Property Specification Language

Reference Manual

Version 1.0

January 31, 2003

Copyright® 2003 by Accellera. All rights reserved.

No part of thiswork covered by the copyright hereon may be reproduced or used in any form or by any means --
- graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and
retrieval systems --- without the prior approval of Accellera.

Additional copies of this manual may be purchased by contacting Accellera at the address shown below.

Notices

The information contained in this manual represents the definition of the Property Specification Language as
reviewed and released by Accellerain January 2003.

Accellera reserves the right to make changes to the Property Specification Language and this manual in
subsequent revisions and makes no warranties whatsoever with respect to the completeness, accuracy, or

applicability of the information in this manual, when used for production design and/or devel opment.

Accelleradoes not endorse any particular smulator or other CAE tool that is based on the Property Specification
Language.

Suggestions for improvements to the Property Specification Language and/or to this manual are welcome. They
should be sent to the Property Specification Language email reflector

vifv@eda.org
or to the address below.
The current Working Group’ s website addressis
www.eda.org/viv
Information about Accellera and membership enrollment can be obtained by inquiring at the address below.

Published as: Property Specification Language Reference Manual
Version 1.0, January 31, 2003.

Published by: Accdllera
1370 Trancas Street, #163
Napa, CA 94558

Phone: (707) 251-9977
Fax: (707) 251-9877

Printed in the United States of America.

Verilog® isaregistered trademark of Cadence Design Systems, Inc.

ii Property Specification Language Reference Manual Version 1.0

Ken Albin

ThomasL. Anderson
Roy Armoni

Shoham Ben-David
Jayaram Bhasker
Kuang-Chien (KC) Chen
Edmund M. Clarke

Joe Daniels
Simon Davidmann
Bernard Deadman
Surrendra Dudani
Cindy Eisner

E. Allen Emerson

Dana Fisman

Tom Fitzpatrick
Limor Fix

Peter L. Flake
Harry Foster
Daniel Geist
Vassilios Gerousis
Michael J.C. Gordon
John Havlicek
Richard Ho

Yaron Kashai
Joseph Lu
Adriana Maggiore
Erich Marschner
Anthony Mclsaac
Hillel Miller

Carl Pixley

Ambar Sarkar
Andrew Seawright
Sandeep K. Shukla
Michael Siegel
Bassam Tabbara
David Van Campenhout
Moshe Y. Vardi
Bow-Yaw Wang
Yaron Wolfsthal

Version 1.0

The following individuals contributed to the creation, editing, and review of Property Specification Language

Motorola, Inc.

0-1n Design Automation, Inc.
Intel, Corp.

IBM Haifa Research Lab
Cadence Design Systems
Verplex Systems, Inc.

Department of Computer Science,
Carnegie Mellon

Technical Editor
Co-Design Automation, Inc
SDV, Inc
Synopsys, Inc
IBM Haifa Research Lab
University of Texas at Austin

Weizmann | nstitute of Science,
IBM Haifa Research Lab

Co-Design Automation, Inc
Intel, Corp.

Co-Design Automation, Inc.
Verplex Systems, Inc. Work Group Chair
IBM Haifa Research Lab
Infineon Technologies
University of Cambridge
Motorola, Inc.

0-In Design Automation, Inc.
Verisity Design, Inc.

Sun Microsystems

TransEDA Technology Ltd
Cadence Design Systems Work Group Co-Chair
STMicroelectronics, Ltd.
Motorola, Inc.

Synopsys, Inc.

Paradigm Works

0-In Design Automation, Inc.
University of California, Irvine
Infineon Technologies

Novas Software, Inc.

Verisity Design, Inc.

Rice University

Verplex Systems, Inc.

