedence are associated with their operands before operators with a lower rela-
tive precedence. If two operators with the same precedence appear in sequence, then in most cases the operators
are associated with their operands in left-to-right order of appearance in the text, except for implication opera-
tors, which are associated with their operands in right-to-left order.

Table 2—Operator precedence

4.2.2.1 HDL operators

For a given flavor of PSL, the operators of the underlying HDL have the highest precedence. In particular, this
includes logical, relational, and arithmetic operators of the HDL. The HDL's logical operators for negation, con-
junction, and disjunction of Boolean values can be used in PSL for negation, conjunction, and disjunction of
properties as well. In such applications, those operators have their usual precedence, as if the PSL properties that
are operands produced Boolean values of a type appropriate to the logical operators native to the HDL.

4.2.2.2 Foundation Language (FL) operators

4.2.2.2.1 Clocking operator

For any flavor of PSL, the FL operator with the highest precedence after the HDL operators is that used to spec-
ify the clock expression which controls when the property is evaluated. The following operator is the unique
member of this class:

 @ clock event

The clocking operator is left-associative.

4.2.2.2.2 SERE construction operators

For any flavor of PSL, the Foundation Language (FL) operators with the next highest precedence are those used
to construct Sugar Extended Regular Expressions (SEREs). These operators are:

eto is a keyword only in the VHDL flavor; see the flavor macro RANGE_SYM (4.3.2).

HDL operators

Clocking operator @

SERE construction operatora ; [*] [=] [->]

Sequence implication operators : | & &&

FL implication operators |-> |-> ! |=> |=> !

FL occurence operators always never eventually! next*

within* whilenot* G F

X X! [U] [W]

Termination operators abort until* before*
Version 1.0 Property Specification Language Reference Manual 15

Organization

1

5

10

15

20

25

30

35

40

45

50

55
; temporal concatenation
[*] consecutive repetition
[=] non-consecutive repetition
[->] goto repetition

SERE construction operators are left-associative.

4.2.2.2.3 Sequence composition operators

For any flavor of PSL, the FL operators with the next highest precedence are those used to compose sequences
into longer or more complex descriptions of behavior. These operators are:

: sequence fusion
| sequence disjunction
& non-length-matching sequence conjunction
&& length-matching sequence conjunction

Sequence composition operators are left-associative.

4.2.2.2.4 FL implication operators

For any flavor of PSL, the FL operators with the next highest precedence are those used to build properties from
Boolean expressions, sequences, and subordinate properties through implication. These operators are:

|-> weak suffix implication
|-> ! strong suffix implication
|=> weak next suffix implication
|=> ! strong next suffix implication
-> logical IF implication
<-> logical IFF implication

The logical IF and logical IFF implication operators are right-associative.

NOTE—The syntax does not allow cascading of suffix implication operators.

4.2.2.2.5 FL occurrence operators

For any flavor of PSL, the FL operators with the next highest precedence are those used to specify when a subor-
dinate property must hold, if the parent property is to hold. These operators are:

always must hold, globally
never must NOT hold, globally
eventually! must hold at some time in the indefinite future
next*3 must hold at some specified future time or range of future times
within*4 must hold following completion of a sequence until a termination condition
whilenot* must hold from the current cycle until a termination condition

3The notation next* represents the operators next, next!, next_a, next_a!, next_e, next_e!, next_event,
next_event!, next_event_a!, and next_event_e!.
4The notation within* represents the operators within, within!, within!_, and within_. Similarly, whilenot*,
until*, and before* each represent the corresponding family of operators.
16 Property Specification Language Reference Manual Version 1.0

Organization

1

5

10

15

20

25

30

35

40

45

50

55
FL occurrence operators are left-associative.

4.2.2.2.6 Termination operators

For any flavor of PSL, the FL operators with the least precedence are those used to specify when a subordinate
property can cease to hold, if the parent property is to hold. These operators are:

abort must hold, but future obligations may be canceled by a given event
until* must hold up to a given event
before* must hold at some time before a given event

FL termination operators are left-associative.

4.2.2.2.7 LTL operators

PSL also defines the following traditional LTL operators, each of which is equivalent to a corresponding key-
word operator:

X next

X! next!

F eventually!

G always

[U] until!

[W] until

In each case, the LTL operator has the same precedence and associativity as its equivalent keyword operator.

4.2.2.3 Optional Branching Extension (OBE) operators

4.2.2.3.1 OBE implication operators

For any flavor of PSL, the Optional Branching Extension (OBE) operators with the highest precedence are those
used to build properties from Boolean expressions and subordinate properties through implication. These opera-
tors include:

-> logical IF implication
<-> logical IFF implication

4.2.2.3.2 OBE occurrence operators

For any flavor of PSL, the OBE operators with the next highest precedence are those used to specify when a sub-
ordinate property must hold, if the parent property is to hold. These operators include the following:

AX on all paths, at the next state on each path
AG on all paths, at all states on each path
AF on all paths, at some future state on each path
EX on some path, at the next state on the path
EG on some path, at all states on the path
EF on some path, at some future state on the path
A[U] on all paths, in every state up to a certain state on each path
E[U] on some path, in every state up to a certain state on that path
Version 1.0 Property Specification Language Reference Manual 17

Organization

1

5

10

15

20

25

30

35

40

45

50

55
The OBE occurrence operators are left-associative.

4.2.3 Macros

PSL provides macro-processing capabilities that facilitate the definition of properties. All flavors support cpp-
style pre-processing directives (e.g., #define, #ifdef, #else, #include, and #undef). All flavors
also support special macros for %for and %if, which can be used to conditionally or iteratively generate PSL
statements.

4.2.3.1 The %for construct

The %for construct replicates a piece of text a number of times, with the possibility of each replication receiving
a parameter. The syntax of the %for construct is as follows:

%for /var/ in /expr1/ .. /expr2/ do
...

%end

or:

%for /var/ in { /item/, /item/, ... , /item/ } do
...

%end

In the first case, the text inside the %for-%end pairs will be replicated expr2-expr1+1 times (assuming that
expr2>=expr1). In the second case, the text will be replicated according to the number of items in the list. Dur-
ing each replication of the text, the loop variable value is substituted into the text as follows. Suppose the loop
variable is called ii. Then the current value of the loop variable can be accessed from the loop body using the fol-
lowing three methods:

The current value of the loop variable can be accessed using simply ii if ii is a separate token in the text. For
instance:

%for ii in 0..3 do
define aa(ii) := ii > 2;

%end

is equivalent to:

define aa(0) := 0 > 2;
define aa(1) := 1 > 2;
define aa(2) := 2 > 2;
define aa(3) := 3 > 2;

If ii is part of an identifier, the value of ii can be accessed using %{ii} as follows:

%for ii in 0..3 do
define aa%{ii} := ii > 2;

%end

is equivalent to:

define aa0 := 0 > 2;
define aa1 := 1 > 2;
18 Property Specification Language Reference Manual Version 1.0

Organization

1

5

10

15

20

25

30

35

40

45

50

55
define aa2 := 2 > 2;
define aa3 := 3 > 2;

If ii needs to be used as part of an expression, it can be accessed as follows:

%for ii in 1..4 do
define aa%{ii-1} := %{ii-1} > 2;

%end

The above is equivalent to:

define aa0 := 0 > 2;
define aa1 := 1 > 2;
define aa2 := 2 > 2;
define aa3 := 3 > 2;

The following operators can be used in pre-processor expressions:

= !=
< >
<= >=
+ -
* /

%

4.2.4 The %if construct

The %if construct is similar to the #if construct of the cpp pre-processor. However, %if must be used when
it is conditioned on variables defined in an encapsulating %for. The syntax of %if is as follows:

%if /expr/ %then
....

%end

or:

%if /expr/ %then
...

%else
...

%end

4.2.5 Comments

PSL provides the ability to add comments to PSL specifications. For each flavor, the comment capability is con-
sistent with that provided by the corresponding HDL environment.

For the Verilog flavor, both the block comment style (/* */) and the trailing comment style (//
<eol>) are supported.

For the VHDL flavor, the trailing comment style (-- <eol>) is supported.

For the EDL flavor, both the block comment style (/* */) and the trailing comment style (--
<eol>) are supported.
Version 1.0 Property Specification Language Reference Manual 19

Organization

1

5

10

15

20

25

30

35

40

45

50

55
4.3 Syntax

4.3.1 Conventions

The formal syntax described in this standard uses the following extended Backus-Naur Form (BNF).

a) The initial character of each word in a nonterminal is capitalized. For example:

PSL_Statement

A nonterminal can be either a single word or multiple words separated by underscores. When a multiple-
word nonterminal containing underscores is referenced within the text (e.g., in a statement that describes
the semantics of the corresponding syntax), the underscores are replaced with spaces.

b) Boldface words are used to denote reserved keywords, operators, and punctuation marks as a required
part of the syntax. These words appear in a larger font for distinction. For example:

vunit (;
c) The ::= operator separates the two parts of a BNF syntax definition. The syntax category appears to the

left of this operator and the syntax description appears to the right of the operator. For example, item d)
shows three options for a VUnitType.

d) A vertical bar separates alternative items (use one only) unless it appears in boldface, in which case it
stands for itself. For example:

VUnitType ::= vunit | vprop | vmode
e) Square brackets enclose optional items unless they appear in boldface, in which case they stand for

themselves. For example:

Sequence_Declaration ::= sequence Name [(Formal_Parameter_List)] DEF_SYM Sequence ;
indicates (Formal_Parameter_List) is an optional syntax item for Sequence_Declaration, whereas

| SERE [* [Range]]

indicates that (the outer) square brackets are part of the syntax for this SERE, while Range is optional.
f) Braces enclose a repeated item unless they appear in boldface, in which case they stand for themselves.

A repeated item may appear zero or more times; the repetition is equivalent to that given by a left-recur-
sive rule. Thus, the following two rules are equivalent:

Formal_Parameter_List ::= Formal_Parameter { ; Formal_Parameter }
Formal_Parameter_List ::= Formal_Parameter | Formal_Parameter_List ; Formal_Parameter

g) A comment in a production is preceded by a colon (:) unless it appears in boldface, in which case it
stands for itself.

h) If the name of any category starts with an italicized part, it is equivalent to the category name without the
italicized part. The italicized part is intended to convey some semantic information. For example,
vunit_Name is equivalent to Name.

The main text uses italicized type when a term is being defined, and monospace font for examples and refer-
ences to constants such as 0, 1, or x values.
20 Property Specification Language Reference Manual Version 1.0

Organization

1

5

10

15

20

25

30

35

40

45

50

55
4.3.2 HDL dependencies

PSL is defined in several flavors, each of which corresponds to a particular hardware description language with
which PSL can be used. Flavor macros reflect the flavors of PSL in the syntax definition. A flavor macro is
similar to a grammar production, in that it defines alternative replacements for a nonterminal in the grammar. A
flavor macro is different from a grammar production, in that the alternatives are labeled with an HDL name and
in the context of a given HDL, only the alternative labeled with that HDL name can be selected.

The name of each flavor macro is shown in all uppercase. Each flavor macro defines analogous, but possibly dif-
ferent syntax choices allowed for each flavor. The general format is the term Flavor Macro, then the actual
macro name, followed by the = operator, and, finally, the definition for each of the HDLs.

Example

Flavor Macro PATH_SYM = Verilog: . / VHDL: : / EDL: /

shows the path symbol macro (PATH_SYM).

PSL also defines a few extensions to Verilog declarations, and one extension to both Verilog and VHDL expres-
sions, as shown in Box 1.

Box 1—Flavor macro HDL_UNIT

4.3.2.1 HDL_UNIT

At the topmost level, a PSL specification consists of a set of HDL design units and a set of PSL verification units.
The Flavor Macro HDL_UNIT identifies the nonterminals that represent top-level design units in the grammar
for each of the respective HDLs, as shown in Box 2.

Box 2—Flavor macro HDL_UNIT

4.3.2.2 HDL_ID and PATH_SYM

Names declared in PSL shall follow the rules for identifiers in the underlying HDL, hence, the definition of
HDL_ID as a flavor macro. Also, pathnames shall be constructed with the separator character appropriate for the
HDL, thus, the definition of PATH_SYM. Both of these are shown in Box 3.

Box 3—Flavor macros HDL_ID and PATH_SYM

Extended_Verilog_Declaration ::=
Verilog_module_or_generate_item_declaration

| Extended_Verilog_Type_Declaration
Extended_Verilog_Expression ::=

Verilog_expression
| Verilog_Union_Expression

Extended_VHDL_Expression ::=
VHDL_expression

| VHDL_Union_Expression

Flavor Macro HDL_UNIT =
Verilog: Verilog_module_declaration / VHDL: VHDL_design_unit /
EDL: EDL_module_declaration
Version 1.0 Property Specification Language Reference Manual 21

Organization

1

5

10

15

20

25

30

35

40

45

50

55
4.3.2.3 HDL_DECL and HDL_STMT

PSL verification units may contain certain kinds of HDL declarations and statements. Flavor macros
HDL_DECL and HDL_STMT connect the PSL syntax with the syntax for declarations and statements in the gram-
mar for each HDL. Both of these are shown in Box 4.

Box 4—Flavor macros HDL_DECL and HDL_STMT

4.3.2.4 HDL_EXPR

Expressions shall be valid expressions in the underlying HDL description. This applies to expressions appearing
directly within a temporal layer property, as well as to any sub-expressions of those expressions. The definition
of HDL_EXPR captures this requirement, as shown in Box 5.

Box 5—Flavor macro HDL_EXPR

4.3.2.5 AND_OP, OR_OP, and NOT_OP

Each flavor of PSL overloads the underlying HDL's symbols for the logical (i.e., Boolean) conjunction, disjunc-
tion, and negation operators so the same operators are used for conjunction and disjunction of Boolean expres-
sions and for conjunction, disjunction, and negation of properties. The definitions of AND_OP, OR_OP, and
NOT_OP reflect this overloading, as shown in Box 6.

Box 6—Flavor macros AND_OP, OR_OP, and NOT_OP

Flavor Macro HDL_ID =
Verilog: Verilog_Identifier / VHDL: VHDL_Identifier / EDL: EDL_Identifier

Flavor Macro PATH_SYM =
Verilog: . / VHDL: : / EDL: /

Flavor Macro HDL_DECL =
Verilog: Extended_Verilog_Declaration / VHDL: VHDL_declaration /
EDL: EDL_module_item_declaration

Flavor Macro HDL_STMT =
Verilog: Verilog_module_or_generate_item / VHDL: VHDL_concurrent_statement /
EDL: EDL_module_item

Flavor Macro HDL_EXPR =
Verilog: Extended_Verilog_Expression / VHDL: Extended_VHDL_Expression /
EDL: EDL_Expression

Flavor Macro AND_OP =
Verilog: && / VHDL: and / EDL: &

Flavor Macro OR_OP =
Verilog: || / VHDL: or / EDL: |

Flavor Macro NOT_OP =
Verilog: ! / VHDL: not / EDL: !
22 Property Specification Language Reference Manual Version 1.0

Organization

1

5

10

15

20

25

30

35

40

45

50

55
4.3.2.6 RANGE_SYM, MIN_VAL, and MAX_VAL

Within properties it is possible to specify a range of integer values representing the number of cycles or number
of repetitions that are allowed to occur. PSL adopts the general form of range specification from the underlying
HDL, as reflected in the definition of RANGE_SYM, MIN_VAL, and MAX_VAL shown in Box 7.

Box 7— Flavor macros RANGE_SYM, MIN_VAL, and MAX_VAL

However, unlike HDLs, in which ranges are always finite, a range specification in PSL may have an infinite
upper bound. For this reason, the definition of MAX_VAL includes the keyword inf, representing infinite.

4.3.2.7 LEFT_SYM and RIGHT_SYM

In replicated properties, it is possible to specify the replication index Name as a vector of boolean values. PSL
allows this specification to take the form of an array reference in the underlying HDL, as reflected in the defini-
tion of LEFT_SYM and RIGHT_SYM shown in Box 8.

Box 8—Flavor macro LEFT_SYM and RIGHT_SYM

4.3.2.8 DEF_SYM

Finally, as in the underlying HDL, PSL can declare new named objects. To make the syntax of such declarations
consistent with those in the HDL, PSL adopts the symbol used for declarations in the underlying HDL, as
reflected in the definition of DEF_SYM shown in Box 9.

Box 9—Flavor macro DEF_SYM

4.4 Semantics

In this document, the following terms are used to describe the semantics of the language:

— shall indicates a required aspect of the PSL specification and can indicates an optional aspect of the PSL
specification.

— In the informal (i.e., English) description of the semantics of the temporal layer, holds (or doesn’t hold)
indicates that the design does (or does not) behave in the manner specified by a property.

Flavor Macro RANGE_SYM =
Verilog: : / VHDL: to / EDL: ..

Flavor Macro MIN_VAL =
Verilog: 0 / VHDL: 0 / EDL: null

Flavor Macro MAX_VAL =
Verilog: inf / VHDL: inf / EDL: null

Flavor Macro LEFT_SYM =
Verilog: [/ VHDL: (/ EDL: (

Flavor Macro RIGHT_SYM =
Verilog:] / VHDL:) / EDL:)

Flavor Macro DEF_SYM =
Verilog: = / VHDL: is / EDL: :=
Version 1.0 Property Specification Language Reference Manual 23

Organization

1

5

10

15

20

25

30

35

40

45

50

55
4.4.1 Clocked vs. unclocked evaluation

PSL properties can be modified by using a clock expression to indicate that time shall be measured in clock
cycles of the clock expression. Such a property is a clocked property. The meaning of a clocked property is not
affected by the granularity of time as seen by the verification tool. Thus, a clocked property shall give the same
result for cycle-based and event-based verification.

Properties that are not modified by a clock expression are unclocked properties.

PSL does not dictate how time ticks for an unclocked property. Thus, unclocked properties are used to reason
about the sequence of signal values as seen by the verification tool being used. For instance, a cycle-based sim-
ulator sees a sequence of signal values calculated cycle-by-cycle, while an event-based simulator running on the
same design sees a more detailed sequence of signal values.

4.4.2 Safety vs. liveness properties

A safety property is a property that specifies an invariant over the states in a design. The invariant is not neces-
sarily limited to a single cycle, but it is bounded in time. Loosely speaking, a safety property claims that “some-
thing bad” does not happen. More formally, a safety property is a property for which any path violating the
property has a finite prefix such that every extension of the prefix violates the property. For example, the prop-
erty “whenever signal req is asserted, signal ack is asserted within 3 cycles” is a safety property.

A liveness property is a property that specifies an eventuality that is unbounded in time. Loosely speaking, a
liveness property claims that “something good” eventually happens. More formally, a liveness property is a
property for which any finite path can be extended to a path satisfying the property. For example, the property
“whenever signal req is asserted, signal ack is asserted sometime in the future” is a liveness property.

4.4.3 Strong vs. weak operators

Some operators have a terminating condition that comes at an unknown time. For example, the property “busy
shall be asserted until done is asserted” is expressed using an operator of the until family, which states that sig-
nal busy shall stay asserted until the signal done is asserted. The specific cycle in which signal done is
asserted is not specified.