IBM Haifa Research Lab

Property Specification Language Reference Manual iii

Revision history:

Version 0.1, 1st draft 05/10/02
Version 0.1, 2nd draft 05/17/02
Version 0.7, 1st draft 08/14/02
Version 0.7, 2nd draft 08/16/02
Version 0.7, 3rd draft 08/23/02
Version 0.7, 4th draft 08/26/02
Version 0.7, 5th draft 08/30/02
Version 0.7, 6th draft 09/08/02
Version 0.7, 7th draft 09/10/02
Version 0.8, 1st draft 09/12/02
Version 0.9, 1st draft 01/21/03
Version 0.95, 1st draft 01/26/03
Version 1.0 01/31/03

iv Property Specification Language Reference Manual Version 1.0

Table of Contents

O @ = 4T OSSPSR 1
TR S0 o 1

L.2 PUIPOSE. ... ettt ettt ettt ettt r et b e b e s e e h et e bt e h e AR e R e e Rt AR 1E e ee e bt 1e e s eR e e s e eR e eh e e Rt e Rt e e R en s e e e e n e 1
0725 RV Vo (V7 1o g OO OSSR 1

LL2.2 GOBIS.....eceeiteetee sttt ettt ettt h e eae e he e be bt e beehe e beeheenteeaeenre et e beeteesbeeaeeereenranes 1

L.3 USBE .ttt ettt et h e R R R R R R e e R e ARt R e R e R R Rt Rt R en e e e e n e 1
131 FUNCtional SPECITICALIONeivevireriirieie ettt bbbt e et 1

1.3.2 FUNCtional VENTICAONcviiicei ettt s sr e 2

1.4 Contentsof thiSStaNAard...........ccooeiii i st re et e enas 4

A = (= 000U 7
G T B 1= g1 (1] TIPS 9
TN = 017111 0] oo VOSSO 9

3.2 Acronyms and @DDIEVIBLIONScciieieriirieie ettt et s b et e e se e se e e enesbeebesrea 12

N @ o 0 .= 1 o FOO OSSO U PO TPROTUSRPSTIN 13
4.1 ADSEITACE SITUCLUIE........cueeieiiteie ettt bbbt b et heeae s bt bt ebesbesbese e b ene e e eneenna 13
I R I Y= (= SO ST 13

A = Yo = TSSOSO PR 13

4.2 LEXICEI SITUCLUIE ...ttt ettt b bbbt e b s e e e et e h e e bt s bt sbesbesbesbese e beneeneneenna 14
A =Y AT o o TS 14

42,2 OPEIBLOIS ...cueeteeeeeteeite et ettt e ste st e see st e st st e sbesaeesbesheesbeem s e b e e s be b e eRe e ebe e e e eee e et sreeneesheeneenrennnene 15

e B |V =T o F PSSR P PP PP 18

424 TheYOif CONSIIUCEcoueiiiiei ittt sttt se e s b e et et se e b sbeebesre s 19

4.2.5 COMMEIES. ... teteeeeetieieeste st eteeste s st e see s st e ee st e besheeabesbeeseeessenseemee bt eseeaaesaeeeeesaeeabeeneesbeensenbennnens 19
Y - PSPPI 20
It R O 017/ o1 (0] L TRV 20

4.3.2 HDL dEPENUENCIEScceeieceeecie ettt ettt st s e ste e te e et e e e e s s eneesreeaesneenaesreeneesneeneenns 21

S 1 1= 1 o= OO TR U PO URPPTRSRSN 23
4.4.1 Clocked vs. unclocked eValuation.............cccoeriiiiiiinieniee e e e 24

442 Safety VS. [IVENESS PrOPEITIEScc.ei ettt ettt sae et e et s 24

4.4.3 SrONg VS. WEBK OPEFBLOISccveiveeieeeeiiteeeestestaestesstesteestesse e tesseesseeseensesreessesneesaesnsensesnsessenns 24

4.4.4 Linear vS. branChing [OQiC.......cuiiiiiiee et 24

445 SIMPIE SUBSEL........cceeieceeec e et re e ae et reenaesreenee e 25

4.4.6 Finite-length versus infinite-length Behavior ..o 25

LT = T To == I = Y= PSSP 27
B.1 HDL EXPIESSIONS. .. .eciveiuieieieesieeteestesteestesstete e tesseesesssesssssaeasesseessesseeseessesssesssensensenssesssnssssseessssseessens 27

LA e I T 0= o) OSSN 28

LI T O o Q= o] === [0S 28

5.4 Default clock deClaralion...........coeeiiiiiniire et bbb s 28

Lo = 1100 = Y SR 31

Version 1.0 Property Specification Language Reference Manual v

Vi

6.1 SEQUENTIAl EXPrESSIONS......ueivieieteseetereeieereeseeteseesestesteseeseesseseesseseesesseasessessessessensessensensessessesesseesensenes 32