Operators such as these come in both strong and weak forms. The strong form requires that the terminating con-
dition eventually occur, while the weak form makes no requirements about the terminating condition. For exam-
ple, the strong and weak forms of “busy shall be asserted until done is asserted” are (busy until! done)
and (busy until done), respectively. The former states that busy shall be asserted until done is asserted
and that done shall eventually be asserted). The latter states that busy shall be asserted until done is asserted
and that if done is never asserted, then busy shall stay asserted forever.

The distinction between weak and strong operators is related to the distinction between safety and liveness prop-
erties. A property which uses a non-negated strong operator is a liveness property, while one that contains only
non-negated weak operators is a safety property.

4.4.4 Linear vs. branching logic

PSL contains both properties that use linear semantics as well as those that use branching semantics. The former
are properties of the PSL Foundation Language, while the latter belong to the Optional Branching Extension.
Properties with linear semantics reason about computation paths in a design and can be checked in simulation, as
well as in formal verification. Properties with branching semantics reason about computation trees and can be
checked only in formal verification.
24 Property Specification Language Reference Manual Version 1.0

Organization

1

5

10

15

20

25

30

35

40

45

50

55
While the linear semantics of PSL are the ones most used in properties, the branching semantics add important
expressive power. For instance, branching semantics are sometimes required to reason about deadlocks.

4.4.5 Simple subset

PSL can express properties which cannot be easily evaluated in simulation, although such properties can be
addressed by formal verification methods.

In particular, PSL can express properties that involve branching or parallel behavior, which tend to be more diffi-
cult to evaluate in simulation, where time advances monotonically along a single path. The simple subset of PSL
is a subset that conforms to the notion of monotonic advancement of time, left to right through the property,
which in turn ensures that properties within the subset can be simulated easily. The simple subset of PSL con-
tains any PSL FL property meeting all of the following conditions:

— Negation (!) is applied only to Booleans.
— never and eventually! are applied only to Booleans or to SEREs.
— The left-hand side of a logical and is Boolean.
— The left-hand side of a logical or is Boolean.
— The left-hand side of a logical implication (->) is Boolean.
— Both sides of a logical iff (<->) operator are Boolean.
— The right-hand side of a non-overlapping until* operator is Boolean.
— Both sides of an overlapping until* operator are Boolean.
— Both sides of a before* operator are Boolean.

All other operators not mentioned above are supported in the simple subset without restriction. In particular, all
of the next_event operators, both weak and strong suffix implication ({} |-> {} and {} |-> {}!), and any
application of the within and whilenot operators to a SERE are supported in the simple subset.

4.4.6 Finite-length versus infinite-length behavior

The semantics of PSL allow us to decide whether a PSL Foundation Language property holds on a given behav-
ior. How the outcome of this problem relates to the design depends on the behavior that was analyzed.

In dynamic verification only behaviors that are finite in length are considered. Consequently, liveness properties
may appear not to hold just because the end of the simulation was reached, rather than because of an error in the
design.

Similarly, a safety property may be satisfied on a finite-length behavior, but that does not imply that it also holds
on a (possibly infinite) extension of that behavior.
Version 1.0 Property Specification Language Reference Manual 25

Organization

1

5

10

15

20

25

30

35

40

45

50

55
26 Property Specification Language Reference Manual Version 1.0

1

5

10

15

20

25

30

35

40

45

50

55
5. Boolean layer

The Boolean layer consists of Boolean expressions, shown in Box 10, the syntax and semantics of which are dic-
tated by the flavor of PSL being used. The Boolean layer also includes certain PSL expressions that are of Bool-
ean type.

Box 10—Boolean expression

NOTE—Subexpressions of a Boolean expression may be of any type supported by the corresponding HDL.

5.1 HDL expressions

A Boolean HDL expression, shown in Box 11, is any HDL expression that the HDL allows to be used as the
condition of an if statement.

Box 11—Boolean HDL expression

Restrictions

In a given flavor of PSL, the value of a Boolean HDL expression is interpreted as a logical value according to the
same rules that govern interpretation of that expression as the condition of an if statement in that flavor.

Informal semantics

The meaning of an HDL expression in a PSL context is determined by the meanings of the names and operator
symbols of the HDL expression.

For each name in the HDL expression, the meaning of the name is determined as follows.

a) If the current verification unit contains a (single) declaration of this name, then the object created by that
declaration is the meaning of this name.

b) Otherwise, if the transitive closure with respect to inheritance of all verification units inherited by the
current verification unit contains a (single) declaration of this name, then the object created by that dec-
laration is the meaning of this name.

c) Otherwise, if the default verification mode contains a (single) declaration of this name, then the object
created by that declaration is the meaning of this name.

d) Otherwise, if this name has an unambiguous meaning at the end of the design module or instance associ-
ated with the current verification unit, then that meaning is the meaning of this name.

e) Otherwise, this name has no meaning.

For each operator symbol in the HDL expression, the meaning of the operator symbol is determined as follows.

Boolean ::=
boolean_HDL_or_PSL_Expression

HDL_or_PSL_Expression ::=
HDL_Expression

HDL_Expression ::=
HDL_EXPR
Version 1.0 Property Specification Language Reference Manual 27

Boolean layer

1

5

10

15

20

25

30

35

40

45

50

55
— For the Verilog and EDL flavors, this operator symbol has the same meaning as the corresponding opera-
tor symbol in the HDL.

— For the VHDL flavor, if this operator symbol has an unambiguous meaning at the end of the design unit
or component instance associated with the current verification unit, then that meaning is the meaning of
this operator symbol.

— Otherwise, this operator symbol has no meaning.

It is an error if more than one declaration of a given name appears in the current verification unit, or in the transi-
tive closure of all inherited verification units, or in the default verification mode.

See 7.2 for an explanation of verification units and modes.

5.2 PSL expressions

PSL defines a collection of predefined functions that return Boolean values. These predefined functions are
described in 8.1.4.

PSL also defines a special variable called an endpoint, which signals the completion of a sequence. Endpoint
declarations and instantiations are described in 6.1.3.1 and 6.1.3.2, respectively.

5.3 Clock expressions

Booleans (either Boolean HDL expressions, or PSL expressions) can be used as clock expressions, which indi-
cate when other Boolean expressions are evaluated.

In the Verilog flavor, any expression that Verilog allows to be used as the condition in an if statement can be
used as a clock expression. In addition, any Verilog event expression allowed by the modeling layer can be used
as a clock expression.

In the VHDL flavor, any expression that VHDL allows to be used as the condition in an if statement can be
used as a clock expression.

In the EDL flavor, any expression that EDL allows to be used as the condition in an if statement can be used as
a clock expression.

5.4 Default clock declaration

A default clock declaration, shown in Box 12, specifies a clock expression for directives that have an outermost
property or sequence that has no explicit clock expression.

Box 12—Default clock declaration

Restrictions

At most one default clock declaration shall appear in a given verification unit.

PSL_Declaration ::=
Clock_Declaration

Clock_Declaration ::=
default clock DEF_SYM Boolean ;
28 Property Specification Language Reference Manual Version 1.0

Boolean layer

1

5

10

15

20

25

30

35

40

45

50

55
Informal semantics

If the outermost property of an assert, assume, or assume_guarantee directive has no explicit clock
expression, then the clock expression for that property is given by the applicable default clock declaration, if one
exists; otherwise the clock expression for the property is the expression True.

Similarly, if the outermost sequence of a restrict, restrict_guarantee, or cover directive has no
explicit clock expression, then the clock expression for that sequence is determined by the applicable default
clock declaration, if one exists; otherwise the clock expression for the sequence is the expression True.

The applicable default clock declaration is determined as follows.

a) If the current verification unit contains a (single) default clock declaration, then that is the applicable
default clock declaration.

b) Otherwise, if the transitive closure with respect to inheritance of all verification units inherited by the
current verification unit contains a (single) default clock declaration, then that is the applicable default
clock declaration.

c) Otherwise, if the default verification mode contains a (single) default clock declaration, then that is the
applicable default clock declaration.

d) Otherwise, no applicable default clock declaration exists.

It is an error if more than one default clock declaration appears in the current verification unit, or in the transitive
closure of all inherited verification units, or in the default verification mode.

Example

default clock = (posedge clk1);

assert always (req -> next ack);
cover {req; ack; !req; !ack};

is equivalent to

assert always (req -> next ack) @(posedge clk1);
cover {req; ack; !req; !ack} @(posedge clk1);
Version 1.0 Property Specification Language Reference Manual 29

Boolean layer

1

5

10

15

20

25

30

35

40

45

50

55
30 Property Specification Language Reference Manual Version 1.0

1

5

10

15

20

25

30

35

40

45

50

55
6. Temporal layer

The temporal layer is used to define properties, which describe behavior over time. Properties can describe the
behavior of the design or the behavior of the external environment. .

A property is built from three types of building blocks:

— Boolean expressions
— sequences (which are themselves built from Boolean expressions)
— subordinate properties

Boolean expressions are part of the Boolean layer; they are described in Section 5. Sequential expressions are
described in 6.1 and properties in 6.2.

Some terms used in this section and their definitions are:

holds tightly: The term used to talk about the meaning of a sequential expression (SERE). Sequential expres-
sions are evaluated over finite paths (behaviors). The definition of holds tightly captures the meaning of a SERE
by determining the finite paths that "match" the SERE. The meaning of a SERE depends on the operators and
sub-SEREs that constitute the SERE. Thus, the definition of holds tightly is given in the sub-sections of Section
6.1; for each SERE operator, the sub-section describing that operator defines the finite paths on which a SERE
that combines other SEREs using that operator holds tightly, given the meaning of these subordinate SEREs.

For example, {a;b;c} holds tightly on a path iff the path is of length three, where 'a' is true in the first cycle, 'b' is
true in the second and 'c' is true in the third. The SERE {a[*];b} holds tightly on a path iff 'b' is true in the last
cycle of the path, and 'a' is true in all preceding cycles.

holds: The term used to talk about the meaning of a Boolean expression, sequential expression, or property. A
Boolean expression, sequential expression, or property is evaluated over the first cycle of a finite or infinite path.
The definition of holds captures the meaning of a Boolean expression, sequential expressions or property by
determining the paths (starting at the current cycle) that "obey" them. The meaning of a property depends on the
operators and subordinate properties that constitute the property. Thus, the definition of holds is given in the sub-
sections of Section 6.2; for each operator it is defined, in the sub-section describing that operator, which are the
paths the composed property holds on (at their first state).

For example, a Boolean expression 'p' holds in the first cycle of a path iff 'p' evaluates to True in the first cycle. A
SERE holds on the first cycle of a path iff it holds tightly on a prefix of that path. The sequential expression
{a;b;c} holds on a first cycle of a path iff 'a' holds on the first cycle, 'b' holds on the second cycle and 'c' holds on
the third. Note that the path itself may be of length more than 3. The sequential expression {a[*];b} holds in the
first cycle of a path iff: 1) the path contains a cycle in which 'b' holds, and 2) 'a' holds in all cycles before that
cycle. It is not necessary that the cycle in which 'b' holds is the last cycle of the path (contrary to the requirement
for {a[*];b} to hold tightly on a path). Finally, the property 'always p' holds in a first cycle of a path iff 'p' holds
in that cycle and in every subsequent cycle.

describes: A Boolean expression, sequential expression, or property describes the set of behavior for which the
Boolean expression, sequential expression, or property holds.

occurs: A Boolean expression is said to “occur” in a cycle if it holds in that cycle. For example, “the next occur-
rence of the Boolean expression” refers to the next cycle in which the Boolean expression holds.

starts: A sequential expression starts at the first cycle of any behavior for which it holds. In addition, a sequen-
tial expression starts at the first cycle of any behavior which is the prefix of a behavior for which it holds. For
example, if a holds at cycle 7 and b holds at every cycle from 8 onward, then the sequential expression
{a;b[*];c} starts at cycle 7.
Version 1.0 Property Specification Language Reference Manual 31

Temporal layer

1

5

10

15

20

25

30

35

40

45

50

55
completes: A sequential expression completes at the last cycle of any design behavior on which it holds tightly.
For example, if a holds at cycle 3, b holds at cycle 4, and c holds at cycle 5, then the sequence {a;b;c} com-
pletes at cycle 5. Similarly, given the behavior {a;b;c}, the property a before c completes when c occurs.

NOTE—A sequence that holds eventually completes, while a sequence that starts may or may not complete.

terminating condition: A Boolean expression, the occurrence of which causes a property to complete.

terminating property: A property that, when it holds, causes another property to complete.

NOTE—These terms are used to describe the semantics of the temporal layer as precisely as possible. In any case where the
English description is ambiguous or seems to contradict the formal semantics provided in Appendix B, the formal semantics
take precedence.

6.1 Sequential expressions

6.1.1 Sugar Extended Regular Expressions (SEREs)

Sugar Extended Regular Expressions (SEREs), shown in Box 13, describe single- or multi-cycle behavior built
from a series of Boolean expressions.

Box 13—SEREs and Sequences

The most basic SERE is a Boolean expression. A Sequence (a SERE enclosed in curly braces) is also a SERE.
Both are sequential expressions.

More complex sequential expressions are built from Boolean expressions using various SERE construction and
sequence composition operators. These operators are described in the sections that follow.

NOTES

1—A sequential expression is not a property on its own; it is a building block of a property.

2—SEREs are grouped using curly braces ({}), as opposed to Boolean expressions which are grouped using parentheses
(()).

3—A Sequence can also be an instance of a Sequence declaration; see Sections 6.1.2.1 and 6.1.2.2.

SERE ::=
Boolean

| Sequence
Sequence ::=

{ SERE }
32 Property Specification Language Reference Manual Version 1.0

Temporal layer

1

5

10

15

20

25

30

35

40

45

50

55
6.1.1.1 SERE construction

6.1.1.1.1 Clocked SERE (@)

The SERE clock operator (@), shown in Box 14, provides a way to clock a SERE.

Box 14—SERE clock operator

The first operand is the SERE to be clocked. The second operand is a Boolean expression with which to clock
the SERE.

Restrictions

None.

Informal semantics

For unclocked SERE A and Boolean CLK:

A@CLK holds on a given path iff (if and only if) A holds on the path obtained by extracting from the given
path exactly those cycles in which CLK holds.

NOTE—When clocks are nested, the inner clock takes precedence over the outer clock. That is, the SERE
{a;b@clk2;c}@clk is equivalent to the SERE {a@clk; b@clk2; c@clk}, with the outer clock applied to only the unclocked
sub-SEREs. In particular, there is no conjunction of nested clocks involved.

NOTE—There is only one form of a clocked sere. In contrast, a distinction between weak and strong clocks is made for a
clocked property (see Section 6.2.1.1).

Examples

Example 1

Consider the following behavior of Booleans a, b, and clk, where "time" is at the granularity observed by the ver-
ification tool:

time 0 1 2 3 4

clk 0 1 0 1 0
a 0 1 1 0 0
b 0 0 0 1 0

The unclocked SERE {a;b} holds tightly from time 2 to time 3. It does not hold tightly over any other interval of
the given behavior.

The clocked SERE {a;b}@clk holds tightly from time 0 to time 3, and also from time 1 to time 3. It does not
hold tightly over any other interval of the given behavior.

SERE ::=
SERE @ clock_Boolean
Version 1.0 Property Specification Language Reference Manual 33

Temporal layer

1

5

10

15

20

25

30

35

40

45

50

55
Example 2

Consider the following behavior of Booleans a, b, c, clk1, and clk2, where "time" is at the granularity observed
by the verification tool:

time 0 1 2 3 4 5 6 7

clk1 0 1 0 1 0 1 0 1
a 0 1 1 0 0 0 0 0
b 0 0 0 1 0 0 0 0
c 0 0 0 0 1 0 1 0
clk2 1 0 0 1 0 0 1 0

The unclocked SERE {{a;b};c} holds tightly from time 2 to time 4. It does not hold tightly over any other inter-
val of the given behavior.

The multiply-clocked SERE {{a;b}@clk1;c}@clk2 holds tightly from time 0 to time 6. It does not hold tightly
over any other interval of the given behavior.

The singly-clocked SEREs {{a;b};c}@clk1 and {{a;b};c}@clk2 do not hold tightly over any interval of the
given behavior.

6.1.1.1.2 SERE concatenation (;)

The SERE concatenation operator (;), shown in Box 15, constructs a SERE that is the concatenation of two other
SEREs.

Box 15—SERE concatenation operator

The right operand is a SERE that is concatenated after the left operand.

Restrictions

None.

Informal semantics

For SEREs A and B:

A;B holds on a path iff there is a future cycle n, such that A holds tightly on the path up to and including
the nth cycle and B holds tightly on the path starting at the n+1th cycle.

6.1.1.1.3 Repetition operators

The repetition operators ([]) describe succinctly repeated concatenation of the same SERE. There are three kinds
of repetition, each of which is detailed in the following subsections.

SERE ::=
SERE ; SERE
34 Property Specification Language Reference Manual Version 1.0

Temporal layer

1

5

10

15

20

25

30

35

40

45

50

55
6.1.1.1.4 SERE consecutive repetition ([*])

The SERE consecutive repetition operator ([*]), shown in Box 16, constructs repeated consecutive concatena-
tion of the same SERE.

Box 16—SERE consecutive repetition operator

The first operand is a SERE to be repeated. The second operand gives the Count (a number or range) of repeti-
tions.

If the Count is a number, then the SERE describes exactly that number of repetitions.

Otherwise, if the Count is a range, then the SERE describes describes any number of repetitions such that the
number falls within the specified range. If the high value of the range (HighBound) is not specified (or is speci-
fied as inf), the SERE describes at least as many repetitions as the low value of the range. If the low value of the
range (LowBound) is not specified (or is specified as 0), the SERE describes at most as many repetitions as the
high value of the range. If neither of the range values is specified, the SERE describes any number of repetitions,
including zero, i.e., the empty path is also described.

When there is no SERE operand and only a Count, the resulting SERE describes any path whose length is
described by the second operand as above.

The notation + is a shortcut for a repetition of one or more times.

Restrictions

If the SERE contains a Count, and the Count is a Number, then the Number shall be statically computable. If the
SERE contains a Count, and the Count is a Range, then each bound of the Range shall be statically computable,
and the low bound of the Range shall be less than or equal to the high bound of the Range.

Informal semantics

For SERE A and numbers n and m:

— A[*n]holds tightly on a path iff the path can be partitioned into n parts, where A holds tightly on each
part.

— A[*n:m]holds tightly on a path iff the path can be partitioned into between n and m parts, inclusive,
where A holds tightly on each part.

— A[*0:m]holds tightly on a path iff the path is empty or the path can be partitioned into m or less parts,
where A holds tightly on each part.