6.1.1 Sugar Extended Regular EXPressions (SERES).......cccccovieirerieneseseniessneeseeseesieseenesseeseses 32
6.1.2 NAMEU SEQUENCESveveiereerieeerieseeiese st stessestessesseseessessssesessessessessessessessensessessensnsesnessessenses 40
6.1.3 NaMEd ENAPOINTS.....ueieirieierieeeieeeie st e se s e ese e se e e se e e eseeseere e e sressessesseneeseeseensensensnsensesses 42
LI = (0] 1= 1 1= 43
L3200 R TR 0 o= =R 44
6.2.2 Optional Branching Extension (OBE) PrOperties........cocuveveerivreresiereserneeseeseeseeseeseseesenees 63
(SIZRC TN == o 1Yo =0 [o] £0) o 1= (1= 70
6.2.4 NAMEA PrOPEITIES.....coveeeiieieiteieete sttt st bbbt bbbt bbbt 72
VL b e (o gl = Y= ST OPTSTPSTSN 75
A Y A= g1 1o 1Ko g 1o [= ot Y= 75
0 N = . PRSP SPPRTOPPPTI 75
T.0.2 BSSUIMIE ...ttt ettt ettt ettt b e e e eh e e et e st et e ehe e bt eae e she e ae et e e b e b e e e e b e ea e e ebeemsenbeenbenbe e e e snnennas 75
7.1.3 BSSUME QUAIBNEEL........eeiieeietietertiereeeteeteeate bt et e bt saeesaesaeeeeseebe e e e b eeaeesbeemsenseensenaeeneesneennas 76
8 = 1 o U SRUSPRSR 77
A T (= g Fox o 0= 1= = PSSR 77
8 S o0 V= SO P RO UPPPRPPO 77
7.1.7 fairness and StroNQ fAITNESS.......c.oiiiiereere ettt bt bbb saeenes 78
7.2 VErfICaTON UNITS......coiiieiitiee ettt et b e et bt b et b e et et s e e et ne b e 79
7.21 Verification Unit DINAINGcoooiiiie e e e 80
7.2.2 Verification UNit iNNEITANCE........coo i e 81
7.2.3 Verification UNit CONLENESc..eoiiiiiiitiiie sttt e s b e e 82
7.24 Verification Unit SCOPING MUIESoviieiiiieee ettt s e 82
Y KoTo (< 1T aTo P = PSP 85
8.1 The Verilog-flavored MOdeliNg [QYENcoi it e 85
S O N 1 0 1= o = g =0 =S PSPPSRI 85
812 SHIUCKUIES ...ttt ettt ettt ettt h e e bt ae e she s e e ee s be s b e e e e s b e eseeebeemseneennesne e e e sneennas 85
ST IRC T \\To 0 o (< (= 1 411 0T 1 0 FO PSR S USRS 86
8.1.4 Built-in functions rose(), fell(), NEXt(), PreV() ...cccceiee i 87
8.2 OLNEN TIAVOIS ...ttt bt bbbt et b et b e eb et e s b e b et e e s benbenee e et es 89
8.2.1 TheVHDL-flavored modeling layercoceiiieiicieee e 89
8.2.2 TheEDL-flavored modeling [@yerccveieiiicieeeeee ettt s 89
SYNEAX FUIE SUMIMIBIY ...c.veveete ettt eeesteete s e e et e e saeassesaeeseeseesseesaesaesasesteensanseenseaseanseaneenseseeensesseeseenes 91
Formal syntax and semantics of the temporal [aYer ..o 101
[T o] 1Ko | ="] S 113

Property Specification Language Reference Manual Version 1.0

1. Overview

1.1 Scope

This document specifies the syntax and semantics for the Accellera Property Specification Language.

1.2 Purpose
1.2.1 Motivation

Ensuring that a design's implementation satisfies its specification is the foundation of hardware verification. Key
to the design and verification process is the act of specification. Yet historicaly, the process of specification has
consisted of creating a natural language description of a set of design requirements. This form of specificationis
both ambiguous and, in many cases, unverifiable due to the lack of a standard machine-executable representa-
tion. Furthermore, ensuring that all functional aspects of the specification have been adequately verified (that is,
covered) is problematic.

The Accellera Property Specification Language (PSL) was devel oped to address these shortcomings. It givesthe
design architect a standard means of specifying design properties using a concise syntax with clearly-defined for-
mal semantics. Similarly, it enables the RTL implementer to capture design intent in a verifiable form, while
enabling the verification engineer to validate that the implementation satisfies its specification through dynamic
(that is, simulation) and static (that is, formal) verification means. Furthermore, it provides a means to measure
the quality of the verification process through the creation of functional coverage models built on formally spec-
ified properties. Plus, it provides a standard means for hardware designers and verification engineers to rigor-
ously document the design specification (machine-executable).

1.2.2 Goals
PSL was specifically developed to fulfill the following general hardware functional specification requirements:

— easy tolearn, write, and read

— concise syntax

— rigorously well-defined formal semantics

— expressive power, permitting the specification for alarge class of real world design properties
— known efficient underlying algorithmsin simulation, as well as formal verification

1.3 Usage

PSL is alanguage for the formal specification of hardware. It is used to describe properties that are required to
hold in the design under verification. PSL provides a means to write specifications which are both easy to read
and mathematically precise. It isintended to be used for functional specification on the one hand and as input to
functional verification tools on the other. Thus, a PSL specification is executable documentation of a hardware
design.

1.3.1 Functional specification
PSL can be used to capture requirements regarding the overall behavior of a design, aswell as assumptions about
the environment in which the design is expected to operate. PSL can also capture internal behavioral require-

ments and assumptions that arise during the design process. Both enable more effective functional verification
and reuse of the design.

Version 1.0 Property Specification Language Reference Manual 1

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Overview

One important use of PSL isfor documentation, either in place of or along with an English specification. A PSL
specification can describe ssmple invariants (for example, signalsread _enabl e and wi t e_enabl e are
never asserted simultaneously) as well as multi-cycle behavior (for example, correct behavior of an interface
with respect to a bus protocol or correct behavior of pipelined operations).
A PSL specification consists of assertions regarding properties of a design under a set of assumptions. A prop-
erty is built from Boolean expressions, which describe behavior over one cycle, sequential expressions, which
describe multi-cycle behavior, and temporal operators, which describe relations over time between Boolean
expressions and sequences. For example, the Boolean expression

ena || enb
describes acycle in which one of the signalsena and enb are asserted. The sequential expression

{req; ack; ! cancel }

describes a sequence of cycles, such that r eq isasserted in thefirst, ack in the second, and cancel deasserted
inthethird. They can be connected using the temporal operators always and Next to get the property

al ways {req; ack;!cancel}(next[2] (ena || enb))

which means that following any sequence of {r eq; ack; ! cancel } (i.e, al ways), either ena or enb is
asserted two cycles later (i.e., next [2]). Adding the directive assert asfollows:

assert always {req; ack;!cancel}(next[2] (ena || enb));

completes the specification, indicating that this property is expected to hold in the design and that this expecta-
tion needs to be verified.

1.3.2 Functional verification

PSL can also be used asinput to verification tools, for both verification by simulation, as well as formal verifica-
tion using amodel checker or atheorem prover. Each of these is discussed below.

1.3.2.1 Simulation
A PSL specification can aso be used to automatically generate checks of simulations. This can be done, for
example, by directly integrating the checks in the simulation tool; by interpreting PSL properties in a testbench
automation tool that drives the simulator; by generating HDL monitors that are simulated alongside the design;
or by analyzing the traces produced at the end of the simulation.
For instance, thefollowing PSL property:

al ways (req -> next !req)
states that signal r eq isapulsed signal — if it is high in some cycle, then it islow in the following cycle. Such

aproperty can be easily checked using a simulation checker written in some HDL which has the functionality of
the Finite State Machine (FSM) shown in Figure 1.

2 Property Specification Language Reference Manual Version 1.0

Overview

req
onereq

w‘

O

Figure 1—A simple (deterministic) FSM which checks the above property

For properties more complicated than the property shown above, manually writing a corresponding checker is
painstaking and error-prone, and maintaining a collection of such checkers for a constantly changing design
under development is a time-consuming task. Instead, a PSL specification can be used as input to a tool which
automatically generates simulatable checkers.