SERE ::=
SERE [* [Count]]

| [* [Count]]
| SERE [+]
| [+]

Count ::=
Number

| Range
Range ::=

LowBound RANGE_SYM HighBound
LowBound ::=

Number | MIN_VAL
HighBound ::=

Number | MAX_VAL
Version 1.0 Property Specification Language Reference Manual 35

Temporal layer

1

5

10

15

20

25

30

35

40

45

50

55
— A[*n:inf]holds tightly on a path iff the path can be partitioned into at least n parts, where A holds
tightly on each part.

— A[*0:inf]holds tightly on a path iff the path is empty or the path can be partitioned into some number
of parts, where A holds tightly on each part.

— A[*]holds tightly on a path iff the path is empty or the path can be partitioned into some number of
parts, where A holds tightly on each part.

— A[+]holds tightly on a path iff the path can be partitioned into some number of parts, where A holds
tightly on each part.

— [*n]holds tightly on a path iff the path is of length n.
— [*n:m]holds tightly on a path iff the length of the path is between n and m, inclusive.
— [*0:m]holds tightly on a path iff it is the empty path or the length of the path is m or less.
— [*n:inf]holds tightly on a path iff the length of the path is at least n.
— [*0:inf]holds tightly on any path (including the empty path).
— [*]holds tightly on any path (including the empty path).
— [+]holds tightly on any path of length at least one.

6.1.1.1.5 SERE non-consecutive repetition ([=])

The SERE non-consecutive repetition operator ([=]), shown in Box 17, constructs repeated (possibly non-con-
secutive) concatenation of a Boolean expression.

Box 17—SERE non-consecutive repetition operator

The first operand is a Boolean expression to be repeated. The second operand gives the Count (a number or
range) of repetitions.

If the Count is a number, then the SERE describes exactly that number of repetitions.

Otherwise, if the Count is a range, then the SERE describes any number of repetitions such that the number falls
within the specified range. If the high value of the range (HighBound) is not specified (or is specified as inf),
the SERE describes at least as many repetitions as the low value of the range. If the low value of the range (Low-
Bound) is not specified (or is specified as 0), the SERE describes at most as many repetitions as the high value of
the range. If neither of the range values is specified, the SERE describes any number of repetitions, including
zero, i.e., the empty path is also described.

Restrictions

If the SERE contains a Count, and the Count is a Number, then the Number shall be statically computable. If the
SERE contains a Count, and the Count is a Range, then each bound of the Range shall be statically computable,
and the low bound of the Range shall be less than or equal to the high bound of the Range.

SERE ::=
Boolean [= Count]

Count ::=
Number

| Range
Range ::=

LowBound RANGE_SYM HighBound
LowBound ::=

Number | MIN_VAL
HighBound ::=

Number | MAX_VAL
36 Property Specification Language Reference Manual Version 1.0

Temporal layer

1

5

10

15

20

25

30

35

40

45

50

55
Informal semantics

For Boolean A and numbers n and m:

— A[=n]holds tightly on a path iff A occurs exactly n times along the path.
— A[=n:m]holds tightly on a path iff A occurs between n and m times, inclusive, along the path.
— A[=0:m]holds tightly on a path iff A occurs m times or less along the path.
— A[=n:inf]holds tightly on a path iff A occurs at least n times along the path.
— A[=0:inf]holds tightly on a path iff A occurs any number of times along the path, i.e., A[=0:inf] holds

tightly on any path.

6.1.1.1.6 SERE goto repetition ([->])

The SERE goto repetition operator ([->]), shown in Box 18, constructs repeated (possibly non-consecutive) con-
catenation of a Boolean expression, such that the Boolean expression holds on the last cycle of the path.

Box 18—SERE goto repetition operator

The first operand is a Boolean expression to be repeated. The second operand gives the Count (a non-zero
number or a non-zero range) of repetitions.

If the Count is a number, then the SERE describes exactly that number of repetitions.

Otherwise, if the Count is a range, then the SERE describes any number of repetitions such that the number falls
within the specified range. If the high value of the range (HighBound) is not specified (or is specified as inf),
the SERE describes at least as many repetitions as the low value of the range. If the low value of the range (Low-
Bound) is not specified, the SERE describes at most as many repetitions as the high value of the range. If neither
of the range values is specified, the SERE describes exactly one repetition, i.e., behavior in which the Boolean
expression holds exactly once (only at the last cycle on the path).

Restrictions

If the SERE contains a Count, it shall be a statically computable, positive Count (i.e., indicating at least one rep-
etition). If the Count is a Range, then each bound of the Range shall be statically computable, and the low bound
of the Range shall be positive and less than or equal to the high bound of the Range.

SERE ::=
Boolean [-> [positive_Count]]

Count ::=
Number

| Range
Range ::=

LowBound RANGE_SYM HighBound
LowBound ::=

Number | MIN_VAL
HighBound ::=

Number | MAX_VAL
Version 1.0 Property Specification Language Reference Manual 37

Temporal layer

1

5

10

15

20

25

30

35

40

45

50

55
Informal semantics

For Boolean A and numbers n and m:

— A[->n] holds tightly on a path iff A occurs exactly n times along the path and the last cycle at which it
occurs is the last cycle of the path.

— A[->n:m] holds tightly on a path iff A occurs between n and m times, inclusive, along the path, and the
last cycle at which it occurs is the last cycle of the path.

— A[->1:m] holds tightly on a path iff A occurs m times or less along the path and the last cycle at which
it occurs is the last cycle of the path.

— A[->n:inf] holds tightly on a path iff A occurs at least n times along the path and the last cycle at
which it occurs is the last cycle of the path.

— A[->1:inf] holds tightly on a path iff A occurs one or more times along the path and the last cycle at
which it occurs is the last cycle of the path.

— A[->] holds tightly on a path iff A occurs in the last cycle of the path and in no cycle before that.

6.1.1.2 Sequence composition

6.1.1.2.1 Sequence fusion (:)

The sequence fusion operator (:), shown in Box 19, constructs a SERE in which two sequences overlap by one
cycle. That is, the second sequence starts at the cycle in which the first sequence completes.

Box 19—Sequence fusion operator

The operands of : are both sequences, i.e., brace-enclosed SEREs.

Restrictions

None.

Informal semantics

For sequences A and B:

A:B holds tightly on a path iff there is a future cycle n, such that A holds tightly on the path up to and
including the nth cycle and B holds tightly on the path starting at the nth cycle.

SERE ::=
Sequence : Sequence

Sequence ::=
{ SERE }
38 Property Specification Language Reference Manual Version 1.0

Temporal layer

1

5

10

15

20

25

30

35

40

45

50

55
6.1.1.2.2 Sequence or (|)

The sequence or operator (|), shown in Box 20, constructs a SERE in which one of two alternative sequences
hold at the current cycle.

Box 20—Sequence or operator

The operands of | are both Sequences, i.e., brace-enclosed SEREs.

Restrictions

None.

Informal semantics

For sequences A and B:

A|B holds tightly on a path iff at least one of A or B holds tightly on the path.

6.1.1.2.3 Sequence non-length-matching and (&)

The sequence non-length-matching and operator (&), shown in Box 21, constructs a SERE in which two
sequences both hold at the current cycle, regardless of whether they complete in the same cycle or in different
cycles.

Box 21—Sequence non-length-matching and operator

The operands of & are both Sequences, i.e., brace-enclosed SEREs.

Restrictions

None.

Informal semantics

For sequences A and B:

A&B holds tightly on a path iff either A holds tightly on the path and B holds tightly on a prefix of the
path or B holds tightly on the path and A holds tightly on a prefix of the path.

SERE ::=
Sequence | Sequence

SERE ::=
Sequence & Sequence
Version 1.0 Property Specification Language Reference Manual 39

Temporal layer

1

5

10

15

20

25

30

35

40

45

50

55
6.1.1.2.4 Sequence length-matching and (&&)

The sequence length-matching and operator (&&), shown in Box 22, constructs a SERE in which two
sequences both hold at the current cycle, and furthermore both complete in the same cycle.

Box 22—Sequence length-matching and operator

The operands of && are both Sequences, i.e., brace-enclosed SEREs.

Restrictions

None.

Informal semantics

For sequences A and B:

A&&B holds tightly on a path iff A and B both hold tightly on the path.

6.1.2 Named sequences

A given sequence may describe behavior that can occur in different contexts (i.e., in conjunction with other
behavior). In such a case, it is convenient to be able to define the sequence once and refer to the single definition
in each context in which the sequence applies. Declaration and instantiation of named sequences provide this
capability.

6.1.2.1 Sequence declaration

A sequence declaration, shown in Box 23, defines a sequence and gives it a name. A sequence declaration can
also specify a list of formal parameters that can be referenced within the sequence.

Box 23—Sequence declaration

Restrictions

The Name of a declared sequence shall not be the same as the name of any other PSL declaration. Formal param-
eters of a sequence declaration are limited to parameter kinds const, boolean, and sequence.

SERE ::=
Sequence && Sequence

PSL_Declaration ::=
Sequence_Declaration

Sequence_Declaration ::=
sequence Name [(Formal_Parameter_List)] DEF_SYM Sequence ;

Formal_Parameter_List ::=
Formal_Parameter { ; Formal_Parameter }

Formal_Parameter ::=
sequence_ParamKind Name { , Name }

sequence_ParamKind ::=
const | boolean | sequence
40 Property Specification Language Reference Manual Version 1.0

Temporal layer

1

5

10

15

20

25

30

35

40

45

50

55
Examples

sequence BusArb (boolean br, bg; const n) = { br; (br && !bg)[0:n];
br && bg };

The named sequence BusArb represents a generic bus arbitration sequence involving formal parameters br
(bus request) and bg (bus grant), as well as a parameter n that specifies the maximum delay in receiving the bus
grant.

sequence ReadCycle (sequence ba; boolean bb, ar, dr) = { ba; {bb[*]} &&
{ar[->]; dr[->]}; !bb };

The named sequence ReadCycle represents a generic read operation involving a bus arbitration sequence and
Boolean conditions bb (bus busy), ar (address ready), and dr (data ready).

NOTE—There is no requirement to use formal parameters in a sequence declaration. A declared sequence may refer directly
to signals in the design as well as to formal parameters.

6.1.2.2 Sequence instantiation

A sequence instantiation, shown in Box 24, creates an instance of a named sequence and provides actual param-
eters for formal parameters (if any) of the named sequence.

Box 24—Sequence instantiation

Restrictions

For each formal parameter of the named sequence sequence_Name, the sequence instantiation shall provide a
corresponding actual parameter. For a const formal parameter, the actual parameter shall be a statically evalu-
able integer expression. For a boolean formal parameter, the actual parameter shall be a Boolean expression.
For a sequence formal parameter, the actual parameter shall be a Sequence.

Informal semantics

An instance of a named sequence describes the behavior that is described by the sequence obtained from the
named sequence by replacing each formal parameter in the named sequence with the corresponding actual
parameter from the sequence instantiation.

Examples

Given the declarations for the sequences BusArb and ReadCycle in 6.1.2.1,

BusArb (breq, back, 3)

is equivalent to

{ breq; (breq && !back)[0:3]; breq && back }

Sequence ::=
sequence_Name [(Actual_Parameter_List)]

Actual_Parameter_List ::=
sequence_Actual_Parameter { , sequence_Actual_Parameter }

sequence_Actual_Parameter ::=
Number | Boolean | Sequence
Version 1.0 Property Specification Language Reference Manual 41

Temporal layer

1

5

10

15

20

25

30

35

40

45

50

55
and

ReadCycle(BusArb(breq, back, 5), breq, ardy, drdy)

is equivalent to

{ { breq; (breq && !back)[0:5]; breq && back }; {breq[*]} && {ardy[->];
drdy[->]}; !breq }

6.1.3 Named endpoints

An endpoint is a special kind of Boolean-valued variable that indicates when an associated sequence completes.

6.1.3.1 Endpoint declaration

An endpoint declaration, shown in Box 25, defines an endpoint for a given sequence and gives the endpoint a
name. An endpoint declaration can also specify a list of formal parameters that can be referenced within the
sequence.

Box 25—Endpoint declaration

Restrictions

The Name of an endpoint shall not be the same as the name of any other PSL declaration. Formal parameters of
an endpoint declaration are limited to parameter kinds const, boolean, and sequence.

Example

endpoint ActiveLowReset (boolean rb, clk; const n) = { rb!=1'b1[*n:inf];
rb==1'b1 } @(posedge clk);

The endpoint ActiveLowReset represents a generic reset sequence in which the reset signal is asserted (set to
0) for at least n cycles of the relevant clock before being released (set to 1).

NOTE—There is no requirement to use formal parameters in an endpoint declaration. The sequence in an endpoint declara-
tion may refer directly to signals in the design as well as to formal parameters.

PSL_Declaration ::=
Endpoint_Declaration

Endpoint_Declaration ::=
endpoint Name [(Formal_Parameter_List)] DEF_SYM Sequence ;

Formal_Parameter_List ::=
Formal_Parameter { ; Formal_Parameter }

Formal_Parameter ::=
sequence_ParamKind Name { , Name }

sequence_ParamKind ::=
const | boolean | sequence
42 Property Specification Language Reference Manual Version 1.0

Temporal layer

1

5

10

15

20

25

30

35

40

45

50

55
6.1.3.2 Endpoint instantiation

An endpoint instantiation, shown in Box 26, creates an instance of a named endpoint and provides actual param-
eters for formal parameters (if any) of the named endpoint.

Box 26—Endpoint instantiation

Restrictions

For each formal parameter of the named endpoint endpoint_Name, the endpoint instantiation shall provide a
corresponding actual parameter. For a const formal parameter, the actual parameter shall be a statically evalu-
able integer expression. For a boolean formal parameter, the actual parameter shall be a Boolean expression.
For a sequence formal parameter, the actual parameter shall be a Sequence.

Informal semantics

An instance of a named endpoint has the value True in any evaluation cycle that is the last cycle of a behavior on
which the associated sequence, modified by replacing each formal parameter in the named sequence with the
corresponding actual parameter from the sequence instantiation, holds tightly.

Examples

Given the declaration for the endpoint ActiveLowReset in 6.1.3.1,

ActiveLowReset (res, mclk, 3)

is True each time res has the value 1'b1 at the rising edge of mclk, provided that res did not have the value
1'b1 at the three immediately preceding rising edges of mclk; it is False otherwise.

6.2 Properties

Properties express temporal relationships among Boolean expressions, sequential expressions, and subordinate
properties. Various operators are defined to express various temporal relationships.

Some operators occur in families. A family of operators is a group of operators which are related. A family of
operators usually share a common prefix, which is the name of the family, and optional suffixes which include,
for example, the strings !, _, and !_. For instance, the until family of operators include the operators until!,
until, until!_, and until_.

Boolean ::=
boolean_HDL_or_PSL_Expression

boolean_HDL_or_PSL_Expression ::=
endpoint_Name [(Actual_Parameter_List)]

Actual_Parameter_List ::=
sequence_Actual_Parameter { , sequence_Actual_Parameter }

sequence_Actual_Parameter ::=
Number | Boolean | Sequence
Version 1.0 Property Specification Language Reference Manual 43

Temporal layer

1

5

10

15

20

25

30

35

40

45

50

55
6.2.1 FL properties

FL Properties, shown in Box 27, describe single- or multi-cycle behavior built from Boolean expressions,
sequential expressions, and subordinate properties.

Box 27—FL properties

The most basic FL Property is a Boolean expression. An FL Property enclosed in parentheses is also an FL prop-
erty.

More complex FL properties are built from Boolean expressions, sequential expressions, and subordinate proper-
ties using various temporal operators.

NOTE—Like Boolean expressions, FL properties are grouped using parentheses (()), as opposed to SEREs which are
grouped using curly braces ({}).

6.2.1.1 Clocked FL properties

The FL clock operator operator (@), shown in Box 28, provides a way to clock an FL Property.

Box 28—FL property clock operator

The first operand is the FL Property to be clocked. The second operand is a Boolean expression with which to
clock the FL Property.

Restrictions

None.

Informal semantics

For FL property A and Boolean CLK:

A@CLK holds on a given path iff A holds on the path obtained by extracting from the given path exactly
those cycles in which CLK holds, or if CLK never holds on that path. A@CLK! holds on a given path iff
CLK holds at least once on the given path, and A holds on the path obtained by extracting from the given
path exactly those cycles in which CLK holds.

NOTE—When clocks are nested, the outer clock causes alignment before the inner clock is considered. For example,
(A@CLK_A)@CLK_B holds on a given path iff, starting at the first cycle of the given path in which CLK_B holds, A holds on
the path obtained by extracting from the given path those cycles in which CLK_A holds.

NOTE—A distinction between weak and strong clocks is made for a clocked property. In contrast, there is only one form of
a clocked SERE (see Section 6.1.1.1.1), although it is syntactically similar to the weak clocking of properties.

FL_Property ::=
Boolean

| (FL_Property)

FL_Property ::=
FL_Property @ clock_Boolean

| FL_Property @ clock_Boolean !
44 Property Specification Language Reference Manual Version 1.0

Temporal layer

1

5

10

15

20

25

30

35

40

45

50

55
Example 1

Consider the following behavior of Booleans a, b, and clk, where "time" is at the granularity observed by the
verification tool:

time 0 1 2 3 4 5 6 7 8 9

clk 0 1 0 1 0 1 0 1 0 1
a 0 0 0 1 1 1 0 0 0 0
b 0 0 0 0 0 1 0 1 1 0

The unclocked FL Property

(a until! b)

holds at times 5, 7, and 8, because b holds at each of those times. The property also holds at times 3 and 4,
because a holds at those times and continues to hold until b holds at time 5. It does not hold at any other time of
the given behavior.

The clocked FL Property

(a until! b)

@clk holds at times 2, 3, 4, 5, 6, and 7. It does not hold at any other time of the given behavior.

Example 2

Consider the following behavior of Booleans a, b, c, clk1, and clk2, where "time" is at the granularity
observed by the verification tool:

time 0 1 2 3 4 5 6 7 8 9

clk1 0 1 0 1 0 1 0 1 0 1
a 0 0 0 1 1 1 0 0 0 0
b 0 0 0 0 0 1 0 1 1 0
c 1 0 0 0 0 1 1 0 0 0
clk2 1 0 0 1 0 0 1 0 0 1

The unclocked FL Property

(c && next! (a until! b))

holds at time 6. It does not hold at any other time of the given behavior.

The singly-clocked FL Property

(c && next! (a until! b))@clk1

holds at times 4 and 5. It does not hold at any other time of the given behavior.

The singly-clocked FL Property

(a until! b)@clk2
Version 1.0 Property Specification Language Reference Manual 45

Temporal layer

1

5

10

15

20

25

30

35

40

45

50

55
does not hold at any time of the given behavior.

The multiply-clocked FL Property

(c && next! (a until! b)@clk1)@clk2

holds at time 0. It does not hold at any other time of the given behavior.

6.2.1.2 Simple FL properties

6.2.1.2.1 always

The always operator, shown in Box 29, specifies that an FL property or a sequence holds at all times, starting
from the present.

Box 29—always operator

The operand of the always operator is an FL Property or Sequence.

Restrictions

None.

Informal semantics

An always property holds in the current cycle of a given path iff the FL Property or Sequence that is the oper-
and holds at the current cycle and all subsequent cycles.

NOTE—If the operand (FL property or sequence) is temporal (i.e., spans more than one cycle), then the always operator
defines a property that describes overlapping occurrences of the behavior described by the operand. For example, the prop-
erty always {a;b;c} describes any behavior in which {a;b;c} holds in every cycle, thus any behavior in which a holds in
the first and every subsequent cycle, b holds in the second and every subsequent cycle, and c holds in the third and every sub-
sequent cycle.

6.2.1.2.2 never

The never operator, shown in Box 30, specifies that an FL property or a sequence never holds.

Box 30—never operator

The operand of the never operator is an FL Property or a Sequence.

FL_Property ::=
always FL_Property

| always Sequence

FL_Property ::=
never FL_Property

| never Sequence
46 Property Specification Language Reference Manual Version 1.0

Temporal layer

1

5

10

15

20

25

30

35

40

45

50

55
Restrictions

Within the simple subset (see Section 4.4.5), the operand of a never property is restricted to be a Boolean
expression or a SERE.

Informal semantics

A never property holds in the current cycle of a given path iff the FL Property or Sequence that is the operand
does not hold at the current cycle and does not hold at any future cycle.

6.2.1.2.3 eventually!

The eventually! operator, shown in Box 31, specifies that an FL property or a Sequence holds at the current
cycle or at some future cycle.

Box 31—eventually! operator

The operand of the eventually! operator is an FL Property or a Sequence.

Restrictions

Within the simple subset (see Section 4.4.5), the operand of an eventually! property is restricted to be a
Boolean or a SERE.

Informal semantics

An eventually! property holds in the current cycle of a given path iff the FL Property or Sequence that is the
operand holds at the current cycle or at some future cycle.

6.2.1.2.4 next

The next family of operators, shown in Box 32, specify that an FL property holds at some next cycle.

Box 32—next operators

The FL Property that is the operand of the next! or next operator is a property that holds at some next cycle.
If present, the Number indicates at which next cycle the property holds, that is, for number i, the property holds
at the ith next cycle. If the Number operand is omitted, the property holds at the very next cycle.

FL_Property ::=
eventually! FL_Property

| eventually! Sequence

FL_Property ::=
next! (FL_Property)

| next (FL_Property)
| next! [Number] (FL_Property)
| next [Number] (FL_Property)
Version 1.0 Property Specification Language Reference Manual 47

Temporal layer

1

5

10

15

20

25

30

35

40

45

50

55
The next! operator is a strong operator, thus it specifies that there is a next cycle (and so does not hold at the
last cycle, no matter what the operand). Similarly, next![i] specifies that there are at least i next cycles.

The next operator is a weak operator, thus it does not specifies that there is a next cycle, only that if there is, the
property that is the operand holds. Thus, a weak next property holds at the last cycle of a finite behavior, no mat-
ter what the operand. Similarly, next[i] does not specify that there are at least i next cycles.

NOTE—The Number may be 0. That is, next[0](f) is allowed, which says that f holds at the current cycle.

Restrictions

If a property contains a Number, then the Number shall be statically computable.

Informal semantics

— A next! property holds in the current cycle of a given path iff:
1) there is a next cycle and
2) the FL property that is the operand holds at the next cycle.

— A next property holds in the current cycle of a given path iff:
1) there is not a next cycle or
2) the FL property that is the operand holds at the next cycle.

— A next![i] property holds in the current cycle of a given path iff:
1) there is an ith next cycle and
2) the FL property that is the operand holds at the ith next cycle.

— A next[i] property holds in the current cycle of a given path iff:
1) there is not an ith next cycle or
2) the FL property that is the operand holds at the ith next cycle.

NOTE—The formula next(f) is equivalent to the formula next[1](f).

6.2.1.3 Extended next FL properties

6.2.1.3.1 next_a

The next_a family of operators, shown in Box 33, specify that an FL property holds at all cycles of a range of
future cycles.

Box 33—next_a operators

The FL Property that is the operand of the next_a! or next_a operator is a property that holds at all cycles
between the ith and jth next cycles, inclusive, where i and j are the low and high bounds, respectively, of the finite
Range.

The next_a! operator is a strong operator, thus it specifies that there is a jth next cycle, where j is the high
bound of the Range.

FL_Property ::=
next_a! [finite_Range] (FL_Property)

| next_a [finite_Range] (FL_Property)
48 Property Specification Language Reference Manual Version 1.0

Temporal layer

1

5

10

15

20

25

30

35

40

45

50

55
The next_a operator is a weak operator, thus it does not specify that any of the ith through jth next cycles neces-
sarily exist.

Restrictions

If a next_a or next_a! property contains a Range, then the Range shall be a finite Range, each bound of the
Range shall be statically computable, and the left bound of the Range shall be less than or equal to the right
bound of the Range.

Informal semantics

— A next_a![i:j] property holds in the current cycle of a given path iff:
1) there is a jth next cycle and
2) the FL Property that is the operand holds at all cycles between the ith and jth next cycle, inclusive.

— A next_a[i:j] property holds in the current cycle of a given path iff the FL Property that is the
operand holds at all cycles between the ith and jth next cycle, inclusive. (If not all those cycles exist, then
the FL Property that is the operand holds on as many as do exist).

NOTE—The left bound of the Range may be 0. For example, next_a[0:n](f) is allowed, which says that f holds start-
ing in the current cycle, and for n cycles following the current cycle.

6.2.1.3.2 next_e

The next_e family of operators, shown in Box 34, specify that an FL property holds at least once within some
range of future cycles.

Box 34—next_e operators

The FL Property that is the operand of the next_e! or next_e operator is a property that holds at least once
between the ith and jth next cycle, inclusive, where i and j are the low and high bounds, respectively, of the finite
Range.

The next_e! operator is a strong operator, thus it specifies that there are enough cycles so the FL property that
is the operand has a chance to hold.

The next_e operator is a weak operator, thus it does not specify that there are enough cycles so the FL property
that is the operand has a chance to hold.

Restrictions

If a next_e or next_e! property contains a Range, then the Range shall be a finite Range, each bound of the Range
shall be statically computable, and the left bound of the Range shall be less than or equal to the right bound of the
Range.

FL_Property ::=
next_e! [finite_Range] (FL_Property)

| next_e [finite_Range] (FL_Property)
Version 1.0 Property Specification Language Reference Manual 49

Temporal layer

1

5

10

15

20

25

30

35

40

45

50

55
Informal semantics

— A next_e![i..j] property holds in the current cycle of a given path iff there is some cycle between
the ith and jth next cycle, inclusive, where the FL Property that is the operand holds.

— A next_e[i..j] property holds in the current cycle of a given path iff
1) there are less than j next cycles following the current cycle, or
2) there is some cycle between the ith and jth next cycle, inclusive, where the FL Property that is the

operand holds.

NOTE—The left bound of the Range may be 0. For example, next_e[0:n](f) is allowed, which says that f holds either
in the current cycle or in one of the n cycles following the current cycle.

6.2.1.3.3 next_event

The next_event family of operators, shown in Box 35, specify that an FL property holds at the next occurrence
of a Boolean expression. The next occurrence of the Boolean expression includes an occurrence at the current
cycle..

Box 35—next_event operators

The rightmost operand of the next_event! or next_event operator is an FL Property that holds at the next
occurrence of the leftmost operand. If the FL Property includes a Number, then the property holds at the ith
occurrence of the leftmost operand (where i is the value of the Number), rather than at the very next occurrence.

The next_event! operator is a strong operator, thus it specifies that there is a next occurrence of the leftmost
operand. Similarly, next_event![i] specifies that there are at least i occurrences.

The next_event operator is a weak operator, thus it does not specify that there is a next occurrence of the left-
most operand. Similarly, next_event[i] does not specify that there are at least i next occurrences.

Restrictions

If a next_event or next_event! property contains a Number, then the Number shall be a statically com-
putable, positive Number.

Informal semantics

— A next_event! property holds in the current cycle of a given path iff:
1) the Boolean expression and the FL Property that are the operands both hold at the current cycle, or

at some future cycle, and
2) the Boolean expression holds at some future cycle, and the FL property that is the operand holds at

the next cycle in which the Boolean expression holds.

FL_Property ::=
next_event! (Boolean) (FL_Property)

| next_event (Boolean) (FL_Property)
| next_event! (Boolean) [positive_Number] (FL_Property)
| next_event (Boolean) [positive_Number] (FL_Property)
50 Property Specification Language Reference Manual Version 1.0

Temporal layer

1

5

10

15

20

25

30

35

40

45

50

55
— A next_event property holds in the current cycle of a given path iff:
1) the Boolean expression that is the operand does not hold at the current cycle, nor does it hold at any

future cycle; or
2) the Boolean expression that is the operand holds at the current cycle or at some future cycle, and the

FL property that is the operand holds at the next cycle in which the Boolean expression holds.
— A next_event![i] property holds in the current cycle of a given path iff:

1) the Boolean expression that is the operand holds at least i times, starting at the current cycle, and
2) the FL property that is the operand holds at the ith occurrence of the Boolean expression.

— A next_event[i] property holds in the current cycle of a given path iff:
1) the Boolean expression that is the operand does not hold at least i times, starting at the current cycle,

or
2) the Boolean expression that is the operand holds at least i times, starting at the current cycle, and the

FL property that is the operand holds at the ith occurrence of the Boolean expression.

NOTE—The formula next_event(true)(f) is equivalent to the formula next[0](f). Similarly, if p holds in the
current cycle, then next_event(p)(f) is equivalent to next_event(true)(f) and therefore to next[0](f).
However, none of these is equivalent to next(f).

6.2.1.3.4 next_event_a

The next_event_a family of operators, shown in Box 36, specify that an FL property holds at a range of the
next occurrences of a Boolean expression. The next occurrences of the Boolean expression include an occur-
rence at the current cycle.

Box 36—next_event_a operators

The rightmost operand of the next_event_a! or next_event_a operator is an FL Property that holds at
the specified Range of next occurrences of the Boolean expression that is the leftmost operand. The FL Property
that is the rightmost operand holds on the ith through jth occurrences (inclusive) of the Boolean expression, where
i and j are the low and high bounds, respectively, of the Range.

The next_event_a! operator is a strong operator, thus it specifies that there are at least j occurrences of the
leftmost operand.

The next_event_a operator is a weak operator, thus it does not specify that there are j occurrences of the left-
most operand.

Restrictions

If a next_event_a or next_event_a! property contains a Range, then the Range shall be a finite, positive
Range, each bound of the Range shall be statically computable, and the left bound of the Range shall be less than
or equal to the right bound of the Range.

FL_Property ::=
next_event_a! (Boolean) [finite_positive_Range] (FL_Property)

| next_event_a (Boolean) [finite_positive_Range] (FL_Property)
Version 1.0 Property Specification Language Reference Manual 51

Temporal layer

1

5

10

15

20

25

30

35

40

45

50

55
Informal semantics

— A next_event_a![i..j] property holds in the current cycle of a given path iff:
1) the Boolean expression that is the operand holds at least j times, starting at the current cycle, and
2) the FL property that is the operand holds at the ith through jth occurrences, inclusive, of the Boolean

expression.
— A next_event_a[i..j] property holds in a given cycle of a given path iff the FL property that is

the operand holds at the ith through jth occurrences, inclusive, of the Boolean expression, starting at the
current cycle. If there are less than j occurrences of the Boolean expression, then the FL property that is
the operand holds on all of them, starting from the ith occurrence.

.

6.2.1.3.5 next_event_e

The next_event_e family of operators, shown in Box 37, specify that an FL property holds at least once dur-
ing a range of next occurrences of a Boolean expression. The next occurrences of the Boolean expression
include an occurrence at the current cycle.

Box 37—next_event_e operators

The rightmost operand of the next_event_e! or next_event_e operator is an FL Property that holds at
least once during the specified Range of next occurrences of the Boolean expression that is the leftmost oper-
and. The FL Property that is the rightmost operand holds on one of the ith through jth occurrences (inclusive) of
the Boolean expression, where i and j are the low and high bounds, respectively, of the Range.

The next_event_e! operator is a strong operator, thus it specifies that there are enough cycles so that the FL
Property has a chance to hold.

The next_event_e operator is a weak operator, thus it does not specify that there are enough cycles so that
the FL Property has a chance to hold.

Restrictions

If a next_event_e or next_event_e! property contains a Range, then the Range shall be a finite, positive
Range, each bound of the Range shall be statically computable, and the left bound of the Range shall be less than
or equal to the right bound of the Range.

Informal semantics

— A next_event_e![i..j] property holds in the current cycle of a given path iff there is some cycle
during the ith through jth next occurrences of the Boolean expression at which the FL Property that is the
operand holds.

— A next_event_e[i..j] property holds in the current cycle of a given path iff:
1) there are less than j next occurrences of the Boolean expression or
2) there is some cycle during the ith through jth next occurrences of the Boolean expression at which

the FL Property that is the operand holds.

FL_Property ::=
next_event_e! (Boolean) [finite_positive_Range] (FL_Property)

| next_event_e (Boolean) [finite_positive_Range] (FL_Property)
52 Property Specification Language Reference Manual Version 1.0

Temporal layer

1

5

10

15

20

25

30

35

40

45

50

55
6.2.1.4 Compound FL properties

6.2.1.4.1 abort

The abort operator, shown in Box 38, specifies a condition that removes any obligation for a given FL property
to hold.

Box 38—abort operator

The left operand of the abort operator is the FL Property to be aborted. The right operand of the abort oper-
ator is the Boolean condition which causes the abort to occur.

Restrictions

None.

Informal semantics

An abort property holds in the current cycle of a given path iff:

— the FL Property that is the left operand holds, or
— the series of cycles starting from the current cycle and ending with the cycle in which the Boolean condi-

tion that is the right operand holds does not contradict the FL Property that is the left operand.

Example

Using abort to model an asynchronous interrupt: “A request is always followed by an acknowledge, unless a
cancellation occurs.”

always ((req -> eventually! ack) abort cancel);

6.2.1.4.2 before

The before family of operators, shown in Box 39, specify that one FL property holds before a second FL prop-
erty holds.

Box 39—before operators

The left operand of the before family of operators is an FL Property that holds before the FL Property which is
the right operand holds.

The before! and before!_ operators are strong operators, thus they specify that the left FL Property eventu-
ally holds.

FL_Property ::=
FL_Property abort Boolean

FL_Property ::=
FL_Property before! FL_Property

| FL_Property before!_ FL_Property
| FL_Property before FL_Property
| FL_Property before_ FL_Property
Version 1.0 Property Specification Language Reference Manual 53

Temporal layer

1

5

10

15

20

25

30

35

40

45

50

55
The before and before_ operators are weak operators, thus they do not specify that the left FL Property
eventually holds.

The before! and before operators are non-inclusive operators, that is, they specify that the left operand
holds strictly before the right operand holds.

The before!_ and before_ operators are inclusive operators, that is, they specify that the left operand holds
before or at the same cycle as the right operand holds.

Restrictions

Within the simple subset (see Section 4.4.5), each operand of a before property is restricted to be a Boolean
expression.

Informal semantics

— A before! property holds in the current cycle of a given path iff:
1) the FL Property that is the left operand holds at the current cycle or at some future cycle and
2) the FL Property that is the left operand holds strictly before the FL Property that is the right operand

holds, or the right operand never holds.
— A before!_ property holds in the current cycle of a given path iff:

1) the FL Property that is the left operand holds at the current cycle or at some future cycle and
2) the FL Property that is the left operand holds before or at the same cycle as the FL Property that is

the right operand, or the right operand never holds.
— A before property holds in the current cycle of a given path iff:

1) neither the FL Property that is the left operand nor the FL Property that is the right operand ever
hold in any future cycle; or

2) the FL Property that is the left operand holds strictly before the FL Property that is the right operand
holds.

— A before_ property holds in the current cycle of a given path iff:
1) neither the FL Property that is the left operand nor the FL Property that is the right operand ever

hold in any future cycle; or
2) the FL Property that is the left operand holds before or at the same cycle as the FL Property that is

the right operand.

6.2.1.4.3 until

The until family of operators, shown in Box 40, specify that one FL property holds until a second FL property
holds.

Box 40—until operators

The left operand of the until family of operators is an FL Property that holds until the FL Property that is the
right operand holds. The right operand is called the “terminating property”.

FL_Property ::=
FL_Property until! FL_Property

| FL_Property until!_ FL_Property
| FL_Property until FL_Property
| FL_Property until_ FL_Property
54 Property Specification Language Reference Manual Version 1.0

Temporal layer

1

5

10

15

20

25

30

35

40

45

50

55
The until! and until!_ operators are strong operators, thus they specify that the terminating property even-
tually holds.

The until and until_ operators are weak operators, thus they do not specify that the terminating property
eventually holds (and if it does not eventually hold, then the FL Property that is the left operand holds forever).

The until! and until operators are non-inclusive operators, that is, they specify that the left operand holds
up to, but not necessarily including, the cycle in which the right operand holds.

The until!_ and until_ operators are inclusive operators, that is, they specify that the left operand holds up
to and including the cycle in which the right operand holds.

Restrictions

Within the simple subset (see Section 4.4.5), the right operand of an until! or until property is restricted to
be a Boolean expression, and both the left and right operands of an until!_ or until_ property are restricted
to be a Boolean expression.

Informal semantics

— An until! property holds in the current cycle of a given path iff:
1) the FL Property that is the right operand holds at the current cycle or at some future cycle; and
2) the FL Property that is the left operand holds at all cycles up to, but not necessarily including, the

earliest cycle at which the FL Property that is the right operand holds.
— An until!_ property holds in the current cycle of a given path iff:

1) the FL Property that is the right operand holds at the current cycle or at some future cycle and
2) the FL Property that is the left operand holds at all cycles up to and including the earliest cycle at

which the FL Property that is the right operand holds.
— An until property holds in the current cycle of a given path iff:

1) the FL Property that is the left operand holds forever; or
2) the FL Property that is the right operand holds at the current cycle or at some future cycle, and the

FL Property that is the left operand holds at all cycles up to, but not necessarily including, the earli-
est cycle at which the FL Property that is the right operand holds.

— An until_ property holds in the current cycle of a given path iff:
1) the FL Property that is the left operand holds forever or
2) the FL Property that is the right operand holds at the current cycle or at some future cycle, and the

FL Property that is the left operand holds at all cycles up to and including the earliest cycle at which
the FL Property that is the right operand holds.
Version 1.0 Property Specification Language Reference Manual 55

Temporal layer

1

5

10

15

20

25

30

35

40

45

50

55
6.2.1.5 Sequence-based FL properties

6.2.1.5.1 Suffix implication

The suffix implication family of operators, shown in Box 41, specify that an FL property or sequence holds if
some pre-requisite sequence holds.

Box 41—Suffix implication operators

The right operand of the operator is an FL Property or Sequence that is specified to hold if the Sequence that is
the left operand holds.

The Sequence |-> Sequence! and Sequence |=> Sequence! properties are strong properties, so
they specify that the rightmost Sequence completes.

The Sequence |-> Sequence and Sequence |=> Sequence properties are weak properties, so they
do not specify that the rightmost Sequence necessarily completes (this can happen, for example, if the rightmost
Sequence contains a [*]).

Restrictions

None.

Informal semantics

— A Sequence (FL_Property) property holds in a given cycle of a given path iff:
1) the Sequence that is the left operand does not hold at the given cycle or
2) the FL Property that is the right operand holds in any cycle C such that the left operand holds tightly

from the given cycle to C.
— A Sequence |-> Sequence! property holds in a given cycle of a given path iff:

1) the Sequence that is the left operand does not hold at the given cycle or
2) the Sequence that is the right operand holds in any cycle C such that the Sequence that is the left

operand holds tightly from the given cycle to C.
— A Sequence |-> Sequence property holds in a given cycle of a given path iff:

1) the Sequence that is the left operand does not hold at the given cycle or
2) in any cycle C such that the Sequence that is the left operand holds tightly from the given cycle to C,

either
i) the Sequence that is the right operand holds, or
ii) any prefix of the path beginning at C can be extended such that the Sequence that is the right

operand holds tightly on the extension.
— A Sequence |=> Sequence! property holds in a given cycle of a given path iff:

1) the Sequence that is the left operand does not hold at the given cycle or
2) the Sequence that is the right operand holds in the cycle after any cycle C such that the Sequence

that is the left operand holds tightly from the given cycle to C.
— A Sequence |=> Sequence property holds in a given cycle of a given path iff:

1) the Sequence that is the left operand does not hold at the given cycle; or

FL_Property ::=
Sequence (FL_Property)

| Sequence |-> Sequence !
| Sequence |-> Sequence
| Sequence |=> Sequence !
| Sequence |=> Sequence
56 Property Specification Language Reference Manual Version 1.0

Temporal layer

1

5

10

15

20

25

30

35

40

45

50

55
2) in the cycle after any cycle C such that the Sequence that is the left operand holds tightly from the
given cycle to C, either
i) the Sequence that is the right operand holds, or
ii) any prefix of the path beginning in the cycle after C can be extended such that the Sequence

that is the right operand holds tightly on the extension.

6.2.1.5.2 whilenot

The whilenot family of operators, shown in Box 42, specify that a sequence holds on the interval between the
current cycle and a terminating condition.

Box 42—whilenot operators

The left operand of the whilenot family of operators is a Boolean expression that defines the end of the inter-
val in which the sequence holds. The left operand is called the “terminating condition”. The right operand is the
sequence that holds within the interval.

The whilenot! and whilenot!_ operators are strong operators, thus they specify that the terminating con-
dition eventually holds.

The whilenot and whilenot_ operators are weak operators, thus they do not specify that the terminating
condition eventually holds (and if the terminating condition does not eventually hold, then the sequence that is
the right operand starts but never completes).

The whilenot! and whilenot operators are non-inclusive operators, that is, they specify that the sequence
completes strictly before the terminating condition.

The whilenot!_ and whilenot_ operators are inclusive operators, that is, they specify that the sequence
completes in the same cycle as the terminating condition.

Restrictions

None.

Informal semantics

— A whilenot! property holds in a given cycle of a given path iff either
1) the terminating condition holds in the given cycle and the Sequence operand holds on the empty

path, or
2) there is a cycle C subsequent to the given cycle such that the terminating condition holds at C, the

terminating condition does not hold at any cycle from the given cycle to the cycle before C, and the
Sequence operand holds tightly from the given cycle to the cycle before C.

— A whilenot!_ property holds in a given cycle of a given path iff either
1) the terminating condition holds in the given cycle and the Sequence operand holds tightly from the

given cycle to itself, or

FL_Property ::=
whilenot! (Boolean) Sequence

| whilenot (Boolean) Sequence
| whilenot!_ (Boolean) Sequence
| whilenot_ (Boolean) Sequence
Version 1.0 Property Specification Language Reference Manual 57

Temporal layer

1

5

10

15

20

25

30

35

40

45

50

55
2) there is a cycle C subsequent to the given cycle such that the terminating condition holds at C, the
terminating condition does not hold at any cycle from the given cycle to the cycle before C, and the
Sequence operand holds tightly from the given cycle to C.

— A whilenot property holds in a given cycle of a given path iff
1) the terminating condition holds in the given cycle and the Sequence operand holds on the empty

path; or
2) there is a cycle C subsequent to the given cycle such that the terminating condition holds at C, the

terminating condition does not hold at any cycle from the given cycle to the cycle before C, and the
Sequence operand holds tightly from the given cycle to the cycle before C; or

3) any prefix of the given path can be extended such that the corresponding whilenot sequence
holds tightly on the extended path and the termination condition does not hold on any cycle of the
extended path.

— A whilenot_ property holds in a given cycle of a given path iff
1) the terminating condition holds in the given cycle and the Sequence operand holds tightly from the

given cycle to itself; or
2) there is a cycle C subsequent to the given cycle such that the terminating condition holds at C, the

terminating condition does not hold at any cycle from the given cycle to the cycle before C, and the
Sequence operand holds tightly from the given cycle to C; or

3) any prefix of the given path can be extended such that the corresponding whilenot_ sequence
holds tightly on the extended path and the terminating condition does not hold on any cycle of the
extended path.

6.2.1.5.3 within

The within family of operators, shown in Box 43, specify that a given sequence holds on an interval starting
with either the occurrence of an initial condition or completion of an initial sequence, and ending with the occur-
rence of a terminating condition.

Box 43—within operators

The leftmost operand of the within family of operators is a Sequence or Boolean expression that defines the
beginning of an interval. If the leftmost operand is a Sequence, then completion of that Sequence defines the
beginning of the interval. If the leftmost operand is a Boolean expression, then it is treated as if it were a
Sequence containing exactly that Boolean expression. The middle operand is a Boolean condition (the “terminat-
ing condition”), the occurrence of which defines the end of the interval. The rightmost operand is a Sequence that
holds on the interval.

The within! and within!_ operators are strong operators, thus they specify that the terminating condition
eventually holds.

The within and within_ operators are weak operators, thus they do not specify that the terminating condi-
tion eventually holds (and if the terminating condition does not eventually hold, then the sequence that is the
rightmost operand starts but never completes).

FL_Property ::=
within! (Sequence_or_Boolean , Boolean) Sequence

| within (Sequence_or_Boolean , Boolean) Sequence
| within!_ (Sequence_or_Boolean , Boolean) Sequence
| within_ (Sequence_or_Boolean , Boolean) Sequence

Sequence_or_Boolean ::=
Sequence | Boolean
58 Property Specification Language Reference Manual Version 1.0

Temporal layer

1

5

10

15

20

25

30

35

40

45

50

55
The within! and within operators are non-inclusive operators, that is, they specify that the sequence that is
the rightmost operand completes strictly before the cycle in which the terminating condition holds.

The within!_ and within_ operators are inclusive operators, that is, they specify that the sequence which is
the rightmost operand completes at the same cycle as that in which the terminating condition holds.

Restrictions

None.

Informal semantics

— A within! property holds in a given cycle of a given path iff
1) the leftmost operand does not hold at the given cycle, or
2) in any cycle C such that the leftmost operand holds tightly from the given cycle to C, either

i) the terminating condition holds at C and the rightmost operand holds on the empty path, or
ii) there is a cycle D subsequent to C such that the terminating condition holds at D, the terminat-

ing condition does not hold at any cycle from C to the cycle before D, and the rightmost oper-
and holds tightly from C to the cycle before D.

— A within!_ property holds in a given cycle of a given path iff
1) the leftmost operand does not hold at the given cycle, or
2) in any cycle C such that the leftmost operand holds tightly from the given cycle to C, either

i) the terminating condition holds at C and the rightmost operand holds tightly from C to itself, or
ii) there is a cycle D subsequent to C such that the terminating condition holds at D, the terminat-

ing condition does not hold at any cycle from C to the cycle before D, and the rightmost oper-
and holds tightly from C to D.

— A within property holds in a given cycle of a given path iff:
1) the leftmost operand does not hold at the given cycle, or
2) in any cycle C such that the leftmost operand holds tightly from the given cycle to C, either

i) the terminating condition holds at C and the rightmost operand holds on the empty path, or
ii) there is a cycle D subsequent to C such that the terminating condition holds at D, the terminat-

ing condition does not hold at any cycle from C to the cycle before D, and the rightmost oper-
and holds tightly from C to the cycle before D, or

iii) any prefix of the path beginning at C can be extended such that the corresponding within
sequence holds tightly on the extended path and the termination condition does not hold on any
cycle of the extended path.

— A within_ property holds in a given cycle of a given path iff:
1) the leftmost operand does not hold at the given cycle, or
2) in any cycle C such that the leftmost operand holds tightly from the given cycle to C, either

i) the terminating condition holds at C and the rightmost operand holds tightly from C to itself, or
ii) there is a cycle D subsequent to C such that the terminating condition holds at D, the terminat-

ing condition does not hold at any cycle from C to the cycle before D, and the rightmost oper-
and holds tightly from C to D, or

iii) any prefix of the path beginning at C can be extended such that the corresponding within_
sequence holds tightly on the extended path and the termination condition does not hold on any
cycle of the extended path.
Version 1.0 Property Specification Language Reference Manual 59

Temporal layer

1

5

10

15

20

25

30

35

40

45

50

55
6.2.1.6 Logical FL properties

6.2.1.6.1 Logical implication

The logical implication operator (->), shown in Box 44, is used to specify logical implication.

Box 44—Logical implication operator

The right operand of the logical implication operator is an FL Property that is specified to hold if the FL Property
which is the left operand holds.

Restrictions

Within the simple subset (see Section 4.4.5), the left operand of a logical implication property is restricted to be a
Boolean expression.

Informal semantics

A logical implication property holds in a given cycle of a given path iff:

— the FL Property that is the left operand does not hold at the given cycle or
— the FL Property that is the right operand does hold at the given cycle.

6.2.1.6.2 Logical iff

The logical iff operator (<->), shown in Box 45, is used to specify the iff (if and only if) relation between two
properties.

Box 45—Logical iff operator

The two operands of the logical iff operator are FL Properties. The logical iff operator specifies that either both
operands hold, or neither operand holds.

Restrictions

Within the simple subset (see Section 4.4.5), both operands of a logical iff property are restricted to be a Boolean
expression.

Informal semantics

A logical iff property holds in a given cycle of a given path iff:

— both FL Properties that are operands hold at the given cycle or
— neither of the FL Properties that are operands holds at the given cycle.

FL_Property ::=
FL_Property -> FL_Property

FL_Property ::=
FL_Property <-> FL_Property
60 Property Specification Language Reference Manual Version 1.0

Temporal layer

1

5

10

15

20

25

30

35

40

45

50

55
6.2.1.6.3 Logical and

The logical and operator, shown in Box 46, is used to specify logical and.

Box 46—Logical and operator

The operands of the logical and operator are two FL Properties that are both specified to hold.

Restrictions

Within the simple subset (see Section 4.4.5), the left operand of a logical and property is restricted to be a Bool-
ean expression.

Informal semantics

A logical and property holds in a given cycle of a given path iff the FL Properties that are the operands both hold
at the given cycle.

6.2.1.6.4 Logical or

The logical or operator, shown in Box 47, is used to specify logical or.

Box 47—Logical or operator

The operands of the logical or operator are two FL Properties, at least one of which is specified to hold.

Restrictions

Within the simple subset (see Section 4.4.5), the left operand of a logical or property is restricted to be a Boolean
expression.

Informal semantics

A logical or property holds in a given cycle of a given path iff at least one of the FL Properties that are the oper-
ands holds at the given cycle.

FL_Property ::=
FL_Property AND_OP FL_Property

FL_Property ::=
FL_Property OR_OP FL_Property
Version 1.0 Property Specification Language Reference Manual 61

Temporal layer

1

5

10

15

20

25

30

35

40

45

50

55
6.2.1.6.5 Logical not

The logical not operator, shown in Box 48, is used to specify logical negation.

Box 48—Logical not operator

The operand of the logical not operator is an FL Property that is specified to not hold.

Restrictions

Within the simple subset (see Section 4.4.5), the operand of a logical not property is restricted to be a Boolean
expression.

Informal semantics

A logical not property holds in a given cycle of a given path iff the FL Property that is the operand does not hold
at the given cycle.

6.2.1.7 LTL operators

The LTL operators, shown in Box 49, provide standard LTL syntax for other PSL operators.

Box 49—LTL operators

The standard LTL operators are alternate syntax for the equivalent PSL operators, as shown in Table 3.

FL_Property ::=
NOT_OP FL_Property

FL_Property ::=
X FL_Property

| X! FL_Property
| F FL_Property
| G FL_Property
| [FL_Property U FL_Property]
| [FL_Property W FL_Property]

Table 3—PSL equivalents

Standard LTL
operator

Equivalent PSL
operator

X next

X! next!

F eventually!

G always

U until!

W until
62 Property Specification Language Reference Manual Version 1.0

Temporal layer

1

5

10

15

20

25

30

35

40

45

50

55
Restrictions

The restrictions that apply to each equivalent PSL operator also apply to the corresponding standard LTL opera-
tor.

6.2.2 Optional Branching Extension (OBE) properties

Properties of the Optional Branching Extension (OBE), shown in Box 50, are interpreted over trees of states as
opposed to properties of the Foundation Language (FL), which are interpreted over sequences of states. A tree of
states is obtained from the model by unwrapping, where each path in the tree corresponds to some computation
path of the model. A node in the tree branches to several nodes as a result of non-determinism in the model. A
completely deterministic model unwraps to a tree of exactly one path, i.e., to a sequence of states. An OBE prop-
erty holds or does not hold for a specific state of the tree.

Box 50—OBE properties

The most basic OBE Property is a Boolean expression. An OBE Property enclosed in parentheses is also an OBE
Property.

6.2.2.1 Universal OBE properties

6.2.2.1.1 AX operator

The AX operator, shown in Box 51, specifies that an OBE property holds at all next states of the given state.

Box 51—AX operator

The operand of AX is an OBE Property that is specified to hold at all next states of the given state.

Restrictions

None.

Informal semantics

An AX property holds at a given state iff, for all paths beginning at the given state, the OBE Property that is the
operand holds at the next state.

OBE_Property ::=
Boolean

| (OBE_Property)

OBE_Property ::=
AX OBE_Property
Version 1.0 Property Specification Language Reference Manual 63

Temporal layer

1

5

10

15

20

25

30

35

40

45

50

55
6.2.2.1.2 AG operator

The AG operator, shown in Box 52, specifies that an OBE property holds at the given state and at all future
states.

Box 52—AG operator

The operand of AG is an OBE Property that is specified to hold at the given state and at all future states.

Restrictions

None.

Informal semantics

An AG property holds at a given state iff, for all paths beginning at the given state, the OBE Property that is the
operand holds at the given state and at all future states.

6.2.2.1.3 AF operator

The AF operator, shown in Box 53, specifies that an OBE property holds now or at some future state, for all
paths beginning at the current state.

Box 53—AF operator

The operand of AF is an OBE Property that is specified to hold now or at some future state, for all paths begin-
ning at the current state.

Restrictions

None.

Informal semantics

An AF property holds at a given state iff, for all paths beginning at the given state, the OBE Property that is the
operand holds at the first state or at some future state.

OBE_Property ::=
AG OBE_Property

OBE_Property ::=
AF OBE_Property
64 Property Specification Language Reference Manual Version 1.0

Temporal layer

1

5

10

15

20

25

30

35

40

45

50

55
6.2.2.1.4 AU operator

The AU operator, shown in Box 54, specifies that an OBE property holds until a specified terminating property
holds, for all paths beginning at the given state.

Box 54—AU operator

The first operand of AU is an OBE Property that is specified to hold until the OBE Property that is the second
operand holds along all paths starting at the given state.

Restrictions

None.

Informal semantics

An AU property holds at a given state iff, for all paths beginning at the given state:

— the OBE Property that is the right operand holds at the current state or at some future state; and
— the OBE Property that is the left operand holds at all states, up to but not necessarily including, the state

in which the OBE Property that is the right operand holds.

6.2.2.2 Existential OBE properties

6.2.2.2.1 EX operator

The EX operator, shown in Box 55, specifies that an OBE property holds at some next state.

The operand of EX is an OBE property that is specified to hold at some next state of the given state.

Box 55—EX operator

Restrictions

None.

Informal semantics

An EX property holds at a given state iff there exists a path beginning at the given state, such that the OBE Prop-
erty which is the operand holds at the next state.

OBE_Property ::=
A [OBE_Property U OBE_Property]

OBE_Property ::=
EX OBE_Property
Version 1.0 Property Specification Language Reference Manual 65

Temporal layer

1

5

10

15

20

25

30

35

40

45

50

55
6.2.2.2.2 EG operator

The EG operator, shown in Box 56, specifies that an OBE property holds at the current state and at all future
states of some path beginning at the current state.

Box 56—EG operator

The operand of EG is an OBE Property that is specified to hold at the current state and at all future states of some
path beginning at the given state.

Restrictions

None.

Informal semantics

An EG property holds at a given state iff there exists a path beginning at the given state, such that the OBE Prop-
erty that is the operand holds at the given state and at all future states.

6.2.2.2.3 EF operator

The EF operator, shown in Box 57, specifies that an OBE property holds now or at some future state of some
path beginning at the given state.

Box 57—EF operator

The operand of EF is an OBE Property that is specified to hold now or at some future state of some path begin-
ning at the given state.

Restrictions

None.

Informal semantics

An EF property holds at a given state iff there exists a path beginning at the given state, such that the OBE Prop-
erty that is the operand holds at the current state or at some future state.

OBE_Property ::=
EG OBE_Property

OBE_Property ::=
EF OBE_Property
66 Property Specification Language Reference Manual Version 1.0

Temporal layer

1

5

10

15

20

25

30

35

40

45

50

55
6.2.2.2.4 EU operator

The EU operator, shown in Box 58, specifies that an OBE property holds until a specified terminating property
holds, for some path beginning at the given state.

Box 58—EU operator

The first operand of EU is an OBE Property that is specified to hold until the OBE Property that is the second
operand holds for some path beginning at the given state.

Restrictions

None.

Informal semantics

An EU property holds at a given state iff there exists a path beginning at the given state, such that:

— the OBE Property that is the right operand holds at the current state or at some future state; and
— the OBE Property that is the left operand holds at all states, up to but not necessarily including, the state

in which the OBE Property that is the right operand holds.

6.2.2.3 Logical OBE properties

6.2.2.3.1 OBE implication

The OBE implication operator (->), shown in Box 59, is used to specify logical implication.

Box 59—OBE implication operator

The right operand of the OBE implication operator is an OBE Property that is specified to hold if the OBE Prop-
erty that is the left operand holds.

Restrictions

None.

Informal semantics

An OBE implication property holds in a given state iff:

— the OBE property that is the left operand does not hold at the given state or
— the OBE property that is the right operand does hold at the given state.

OBE_Property ::=
E [OBE_Property U OBE_Property]

OBE_Property ::=
OBE_Property -> OBE_Property
Version 1.0 Property Specification Language Reference Manual 67

Temporal layer

1

5

10

15

20

25

30

35

40

45

50

55
6.2.2.3.2 OBE iff

The OBE iff operator (<->), shown in Box 60, is used to specify the iff (if and only if) relation between two prop-
erties.

Box 60—OBE iff operator

The two operands of the OBE iff operator are OBE Properties. The OBE iff operator specifies that either both
operands hold or neither operand holds.

Restrictions

None.

Informal semantics

An OBE iff property holds in a given state iff:

— both OBE Properties that are operands hold at the given state or
— neither of the OBE Properties that are operands hold at the given state.

6.2.2.3.3 OBE and

The OBE and operator, shown in Box 61, is used to specify logical and.

Box 61—OBE and operator

The operands of the OBE and operator are two OBE Properties that are both specified to hold.

Restrictions

None.

Informal semantics

An OBE and property holds in a given state iff the OBE Properties that are the operands both hold at the given
state.

OBE_Property ::=
OBE_Property <-> OBE_Property

OBE_Property ::=
OBE_Property AND_OP OBE_Property
68 Property Specification Language Reference Manual Version 1.0

Temporal layer

1

5

10

15

20

25

30

35

40

45

50

55
6.2.2.3.4 OBE or

The OBE or operator, shown in Box 62, is used to specify logical or.

Box 62—OBE or operator

The operands of the OBE or operator are two OBE Properties, at least one of which is specified to hold.

Restrictions

None.

Informal semantics

A OBE or property holds in a given state iff at least one of the OBE Properties that are the operands holds at the
given state.

6.2.2.3.5 OBE not

The OBE not operator, shown in Box 63, is used to specify logical negation.

Box 63—OBE not operator

The operand of the OBE not operator is an OBE Property which is specified to not hold.

Restrictions

None.

Informal semantics

An OBE not property holds in a given state iff the OBE Property that is the operand does not hold at the given
state.

OBE_Property ::=
OBE_Property OR_OP OBE_Property

OBE_Property ::=
NOT_OP OBE_Property
Version 1.0 Property Specification Language Reference Manual 69

Temporal layer

1

5

10

15

20

25

30

35

40

45

50

55
6.2.3 Replicated properties

Replicated properties are specified using the operator forall, as shown in Box 64. The first operand of the rep-
licated property is a Replicator and the second operand is a parameterized property.

Box 64—Replicating properties

The first operand of a Replicator is the parameter in the parameterized property. This parameter can be an
array. The second operand is the set of values over which replication occurs.

1) If the parameter is not an array, then the property is replicated once for each value in the set of val-
ues, with that value substituted for the parameter. The total number of replications is equal to the
size of the set of values.

2) If the parameter is an array of size N, then the property is replicated once for each possible combina-
tion of N (not necessarily distinct) values from the set of values, with those values substituted for
the N elements of the array parameter. If the set of values has size K, then the total number of repli-
cations is equal to K^N.

The set of values can be specified in three different ways

— The keyword boolean specifies the set of values {True, False}.
— A ValueRange specifies the set of all values within the given range.
— The comma (,) between ValueRanges indicates the union of the obtained sets.

Restrictions

If the Name has an associated IndexRange, the IndexRange shall be specified as a finite Range, each bound of
the Range shall be statically computable, and the left bound of the Range shall be less than or equal to the right
bound of the Range.

If a Value is used to specify a ValueRange, the Value shall be statically computable.

If a Range is used to specify a ValueRange, the Range shall be a finite Range, each bound of the Range shall be
statically computable, and the left bound of the Range shall be less than or equal to the right bound of the Range.

Property ::=
Replicator Property

Replicator ::=
forall Name [IndexRange] in ValueSet :

IndexRange ::=
LEFT_SYM finite_Range RIGHT_SYM

Flavor Macro LEFT_SYM =
Verilog: [/ VHDL: (/ EDL: (

Flavor Macro RIGHT_SYM =
Verilog:] / VHDL:) / EDL:)

ValueSet ::=
{ ValueRange { , ValueRange } }

| boolean
ValueRange ::=

Value
| finite_Range

Range ::=
LowBound RANGE_SYM HighBound
70 Property Specification Language Reference Manual Version 1.0

Temporal layer

1

5

10

15

20

25

30

35

40

45

50

55
The Name shall be used in one or more expressions in the Property, or as an actual parameter in the instantiation
of a parameterized Property, so that each of the replicated instances of the Property corresponds to a unique value
of the Name.

An implementation may impose restrictions on the use of a replication variable Name defined by a Replicator.
However, an implementation shall support at least comparison (equality, inequality) between the Name and an
expression, and use of the Name as an index or repetition count.

Replicators can be nested, but all nested Replicators shall be at the top level. A replicated property shall not be
nested within a non-replicated property.

NOTE—The Name defined by a replicator represents a non-static variable. Since the bounds of both an IndexRange and a
ValueRange must be defined by statically computable expressions, those expressions cannot refer to the replication variable
Name of another Replicator, and therefore neither the IndexRange nor the ValueRange of a nested Replicator can be defined
in terms of the replicator variable Name of a containing Replicator.

Informal semantics

— A forall i in boolean: f(i) property is replicated to define two instances
of the property f(i):

f(true)
f(false)

— A forall i in {j:k} : f(i) property is replicated to define k-j+1 instances
of the property f(i):

f(j)
f(j+1)
f(j+2)
...
f(k)

— A forall i in {j,l} : f(i) property is replicated to define two instances
of the property f(i):

f(j)
f(l)

— A forall i[0:1] in boolean : f(i) property is replicated to define four instances
of the property f(i):

f({false,false})
f({false,true})
f({true,false})
f({true,true})

— A forall i[0:2] in {4,5} : f(i) property is replicated to define eight instances of the prop-
erty f(i):

f({4,4,4})
f({4,4,5})
f({4,5,4})
f({4,5,5})
Version 1.0 Property Specification Language Reference Manual 71

Temporal layer

1

5

10

15

20

25

30

35

40

45

50

55
f({5,4,4})
f({5,4,5})
f({5,5,4})
f({5,5,5})

Examples

Legal:

forall i[0:3] in boolean:
request && (data_in == i) -> next(data_out == i)

forall i in boolean:
forall j in {0:7}:

forall k in {0:3}:
f(i,j,k)

Illegal:

always (request ->
forall i in boolean: next_e[1:10](response[i]))

forall j in {0:7}:
forall k in {0:j}:

f(j,k)

6.2.4 Named properties

A given property may be applicable in more than one part of the design. In such a case, it is convenient to be able
to define the property once and refer to the single definition wherever the property applies. Declaration and
instantiation of named properties provide this capability.
72 Property Specification Language Reference Manual Version 1.0

Temporal layer

1

5

10

15

20

25

30

35

40

45

50

55
6.2.4.1 Property declaration

A property declaration, shown in Box 65, defines a property and gives it a name. A property declaration can also
specify a list of formal parameters that can be referenced within the property.

Box 65—Property declaration

Restrictions

The Name of a declared property shall not be the same as the name of any other PSL declaration.

Example

property ResultAfterN (boolean start; property result; const n; boolean stop) =
always ((start -> next[n] (result)) @ (posedge clk) abort stop);

This property could also be declared as follows:

property ResultAfterN (boolean start, stop; property result; const n) =
always ((start -> next[n] (result)) @ (posedge clk) abort stop);

The two declarations have slightly different interfaces (i.e., different formal parameter orders), but they both
declare the same property ResultAfterN. This property describes behavior in which a specified result (a
property) occurs n cycles after an enabling condition (parameter start) occurs, with cycles defined by rising edges
of signal clk, unless an (asynchronous) abort condition (parameter stop) occurs.

NOTE—There is no requirement to use formal parameters in a property declaration. A declared property may refer directly to
signals in the design as well as to formal parameters.

6.2.4.2 Property instantiation

A property instantiation, shown in Box 66, creates an instance of a named property and provides actual parame-
ters for formal parameters (if any) of the named property.

Box 66—Property instantiation

PSL_Declaration ::=
Property_Declaration

Property_Declaration ::=
property Name [(Formal_Parameter_List)] DEF_SYM Property ;

Formal_Parameter_List ::=
Formal_Parameter { ; Formal_Parameter }

Formal_Parameter ::=
ParamKind Name { , Name }

ParamKind ::=
const | boolean | property | sequence

FL_Property ::=
property_Name [(Actual_Parameter_List)]

Actual_Parameter_List ::=
Actual_Parameter { , Actual_Parameter }

Actual_Parameter ::=
Number | Boolean | Property | Sequence
Version 1.0 Property Specification Language Reference Manual 73

Temporal layer

1

5

10

15

20

25

30

35

40

45

50

55
Restrictions

For each formal parameter of the named property property_Name, the property instantiation shall provide a
corresponding actual parameter. For a const formal parameter, the actual parameter shall be a statically evalu-
able integer expression. For a boolean formal parameter, the actual parameter shall be a Boolean expression.
For a property formal parameter, the actual parameter shall be an FL Property. For a sequence formal
parameter, the actual parameter shall be a Sequence.

Informal semantics

An instance of a named property holds at a given evaluation cycle if and only if the named property, modified by
replacing each formal parameter in the property declaration with the corresponding actual parameter in the prop-
erty instantiation, holds in that evaluation cycle.

Example

Given the first declaration for the property ResultAfterN in 6.2.4.1,

ResultAfterN (write_req, eventually! ack, 3, cancel)
ResultAfterN (read_req, eventually! (ack | retry), 5,

(cancel | write_req))

is equivalent to

always ((write_req -> next[3] (eventually! ack)) @ (posedge clk) abort
cancel)

always ((read_req -> next[5] (eventually! (ack | retry))) @ (posedge clk)
abort (cancel | write_req))
74 Property Specification Language Reference Manual Version 1.0

1

5

10

15

20

25

30

35

40

45

50

55
7. Verification layer

The verification layer provides directives which tell the verification tools what to do with the specified proper-
ties. The verification layer also provides constructs which group related directives and other PSL statements.

7.1 Verification directives

The verification directives are:

— assert
— assume
— assume_guarantee
— restrict
— restrict_guarantee
— cover
— fairness and strong fairness

7.1.1 assert

The verification directive assert, shown in Box 67, instructs the verification tool to verify that a property
holds.

Box 67—Assert statement

Example

The directive

assert always (ack -> next !ack);

instructs the verification tool to verify that the property

always (ack -> next !ack)

holds in the design.

7.1.2 assume

The verification directive assume, shown in Box 68, instructs the verification tool to constrain the verification
(e.g., the behavior of the input signals) so that a property holds.

Box 68—Assume statement

Assert_Statement ::=
assert Property ;

Assume_Statement ::=
assume Property ;
Version 1.0 Property Specification Language Reference Manual 75

Verification layer

1

5

10

15

20

25

30

35

40

45

50

55
Restrictions

The Property that is the operand of an assume directive must be an FL Property.

Example

The directive

assume always (ack -> next !ack);

instructs the verification tool to constrain the verification (e.g., the behavior of the input signals) so that the prop-
erty

always (ack -> next !ack)

holds in the design.

Verification tools are not obligated to verify the assumed property. Assumptions are often used to specify the
operating conditions of a design property by constraining the behavior of the design inputs. In other words, an
asserted property is required to hold only along those paths which obey the assumption.

7.1.3 assume_guarantee

The assume_guarantee directive, shown in Box 69, instructs the verification tool to constrain the verifica-
tion (e.g., the behavior of the input signals) so that a property holds and also to verify that the assumed property
holds.

Box 69—Assume_guarantee statement

Restrictions

The Property that is the operand of an assume_guarantee directive must be an FL Property.

Example

The directive

assume_guarantee always (ack -> next !ack);

instructs the tool to assume that whenever signal ack is asserted, it is not asserted at the next cycle, while also
verifying that the property holds. To illustrate how this verification directive is used, imagine two design blocks,
A and B, and the signal ack as an output from block B and an input to block A. The property

assume_guarantee always (ack -> next !ack);

can be assumed to verify some other properties related to block A. However, verification tools shall also indicate
the proof obligation of this property when block B is present. How this information is used is tool-dependent.

Assume_Guarantee_Statement ::=
assume_guarantee Property ;
76 Property Specification Language Reference Manual Version 1.0

Verification layer

1

5

10

15

20

25

30

35

40

45

50

55
7.1.4 restrict

The verification directive restrict, shown in Box 70, is a way to constrain the design inputs using sequences.

Box 70—Restrict statement

A restrict directive can be used to initialize the design to get to a specific state before checking assertions.

Note-Verification tools are not obligated to verify that the restricted sequence holds.

Example

The directive

restrict {!rst;rst[*3];!rst[*]};

is a constraint that every execution trace begins with one cycle of rst low, followed by three cycles of rst
high, followed by rst being low forever.

7.1.5 restrict_guarantee

The directive restrict_guarantee, shown in Box 71, instructs the verification tool to constrain the design
inputs so that a sequence holds and also to verify that the restrict sequence holds.

Box 71—Restrict_guarantee statement

Example

The directive

restrict_guarantee {!rst;rst[*3];!rst[*]};

is a constraint that every execution trace begins with one cycle of rst low, followed by three cycles of rst
high, followed by rst being low forever, while also verifying that the constraint holds. How this information is
used is tool-dependent.

7.1.6 cover

The verification directive cover, shown in Box 72, directs the verification tool to check if a certain path was
covered by the verification space based on a simulation test suite or a set of given constraints.

Box 72—Cover statement

Restrict_Statement ::=
restrict Sequence ;

Restrict_Guarantee_Statement ::=
restrict_guarantee Sequence ;

Cover_Statement ::=
cover Sequence ;
Version 1.0 Property Specification Language Reference Manual 77

Verification layer

1

5

10

15

20

25

30

35

40

45

50

55
Example

The directive

cover {start_trans;!end_trans[*];start_trans & end_trans};

instructs the verification tool to check if there is at least one case in which a transaction starts and then another
one starts the same cycle which the previous one completed.

7.1.7 fairness and strong fairness

The directives fairness and strong fairness, shown in Box 73, are special kinds of assumptions which
correspond to liveness properties.

Box 73—Fairness statement

If the fairness constraint includes the keyword strong, then it is a strong fairness constraint; otherwise it is a
simple fairness constraint.

Fairness constraints can be used to filter out certain behaviors. For example, they can be used to filter out a
repeated occurrence of an event that blocks another event forever. Fairness constraints guide the verification tool
to verify the property only over fair paths. A path is fair if every fairness constraint holds along the path. A sim-
ple fairness constraint holds along a path if the given Boolean expression occurs infinitely many times along the
path. A strong fairness constraint holds along the path if a given Boolean expression does not occur infinitely
many times along the path or if another given Boolean expression occurs infinitely many times along the path.

Examples

The directive

fairness p;

instructs the verification tool to verify the formula only over paths in which the Boolean expression p occurs
infinitely often. Semantically it is equivalent to the assumption

assume GF p;

The directive

strong fairness p,q;

instructs the verification tool to verify the formula only over paths in which either the Boolean expression p does
not occur infinitely often or the Boolean expression q occurs infinitely often. Semantically it is equivalent to the
assumption

assume (GF p) -> (GF q);

Fairness_Statement ::=
fairness Boolean ;

| strong fairness Boolean , Boolean ;
78 Property Specification Language Reference Manual Version 1.0

Verification layer

1

5

10

15

20

25

30

35

40

45

50

55
7.2 Verification units

A verification unit, shown in Box 74, is used to group verification directives and other PSL statements.

Box 74—Verification unit

The Name is the name by which this verification unit is known to the verification tools.

The optional Hierarchical_HDL_Name indicates the design module or module instance to which the verification
unit is bound. If the Hierarchical_HDL_Name is not present, then the verification unit binds to the top-level
module of the design under verification. See 7.2.1 for a discussion of binding.

An Inherit_Spec indicates another verification unit from which this verification unit inherits contents. See 7.2.2
for a discussion of inheritance.

A VUnit_Item is a verification directive or other PSL statement grouped by this verification unit. See 7.2.3 for a
discussion of which PSL statements can be grouped by verification units.

The VUnitType specifies the type of the Verification Unit. Verification unit types vprop and vmode enable sep-
arate definition of assertions to verify and constraints (i.e., assumptions or restrictions) to be considered in
attempting to verify those assertions. Various vprop verification units can be created containing different sets of
assertions to verify and various vmode verification units containing different sets of constraints can be created to
represent the different conditions under which verification should take place. By combining one or more vprop
verification units with one or more vmode verification units, the user can easily compose different verification
tasks.

Verification unit type vunit enables a combined approach in which both assertions to verify and applicable
constraints, if any, can be defined together. All three types of verification units can be used together in a single
verification run.

The default verification unit (i.e., one named default) can be used to define constraints that are common to all
verification environments, or defaults that can be overridden in other verification units. For example, the default
verification unit might include a default clock declaration or a sequence declaration for the most common reset
sequence.

Verification_Unit ::=
VUnitType Name [(Hierarchical_HDL_Name)] {
 { Inherit_Spec }
 { VUnit_Item }
}

VUnitType ::=
vunit | vprop | vmode

Name ::=
HDL_ID

Hierarchical_HDL_Name ::=
module_Name { PATH_SYM instance_Name }

Inherit_Spec ::=
inherit vunit_Name { , vunit_Name } ;

VUnit_Item ::=
HDL_Decl_or_Stmt

| PSL_Declaration
| Verification_Directive
Version 1.0 Property Specification Language Reference Manual 79

Verification layer

1

5

10

15

20

25

30

35

40

45

50

55
Restrictions

A Verification Unit of type vmode shall not contain an assert directive.

A Verification Unit of type vprop shall not contain a directive that is not an assert directive.

A Verification Unit of type vprop shall not inherit a Verification Unit of type vunit or vmode.

A default Verification Unit, if it exists, shall be of type vmode.

7.2.1 Verification unit binding

The connection between signals referred to in a verification unit and signals of the design under verification is by
name, relative to the module or module instance to which the verification unit is bound.

If the verification unit is bound to a module (as opposed to a module instance), then this is equivalent to duplicat-
ing the contents of the verification unit and binding each duplication to one instance.

Examples

vunit ex1a(top_block.i1.i2) {
assert never (ena && enb);

}

vunit ex1a is bound to instance top_block.i1.i2. This is equivalent to the following non-bound
vunit ex1b:

vunit ex1b {
assert never (top_block.i1.i2.ena && top_block.i1.i2.enb);

}

As a second example, consider:

vunit ex2a(mod1) {
assert never (ena && enb);

}

The verification unit is bound to module mod1. If this module is instantiated twice in the design, once as
top_block.i1.i2 and once as top_block.i1.i3, then vunit ex2a is equivalent to the following non-
bound vunit ex2b:

vunit ex2b {
assert never(top_block.i1.i2.ena && top_block.i1.i2.enb);
assert never(top_block.i1.i3.ena && top_block.i1.i3.enb);

}

The binding of a verification unit to a module or module instance affects all the names in the vunit.

vunit ex3a (top_block.i1) {
property mutex = never (ena && enb);
assert mutex;

}

80 Property Specification Language Reference Manual Version 1.0

Verification layer

1

5

10

15

20

25

30

35

40

45

50

55
vunit ex3a is bound to the instance top_block.i1. This is equivalent to the following non-bound
vunit ex3b:

vunit ex3b {
property tob_block.i1.mutex =

never (tob_block.i1.ena && tob_block.i1.enb);
assert tob_block.i1.mutex;

}

7.2.2 Verification unit inheritance

When a verification unit inherits another verification unit, the effect is as if the contents of the inherited verifica-
tion unit had appeared within the inheriting verification unit, except:

a) The inherited verification unit is bound according to its own definition, and is not affected by the binding
of the inheriting verification unit.

b) In the case where the inheriting verification unit and the inherited verification unit declare items with the
same name (after taking into account the respective bindings), then the declaration in the inheriting veri-
fication unit takes precedence. A vunit can contain HDL declarations and PSL declarations.

 For more on resolution of apparent declaration conflicts, see 7.2.4.

Examples

vunit ex4a(top_block.i1) {
assert never (read_en && write_en);

}
vunit ex4b(top_block.i1.i2) {

inherit ex4a;
assert never (ena && enb);

}

vunit ex4b inherits vunit ex4a. This is equivalent to the following non-bound vunit ex4c:

vunit ex4c {
assert never (top_block.i1.read_en && top_block.i1.write_en);
assert never (top_block.i1.i2.ena && top_block.i1.i2.enb);

}

As a second example, consider:

vunit ex5a(top_block.i1) {
wire temp;
assign temp = ack1 || ack2;
assert always (reqa -> next temp);

}
vunit ex5b(top_block.i1) {

inherit ex5a;
wire temp;
assign temp = ack1 || ack2 || ack3;
assert always (reqb -> next temp);

}

Version 1.0 Property Specification Language Reference Manual 81

Verification layer

1

5

10

15

20

25

30

35

40

45

50

55
vunit ex5b inherits ex5a. Both verification units are bound to the same instance and both declare wires
named temp. The declaration of temp in the inheriting verification unit takes precedence, so vunit ex5b is
equivalent to the following non-bound vunit ex5c:

vunit ex5c {
wire top_block.i1.temp;
assign top_block.i1.temp =

top_block.i1.ack1 || top_block.i1.ack2 || top_block.i1.ack3;

assert always (top_block.i1.reqa -> next top_block.i1.temp);
assert always (top_block.i1.reqb -> next top_block.i1.temp);

}

As an example of how binding and inheritance affect PSL declarations, consider:

vunit ex6a (top_block.i1) {
property AckInOneCycle (boolean req, ack, clk)

= always (req -> next ack) @ (posedge clk);
}
vunit ex6b (top_block.i1) {

inherit ex6a;
assert AckInOneCycle(req, ack, clk);

}

The vunit ex6b is equivalent to the following non-bound vunit ex6c:

vunit ex6c {
property top_block.i1.AckInOneCycle (boolean req, ack, clk)

= always (req -> next ack) @ (posedge clk);
assert top_block.i1.AckInOneCycle(top_block.i1.req,

top_block.i1.ack,
top_block.i1.clk);

}

7.2.3 Verification unit contents

The declarations and statements that can be grouped inside a verification unit are:

a) Any modeling layer statement or declaration.
b) A property, endpoint, sequence, or clock declaration.
c) A verification directive.

7.2.4 Verification unit scoping rules

As discussed in 7.2.2, when an inheriting verification unit and an inherited verification unit declare items with
the same name (after taking into account the respective bindings), then the declaration in the inheriting verifica-
tion unit takes precedence. This general scoping rule has a specific use: it allows a verification unit to redeclare
and/or give new behavior to a signal in the design under verification.

PSL recognizes four levels at which an identifier is declared. In order of increasing precedence, they are:

a) In the design.
b) In the default verification unit.
c) In an inherited verification unit.
82 Property Specification Language Reference Manual Version 1.0

Verification layer

1

5

10

15

20

25

30

35

40

45

50

55
d) In the current verification unit.

It is illegal for an identifier to be declared twice at the same level.

Example

vunit V {
wire S;
assign S = req || ack;
sequence S = {req;ack}; // illegal - S already declared
...

}

Version 1.0 Property Specification Language Reference Manual 83

Verification layer

1

5

10

15

20

25

30

35

40

45

50

55
84 Property Specification Language Reference Manual Version 1.0

1

5

10

15

20

25

30

35

40

45

50

55
8. Modeling layer

The modeling layer provides a means to model behavior of design inputs (for tools such as formal verification
tools in which the behavior is not otherwise specified), and to declare and give behavior to auxiliary signals and
variables. The modeling layer comes in three flavors, corresponding to Verilog, VHDL, and EDL. Each is
described in the following sections.

8.1 The Verilog-flavored modeling layer

The Verilog flavor of the modeling layer consists of a synthesizable subset defined by IEEE P1364.1.

This subset of Verilog has also been augmented with the following:

— integer ranges
— structures
— non-determinism
— built-in functions rose(), fell(), next(), and prev()

as defined in the following subsections.

8.1.1 Integer ranges

The Verilog flavor of the modeling layer extends the Verilog data types with a finite integer type, shown in
Box 75, where the range of values which the variable can take on is indicated at the declaration.

Box 75—integer range declaration

The nonterminals list_of_variable_identifiers and constant_expression are defined in the syntax for IEEE 1364-
2001 Verilog.

Example

integer (1:5) a, b[1:20];

This declares an integer variable a, which can take on values between 1 and 5, inclusive, and an integer array b,
each of whose twenty entries can take on values between 1 and 5, inclusive.

8.1.2 Structures

The Verilog flavor of the modeling layer also extends the Verilog data types to allow declaration of C-like struc-
tures, as shown in Box 76.

Extended_Verilog_Type_Declaration ::=
integer Integer_Range list_of_variable_identifiers ;

Integer_Range ::=
(constant_expression : constant_expression)
Version 1.0 Property Specification Language Reference Manual 85

Modeling layer

1

5

10

15

20

25

30

35

40

45

50

55
Box 76—Structure declaration

The nonterminals list_of_variable_identifiers, net_declaration, reg_declaration, and integer_declaration are
defined in the syntax for IEEE 1364-2001 Verilog.

Example

struct {
wire w1, w2;
reg r;
integer(0..7) i;

} s1, s2;

which declares two structures, s1 and s2, each with four fields, w1, w2, r, and i. Structure fields are accessed
as s1.w1, s1.w2, etc.

8.1.3 Non-determinism

The union operator specifies two values, shown in Box 77, either of which can be the value of the resulting
expression.

Box 77—Structure declaration

Example

a = b union c;

This is a non-deterministic assignment of either b or c to variable or signal a.

Extended_Verilog_Type_Declaration ::=
struct { Declaration_List } list_of_variable_identifiers ;

Declaration_List ::=
HDL_Variable_or_Net_Declaration { HDL_Variable_or_Net_Declaration }

HDL_Variable_or_Net_Declaration ::=
net_declaration

| reg_declaration
| integer_declaration

Union_Expression ::=
HDL_or_PSL_Expression union HDL_or_PSL_Expression
86 Property Specification Language Reference Manual Version 1.0

Modeling layer

1

5

10

15

20

25

30

35

40

45

50

55
8.1.4 Built-in functions rose(), fell(), next(), prev()

The Verilog-flavored modeling layer adds the built-in functions rose(), fell(), prev(), and next(),
shown in Box 78.

Box 78—Built-in functions

8.1.4.1 rose()

The built-in function rose() is similar to posedge in Verilog. It takes a Boolean signal as argument and pro-
duces a Boolean that is true if the argument's value is 1 at the current cycle and 0 at the previous cycle, with
respect to the clock of its context, otherwise it is false.

The clock context may be provided by the PSL property in which the function call is nested, or by a relevant
default clock declaration. If the context does not specify a clock, the relevant clock is that corresponding to the
granularity of time as seen by the verification tool.

The function rose() can be expressed in terms of the built-in function prev() as follows: rose(b) is
equivalent to the expression b && !prev(b), where b is a Boolean signal. The function rose(b) can be
used just like any other Boolean.

For four-valued logic, the value of rose() is extended in the same way that Verilog extends posedge.

Example

In the timing diagram below, the function call rose(a) is true at times 2 and 5 and at no other time, if it has no
clock context. In the context of clock clk, the function call rose(a) is true at the tick of clk at time 3 and at
no other tick point of clk.

time 0 1 2 3 4 5 6 7

clk 0 1 0 1 0 1 0 1
a 0 0 1 1 0 1 0 0

8.1.4.2 fell()

The built-in function fell() is similar to negedge in Verilog. It takes a Boolean signal as argument and pro-
duces a Boolean that is true if the argument's value is 0 at the current cycle and 1 at the previous cycle, with
respect the clock of its context, otherwise it is false.

The clock context may be provided by the PSL property in which the function call is nested, or by a relevant
default clock declaration. If the context does not specify a clock, the relevant clock is that corresponding to the
granularity of time as seen by the verification tool.

The function fell() can be expressed in terms of the built-in function prev() as follows: fell(b) is
equivalent to the expression !b & prev(b), where b is a Boolean signal. The function fell(b) can be used
just like any other Boolean.

Built_In_Function_Call ::=
rose (Boolean)

| fell (Boolean)
| prev (HDL_or_PSL_Expression [, Number])
| next (Boolean)
Version 1.0 Property Specification Language Reference Manual 87

Modeling layer

1

5

10

15

20

25

30

35

40

45

50

55
For four-valued logic, the value of fell() is extended in the same way that Verilog extends negedge.

Example

In the timing diagram below, the function call fell(a) is true at times 4 and 6 and at no other time if it does not
have a clock context. In the context of clock clk, the function call fell(a) is true at the tick of clk at time 7
and at no other tick point of clk.

time 0 1 2 3 4 5 6 7

clk 0 1 0 1 0 1 0 1
a 0 0 1 1 0 1 0 0

8.1.4.3 prev()

The built-in function prev() takes an expression of arbitrary type as argument and returns a previous value of
that expression. With a single argument, the built-in function prev() gives the value of the expression in the
previous cycle, with respect to the clock of its context. If a second argument is specified and has the value i, the
built-in function prev() gives the value of the expression in the ith previous cycle, with respect to the clock of
its context.

The clock context may be provided by the PSL property in which the function call is nested, or by a relevant
default clock declaration. If the context does not specify a clock, the relevant clock is that corresponding to the
granularity of time as seen by the verification tool.

Note-The first argument of prev() is not necessarily a Boolean expression. For example, prev(data(0..31)) returns
the previous value of the entire bit vector.

Restrictions

If a call to prev() includes a Number, it must be a positive Number that is statically evaluatable.

Example

In the timing diagram below, the function call prev(a) returns the value 1 at times 3, 4, and 6, and the value 0
at other times, if it does not have a clock context. In the context of clock clk, the call prev(a) returns the
value 1 at times 5 and 7, and the value 0 at other tick points. In the context of clock clk, the call prev(a,2)
returns the value 1 at time 7, and 0 at other tick points.

time 0 1 2 3 4 5 6 7

clk 0 1 0 1 0 1 0 1
a 0 0 1 1 0 1 0 0

8.1.4.4 next()

The built-in function next() gives the value of a signal of arbitrary type at the next cycle, with respect to the
finest granularity of time as seen by the verification tool. In contrast to the built-in functions rose(), fell(),
and prev(), the function next() is not affected by the clock of its context.

Restrictions

The argument of next() shall be the name of a signal; an expression other than a simple name is not allowed.
A call to next() can only be used on the right-hand-side of an assignment to a memory element (register or
88 Property Specification Language Reference Manual Version 1.0

Modeling layer

1

5

10

15

20

25

30

35

40

45

50

55
latch). It cannot be used on the right-hand-side of an assignment to a combinational signal, nor can it be used
directly in a property.

Example

In the timing diagram below, the function call next(a) returns the value 1 at times 1, 2, and 4.

time 0 1 2 3 4 5 6 7

clk 0 1 0 1 0 1 0 1
a 0 0 1 1 0 1 0 0

8.2 Other flavors

8.2.1 The VHDL-flavored modeling layer

The VHDL-flavored modeling layer remains undefined at this time. In the future, it can be defined as a synthe-
sizable subset of VHDL, augmented with the same features with which the Verilog flavor is augmented. The
additional features shall take on a VHDL-like syntax in the VHDL-flavored modeling layer and support VHDL-
style comments.

8.2.2 The EDL-flavored modeling layer

The EDL-flavored modeling layer is defined separately; see [B2].
Version 1.0 Property Specification Language Reference Manual 89

Modeling layer

1

5

10

15

20

25

30

35

40

45

50

55
90 Property Specification Language Reference Manual Version 1.0

1

5

10

15

20

25

30

35

40

45

50

55
Appendix A

(normative)

Syntax rule summary

The appendix summarizes the syntax .

A.1 Meta-syntax

The formal syntax described in this standard uses the following extended Backus-Naur Form (BNF).

a) The initial character of each word in a nonterminal is capitalized. For example:

PSL_Statement

A nonterminal can be either a single word or multiple words separated by underscores. When a multiple-
word nonterminal containing underscores is referenced within the text (e.g., in a statement that describes
the semantics of the corresponding syntax), the underscores are replaced with spaces.

b) Boldface words are used to denote reserved keywords, operators, and punctuation marks as a required
part of the syntax. These words appear in a larger font for distinction. For example:

vunit (;
c) The ::= operator separates the two parts of a BNF syntax definition. The syntax category appears to the

left of this operator and the syntax description appears to the right of the operator. For example, item d)
shows three options for a VUnitType.

d) A vertical bar separates alternative items (use one only) unless it appears in boldface, in which case it
stands for itself. For example:

VUnitType ::= vunit | vprop | vmode
e) Square brackets enclose optional items unless it appears in boldface, in which case it stands for itself. For

example:

Sequence_Declaration ::= sequence Name [(Formal_Parameter_List)] DEF_SYM Sequence ;
indicates Formal_Parameter_List is an optional syntax item for Sequence_Declaration, whereas

| SERE [* [Range]]

indicates that (the outer) square brackets are part of the syntax for this SERE, while Range is optional.
f) Braces enclose a repeated item unless it appears in boldface, in which case it stands for itself. A repeated

item may appear zero or more times; the repetitions occur from left to right as with an equivalent left-
recursive rule. Thus, the following two rules are equivalent:

Formal_Parameter_List ::= Formal_Parameter { ; Formal_Parameter }
Formal_Parameter_List ::= Formal_Parameter | Formal_Parameter_List ; Formal_Parameter

g) A comment in a production is preceded by a colon (:) unless it appears in boldface, in which case it
stands for itself.
Version 1.0 Property Specification Language Reference Manual 91

Syntax rule summary

1

5

10

15

20

25

30

35

40

45

50

55
h) If the name of any category starts with an italicized part, it is equivalent to the category name without the
italicized part. The italicized part is intended to convey some semantic information. For example,
vunit_Name is equivalent to Name.

i) Flavor macros, containing embedded underscores, are shown in uppercase. These reflect the various
HDLs which can be used within the PSL syntax and show the definition for each HDL. The general for-
mat is the term Flavor Macro, then the actual macro name, followed by the = operator, and, finally,
the definition for each of the HDLs. For example:

Flavor Macro PATH_SYM = Verilog: . / VHDL: : / EDL: /
shows the path symbol macro. See 4.3.2 for further details about flavor macros.

The main text uses italicized type when a term is being defined, and monospace font for examples and refer-
ences to constants such as 0, 1, or x values.

A.2 HDL Dependencies

PSL depends upon the syntax and semantics of an underlying hardware description language. In particular, PSL
syntax includes productions that refer to nonterminals in Verilog, VHDL, or EDL. PSL syntax also includes Fla-
vor Macros which cause each flavor of PSL to match that of the underlying HDL for that flavor.

For Verilog, the PSL syntax refers to the following nonterminals in the IEEE 1364-2001 Verilog syntax:

— module_or_generate_item_declaration
— module_or_generate_item
— list_of_variable_identifiers
— identifier
— expression
— constant_expression

For VHDL, the PSL syntax refers to the following nonterminals in the IEEE 1076-1993 VHDL syntax:

— declaration
— concurrent_statement
— design_unit
— identifer
— expression

For EDL, the PSL syntax refers to the following nonterminals in the EDL syntax:

— module_item_declaration
— module_item
— module_declaration
— identifer
— expression

A.2.1 Verilog Extensions

For the Verilog flavor, PSL extends the forms of declaration that can be used in the modeling layer by defining
two additional forms of type declaration. PSL also adds an additional form of expression for both Verilog and
VHDL flavors.
92 Property Specification Language Reference Manual Version 1.0

Syntax rule summary

1

5

10

15

20

25

30

35

40

45

50

55
Extended_Verilog_Declaration ::=
Verilog_module_or_generate_item_declaration

| Extended_Verilog_Type_Declaration

Extended_Verilog_Type_Declaration ::=
integer Integer_Range list_of_variable_identifiers ;

| struct { Declaration_List } list_of_variable_identifiers ;

Integer_Range ::=
(constant_expression : constant_expression)

Declaration_List ::=
HDL_Variable_or_Net_Declaration { HDL_Variable_or_Net_Declaration }

HDL_Variable_or_Net_Declaration ::=
net_declaration

| reg_declaration
| integer_declaration

Extended_Verilog_Expression ::=
Verilog_expression

| Verilog_Union_Expression

Extended_VHDL_Expression ::=
VHDL_expression

| VHDL_Union_Expression

Union_Expression ::=
HDL_or_PSL_Expression union HDL_or_PSL_Expression

A.2.2 Flavor macros

Flavor Macro PATH_SYM =
Verilog: . / VHDL: : / EDL: /

Flavor Macro HDL_ID =
Verilog: Verilog_Identifier / VHDL: VHDL_Identifier / EDL: EDL_Identifier

Flavor Macro DEF_SYM =
Verilog: = / VHDL: is / EDL: :=

Flavor Macro RANGE_SYM =
Verilog: : / VHDL: to / EDL: ..

Flavor Macro AND_OP =
Verilog: && / VHDL: and / EDL: &

Flavor Macro OR_OP =
Verilog: || / VHDL: or / EDL: |

Flavor Macro NOT_OP =
Verilog: ! / VHDL: not / EDL: !

Flavor Macro MIN_VAL =
Verilog: 0 / VHDL: 0 / EDL: null

Flavor Macro MAX_VAL =
Version 1.0 Property Specification Language Reference Manual 93

Syntax rule summary

1

5

10

15

20

25

30

35

40

45

50

55
Verilog: inf / VHDL: inf / EDL: null
Flavor Macro HDL_EXPR =

Verilog: Extended_Verilog_Expression / VHDL: Extended_VHDL_Expression
/ EDL: EDL_Expression

Flavor Macro HDL_UNIT =
Verilog: Verilog_module_declaration / VHDL: VHDL_design_unit / EDL: EDL_module_declaration

Flavor Macro HDL_DECL =
Verilog: Extended_Verilog_Declaration / VHDL: VHDL_declaration
 / EDL: EDL_module_item_declaration

Flavor Macro HDL_STMT =
Verilog: Verilog_module_or_generate_item / VHDL: VHDL_concurrent_statement
/ EDL: EDL_module_item

Flavor Macro LEFT_SYM =
Verilog: [/ VHDL: (/ EDL: (

Flavor Macro RIGHT_SYM =
Verilog:] / VHDL:) / EDL:)

A.3 Syntax productions

The rest of this section defines the PSL syntax.

A.3.1 Verification units

PSL_Specification ::=
{ Verification_Item }

Verification_Item ::=
HDL_UNIT | Verification_Unit

Verification_Unit ::=
VUnitType Name [(Hierarchical_HDL_Name)] {
 { Inherit_Spec }
 { VUnit_Item }
}

VUnitType ::=
vunit | vprop | vmode

Name ::=
HDL_ID

Hierarchical_HDL_Name ::=
module_Name { PATH_SYM instance_Name }

Inherit_Spec ::=
inherit vunit_Name { , vunit_Name } ;

VUnit_Item ::=
HDL_Decl_or_Stmt

| PSL_Declaration (see A.3.2)
| Verification_Directive (see A.3.3)

HDL_Decl_or_Stmt ::=
HDL_DECL | HDL_STMT

A.3.2 PSL declarations

PSL_Declaration ::=
Property_Declaration
94 Property Specification Language Reference Manual Version 1.0

Syntax rule summary

1

5

10

15

20

25

30

35

40

45

50

55
| Sequence_Declaration
| Endpoint_Declaration
| Clock_Declaration

Property_Declaration ::=
property Name [(Formal_Parameter_List)] DEF_SYM Property ;

Formal_Parameter_List ::=
Formal_Parameter { ; Formal_Parameter }

Formal_Parameter ::=
ParamKind Name { , Name }

ParamKind ::=
const | boolean | property | sequence

Sequence_Declaration ::=
sequence Name [(Formal_Parameter_List)] DEF_SYM Sequence ; (see A.3.5)

Endpoint_Declaration ::=
endpoint Name [(Formal_Parameter_List)] DEF_SYM Sequence ; (see A.3.5)

Clock_Declaration ::=
default clock DEF_SYM Boolean ; (see A.3.7)

Actual_Parameter_List ::=
Actual_Parameter { , Actual_Parameter }

Actual_Parameter ::=
Number | Boolean | Property | Sequence (see A.3.7) (see A.3.7) (see A.3.4) (see A.3.5)

A.3.3 PSL statements

Verification_Directive ::=
Assert_Statement

| Assume_Statement
| Assume_Guarantee_Statement
| Restrict_Statement
| Restrict_Guarantee_Statement
| Cover_Statement
| Fairness_Statement

Assert_Statement ::=
assert Property ; (see A.3.4)

Assume_Statement ::=
assume Property ; (see A.3.4)

Assume_Guarantee_Statement ::=
assume_guarantee Property ; (see A.3.4)

Restrict_Statement ::=
restrict Sequence ; (see A.3.5)

Restrict_Guarantee_Statement ::=
restrict_guarantee Sequence ; (see A.3.5)

Cover_Statement ::=
cover Sequence ; (see A.3.5)

Fairness_Statement ::=
fairness Boolean ;

| strong fairness Boolean , Boolean ; (see A.3.7)
Version 1.0 Property Specification Language Reference Manual 95

Syntax rule summary

1

5

10

15

20

25

30

35

40

45

50

55
A.3.4 PSL properties

Property ::=
Replicator Property

| FL_Property
| OBE_Property

Replicator ::=
forall Name [IndexRange] in ValueSet :

IndexRange ::=
LEFT_SYM finite_Range RIGHT_SYM

ValueSet ::=
{ ValueRange { , ValueRange } }

| boolean
ValueRange ::=

Value (see A.3.7)
| finite_Range (see A.3.5)

FL_Property ::=
Boolean (see A.3.7)

| (FL_Property)
| property_Name [(Actual_Parameter_List)]

| FL_Property @ clock_Boolean [!]
| FL_Property abort Boolean

: Logical Operators :
| NOT_OP FL_Property
| FL_Property AND_OP FL_Property
| FL_Property OR_OP FL_Property
:
| FL_Property -> FL_Property
| FL_Property <-> FL_Property

: Primitive LTL Operators :
| X FL_Property
| X! FL_Property
| F FL_Property
| G FL_Property
| [FL_Property U FL_Property]
| [FL_Property W FL_Property]

: Simple Temporal Operators :
| always FL_Property
| never FL_Property
| next FL_Property
| next! FL_Property
| eventually! FL_Property
:
| FL_Property until! FL_Property
| FL_Property until FL_Property
| FL_Property until!_ FL_Property
| FL_Property until_ FL_Property
:
| FL_Property before! FL_Property
| FL_Property before FL_Property
| FL_Property before!_ FL_Property
96 Property Specification Language Reference Manual Version 1.0

Syntax rule summary

1

5

10

15

20

25

30

35

40

45

50

55
| FL_Property before_ FL_Property
: Extended Next (Event) Operators : (see A.3.7)

| X [Number] (FL_Property)
| X! [Number] (FL_Property)
| next [Number] (FL_Property)
| next! [Number] (FL_Property)
: (see A.3.5)
| next_a [finite_Range] (FL_Property)
| next_a! [finite_Range] (FL_Property)
| next_e [finite_Range] (FL_Property)
| next_e! [finite_Range] (FL_Property)
:
| next_event! (Boolean) (FL_Property)
| next_event (Boolean) (FL_Property)
| next_event! (Boolean) [positive_Number] (FL_Property)
| next_event (Boolean) [positive_Number] (FL_Property)
:
| next_event_a! (Boolean) [finite_positive_Range] (FL_Property)
| next_event_a (Boolean) [finite_positive_Range] (FL_Property)
| next_event_e! (Boolean) [finite_positive_Range] (FL_Property)
| next_event_e (Boolean) [finite_positive_Range] (FL_Property)

: Operators on SEREs : (see A.3.5)
| Sequence (FL_Property)
| Sequence |-> Sequence [!]
| Sequence |=> Sequence [!]
:
| always Sequence
| never Sequence
| eventually! Sequence
:
| within! (Sequence_or_Boolean , Boolean) Sequence
| within (Sequence_or_Boolean , Boolean) Sequence
| within!_ (Sequence_or_Boolean , Boolean) Sequence
| within_ (Sequence_or_Boolean , Boolean) Sequence
:
| whilenot! (Boolean) Sequence
| whilenot (Boolean) Sequence
| whilenot!_ (Boolean) Sequence
| whilenot_ (Boolean) Sequence

Sequence_or_Boolean ::=
Sequence | Boolean

A.3.5 Sequences

Sequence ::=
{ SERE }

| sequence_Name [(Actual_Parameter_List)]
Version 1.0 Property Specification Language Reference Manual 97

Syntax rule summary

1

5

10

15

20

25

30

35

40

45

50

55
A.3.6 Sugar extended regular expressions

SERE ::=
Boolean (see A.3.7)

| Sequence
| SERE @ clock_Boolean

: Composition Operators :
| SERE ; SERE
| Sequence : Sequence
| Sequence AndOrOp Sequence

: RegExp Qualifiers :
| SERE [* [Count]]
| [* [Count]]
| SERE [+]
| [+]
:
| Boolean [= Count]
| Boolean [-> [positive_Count]]

AndOrOp ::=
&& | & | |

Count ::=
Number | Range

Range ::=
LowBound RANGE_SYM HighBound

LowBound ::=
Number | MIN_VAL

HighBound ::=
Number | MAX_VAL

A.3.7 Forms of expression

Value ::=
Boolean | Number

Boolean ::=
boolean_HDL_or_PSL_Expression

HDL_or_PSL_Expression ::=
HDL_Expression

| endpoint_Name [(Actual_Parameter_List)]
| Built_In_Function_Call
| HDL_or_PSL_Expression union HDL_or_PSL_Expression

HDL_Expression ::=
HDL_EXPR

Built_In_Function_Call ::=
rose (Boolean)

| fell (Boolean)
| prev (HDL_or_PSL_Expression [, Number])
| next (Boolean)

Number ::=
integer_HDL_Expression
98 Property Specification Language Reference Manual Version 1.0

Syntax rule summary

1

5

10

15

20

25

30

35

40

45

50

55
A.3.8 Optional branching extension

OBE_Property ::=
Boolean

| (OBE_Property)
| property_Name [(Actual_Parameter_List)]

: Logical Operators :
| ! OBE_Property
| OBE_Property & OBE_Property
| OBE_Property | OBE_Property
| OBE_Property -> OBE_Property
| OBE_Property <-> OBE_Property

: Universal Operators :
| AX OBE_Property
| AG OBE_Property
| AF OBE_Property
| A [OBE_Property U OBE_Property]

: Existential Operators :
| EX OBE_Property
| EG OBE_Property
| EF OBE_Property
| E [OBE_Property U OBE_Property]
Version 1.0 Property Specification Language Reference Manual 99

Syntax rule summary

1

5

10

15

20

25

30

35

40

45

50

55
100 Property Specification Language Reference Manual Version 1.0

1

5

10

15

20

25

30

35

40

45

50

55
Appendix B

(normative)

Formal syntax and semantics of the temporal layer

B.1 Syntax
Version 1.0 Property Specification Language Reference Manual 101

Formal syntax and semantics of the temporal layer

1

5

10

15

20

25

30

35

40

45

50

55
B.2 Semantics
102 Property Specification Language Reference Manual Version 1.0

Formal syntax and semantics of the temporal layer

1

5

10

15

20

25

30

35

40

45

50

55
B.2.1 Semantics of Boolean expressions

B.2.2 Unclocked semantics

B.2.2.1 Semantics of unclocked SEREs
Version 1.0 Property Specification Language Reference Manual 103

Formal syntax and semantics of the temporal layer

1

5

10

15

20

25

30

35

40

45

50

55
B.2.2.2 Semantics of unclocked Sugar FL formulas

B.2.3 Clocked semantics
104 Property Specification Language Reference Manual Version 1.0

Formal syntax and semantics of the temporal layer

1

5

10

15

20

25

30

35

40

45

50

55
B.2.3.1 Semantics of clocked SEREs

B.2.3.2 Semantics of clocked Sugar FL formulas
Version 1.0 Property Specification Language Reference Manual 105

Formal syntax and semantics of the temporal layer

1

5

10

15

20

25

30

35

40

45

50

55
B.2.4 Semantics of OBE formulas

B.3 Syntactic sugaring
106 Property Specification Language Reference Manual Version 1.0

Formal syntax and semantics of the temporal layer

1

5

10

15

20

25

30

35

40

45

50

55
B.3.1 Additional SERE operators

B.3.2 Additional operators
Version 1.0 Property Specification Language Reference Manual 107

Formal syntax and semantics of the temporal layer

1

5

10

15

20

25

30

35

40

45

50

55
108 Property Specification Language Reference Manual Version 1.0

Formal syntax and semantics of the temporal layer

1

5

10

15

20

25

30

35

40

45

50

55
B.3.3 forall
Version 1.0 Property Specification Language Reference Manual 109

Formal syntax and semantics of the temporal layer

1

5

10

15

20

25

30

35

40

45

50

55
B.4 Typed-text representation of symbols

B.5 Rewriting rules for clocks
110 Property Specification Language Reference Manual Version 1.0

Formal syntax and semantics of the temporal layer

1

5

10

15

20

25

30

35

40

45

50

55
B.6 Status of the formal semantic definition
Version 1.0 Property Specification Language Reference Manual 111

Formal syntax and semantics of the temporal layer

1

5

10

15

20

25

30

35

40

45

50

55
112 Property Specification Language Reference Manual Version 1.0

1

5

10

15

20

25

30

35

40

45

50

55
Appendix C

(informative)

Bibliography

[B1] The IEEE Standard Dictionary of Electrical and Electronics Terms, Sixth Edition.

[B2] EDL Informal Description, IBM, July 4, 2001.
Version 1.0 Property Specification Language Reference Manual 113

Bibliography

1

5

10

15

20

25

30

35

40

45

50

55
114 Property Specification Language Reference Manual Version 1.0

Index

A
abort 53
AF 64
AG 64
always 46
and

length-matching 40
non-length-matching 39

assert 75
assertion 2, 9
assume 75
assume_guarantee 76
assumption 9
assumptions 2
AU 65
AX 63

B
before 53
behavior 9
Boolean 9
Boolean expression 2, 9, 13, 27
Boolean layer 13, 27
branching semantics 24
built-in function

fell 87
next 88
prev 88
rose 87

built-in functions 87

C
checker 9
clock 33, 44

rewriting rules 110
clock expression 15, 24, 28
clocked

property 24
Sugar FL formula 105

comments 19
completes 9
computation path 9
concatenation 34
consecutive repetition 35
constraint 9
count 9
cover 77
coverage 9
CTL 4
cycle 9
Version 1.0 Property Specification La
D
default clock declaration 28
describes 9
design 9
design behavior 9
directives 75
dynamic verification 10

E
EF 66
EG 66
endpoint 28, 42

declaration 42
instantiation 43

EU 67
evaluation 10
evaluation cycle 10
eventually! 47
EX 65
extension 10

F
fair 78
fairness 78
fairness constraints 78
False 10
family of operators 43
fell() 87
finite range 10
FL operators 15
FL properties 44
flavor 13, 19

EDL 14
Verilog 13
VHDL 14

flavor macro 21
forall 70
form

strong 24
weak 24

formal verification 10
Foundation Language 15
fusion 38

G
goto repetition 37

H
HDL expression 27
nguage Reference Manual Index-115

holds 10, 23
holds tightly 10

I
iff 12
integer range 85

K
keywords 14

L
layers 13
length-matching and 40
linear semantics 24
liveness property 10, 24
logic type 10
logical

and 61
iff 60
implication 60
not 62
or 61

logical operators 15
logical value 10
LTL 4
LTL operators 62

M
metalogical value 10
model checking 10
modeling layer 13

Verilog 87
VHDL 89

multi-cycle behavior 2, 32, 44

N
named properties 72
named sequences 40
never 46
next 47
next() 88
next_a 48
next_e 49
next_event 50
next_event_a 51
next_event_e 52
non-consecutive repetition 36
non-length-matching and 39
number 11

O
OBE 17, 63

and 68
iff 68
implication 67
not 69
or 69

occurrence 11
occurs 11
operator

clock 33, 44
HDL 15
LTL 62
OBE 17
precedence 15
strong 24
temporal 2
weak 24

operators 15, 43
Optional Branching Extension 17, 63
or 39
overlap 38

P
path 11
positive count 11
positive number 11
positive range 11
precedence 15, 82
prefix 11
prev() 88
properties 43, 63
property 2, 11, 16, 17, 31

clocked 24
declaration 73
instantiation 73
liveness 10, 24
safety 24
unclocked 24

R
range 11
repetition

consecutive 35
goto 37
non-consecutive 36

replicated properties 70
required 11
restrict 77
restrict_guarantee 77
restriction 11
rewriting rules 110
rose() 87
Index-116 Property Specification Language Reference Manual Version 1.0

S
safety property 11, 24
satellite 4
scoping 82
sequence 11, 16

declaration 40
instantiation 41

sequential expression 11
sequential expressions 2
SERE 11, 15, 32
simple subset 3
simulation 11
simulation checker 2
standard temporal logics 4
starts 11
strictly before 11
strong

form 24
operator 11

strong fairness 78
struct 86
structure 85
suffix implication 56
Sugar Extended Regular Expression 15, 32

T
temporal layer 13
temporal operators 2
terminating condition 12, 24
terminating property 12
tree of states 63
True 12

U
unclocked

property 24
union 86
until 54

V
verification 12
verification layer 13
verification unit 79

binding 80
groupings 82
inheritance 81
scoping rule 82

W
weak

form 24
operator 12

whilenot 57
within 58
Version 1.0 Property Specification Language Reference Manual Index-117

Index-118 Property Specification Language Reference Manual Version 1.0

	1. Overview
	1.1 Scope
	1.2 Purpose
	1.2.1 Motivation
	1.2.2 Goals

	1.3 Usage
	1.3.1 Functional specification
	1.3.2 Functional verification

	1.4 Contents of this standard

	2. References
	3. Definitions
	3.1 Terminology
	3.2 Acronyms and abbreviations

	4. Organization
	4.1 Abstract structure
	4.1.1 Layers
	4.1.2 Flavors

	4.2 Lexical structure
	4.2.1 Keywords
	4.2.2 Operators
	4.2.3 Macros
	4.2.4 The %if construct
	4.2.5 Comments

	4.3 Syntax
	4.3.1 Conventions
	4.3.2 HDL dependencies

	4.4 Semantics
	4.4.1 Clocked vs. unclocked evaluation
	4.4.2 Safety vs. liveness properties
	4.4.3 Strong vs. weak operators
	4.4.4 Linear vs. branching logic
	4.4.5 Simple subset
	4.4.6 Finite-length versus infinite-length behavior

	5. Boolean layer
	5.1 HDL expressions
	5.2 PSL expressions
	5.3 Clock expressions
	5.4 Default clock declaration

	6. Temporal layer
	6.1 Sequential expressions
	6.1.1 Sugar Extended Regular Expressions (SEREs)
	6.1.2 Named sequences
	6.1.3 Named endpoints

	6.2 Properties
	6.2.1 FL properties
	6.2.2 Optional Branching Extension (OBE) properties
	6.2.3 Replicated properties
	6.2.4 Named properties

	7. Verification layer
	7.1 Verification directives
	7.1.1 assert
	7.1.2 assume
	7.1.3 assume_guarantee
	7.1.4 restrict
	7.1.5 restrict_guarantee
	7.1.6 cover
	7.1.7 fairness and strong fairness

	7.2 Verification units
	7.2.1 Verification unit binding
	7.2.2 Verification unit inheritance
	7.2.3 Verification unit contents
	7.2.4 Verification unit scoping rules

	8. Modeling layer
	8.1 The Verilog-flavored modeling layer
	8.1.1 Integer ranges
	8.1.2 Structures
	8.1.3 Non-determinism
	8.1.4 Built-in functions rose(), fell(), next(), prev()

	8.2 Other flavors
	8.2.1 The VHDL-flavored modeling layer
	8.2.2 The EDL-flavored modeling layer

	Syntax rule summary
	A.1 Meta-syntax
	A.2 HDL Dependencies
	A.3 Syntax productions

	Formal syntax and semantics of the temporal layer
	B.1 Syntax
	B.2 Semantics
	B.3 Syntactic sugaring
	B.4 Typed-text representation of symbols
	B.5 Rewriting rules for clocks
	B.6 Status of the formal semantic definition

	Bibliography