While all PSL properties can be in principle be checked for finite pathsin simulation, the implementation of the
checksis often significantly simpler for a subset called the simple subset of PSL. Informally, in this subset, com-
position of temporal properties is restricted to ensure that time moves forward from left to right through a prop-
erty, as it does in a timing diagram. (See Section 4.4.5 for the formal definition of the simple subset.) For
example, the property

always (a -> next[3] b)
which states that, if ais asserted, then b is asserted three cycles later, belongs to the simple subset, because a
appearsto the left of b in the property and also appears to the left of b in the timing diagram of any behavior that
isnot aviolation of the property. Figure 2 shows an example of such atiming diagram.
An example of aproperty that is not in this subset is the property

always ((a & next[3] b) -> c)
which states that, if ais asserted and b is asserted three cycles later, then ¢ is asserted (in the same cycle as a).
This property does not belong to the simple subset, because although c appears to the right of aand b in the prop-

erty, it appearsto theleft of b in atiming diagram that is not aviolation of the property. Figure 3 shows an exam-
ple of such atiming diagram.

Version 1.0 Property Specification Language Reference Manual 3

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Overview

Figure 2—A trace which satisfies "always (a -> next[3] b)"

Figure 3—A trace which satisfies "always ((a & next[3] b) -> ¢)"
1.3.2.2 Formal verification

PSL is an extension of the standard temporal logics LTL and CTL. A specification in the PSL Foundation Lan-
guage (respectively, the PSL Optional Branching Extension) can be compiled down to a formula of pure LTL
(respectively, CTL), possibly with some auxiliary HDL code, known as a satellite.

1.4 Contents of this standard
The organization of the remainder of this standard is

— Chapter 2 (References) provides references to other applicable standards that are assumed or required for
PSL.

— Chapter 3 (Definitions) defines terms used throughout this standard.

— Chapter 4 (Organization) describes the overall organization of the standard.

— Chapter 5 (Boolean layer) defines the Boolean layer.

— Chapter 6 (Temporal layer) defines the temporal layer.

— Chapter 7 (Verification layer) defines the verification layer.

— Chapter 8 (Modeling layer) defines the modeling layer.

— Appendix A (Syntax rule summary) summarizes the PSL syntax rules.

4 Property Specification Language Reference Manual Version 1.0

Overview

— Appendix B (Formal syntax and semantics of the temporal layer) definesthe formal syntax and semantics
of the temporal layer.

— Appendix C (Bibliography) provides additional documents, to which reference is made only for informa-
tion or background purposes.

1 The Accellera Property Specification Language is based upon the Sugar 2.0 property specification language. Appendix B presents the for-
mal syntax and semantics of Sugar 2.0, which in turn defines the formal syntax and semantics of the temporal layer of PSL. Specifically, the
formulas of the Sugar Foundation L anguage define the syntax and semantics of properties of the PSL Foundation Language, and the formulas
of the (Sugar) Optiona Branching Extension define the syntax and semantics of properties of the PSL Optional Branching Extension.

Version 1.0 Property Specification Language Reference Manual 5

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Overview

Property Specification Language Reference Manual

Version 1.0

2. References

This standard shall be used in conjunction with the following publications. When any of the following standards
is superseded by an approved revision, the revision shall apply.

|EEE Std 1076-2002, |EEE Standard VHDL Language Reference Manual.
|EEE Std 1076.6-1999, |EEE Standard for VHDL Register Transfer Level (RTL) Synthesis.
|EEE Std 1364-2001, |EEE Standard for Verilog Hardware Description Language.

|EEE P1364.1 (Draft 2.2, April 26,2002), Draft Standard for Verilog Register Transfer Level Synthesis.

Version 1.0 Property Specification Language Reference Manual 7

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

References

Property Specification Language Reference Manual

Version 1.0

3. Definitions

For the purposes of this standard, the following terms and definitions apply. The IEEE Sandard Dictionary of
Electrical and Electronics Terms [B1] should be referenced for terms not defined in this standard.

3.1 Terminology
This section defines the terms used in this standard.

3.1.1assertion: A statement that a given property is required to hold and a directive to verification toolsto verify
that it does hold.

3.1.2 assumption: A statement that the design is constrained by the given property and a directive to verification
tools to consider only paths on which the given property holds.

3.1.3 behavior: A path.

3.1.4 Boolean: A Boolean expression.

3.1.5Boolean expression: An expression that yieldsalogical vaue.

3.1.6 checker: An auxiliary process (usually constructed as a finite state machine) that monitors simulation of a
design and reports errors when asserted properties do not hold. A checker may be represented in the same HDL

code as the design or in some other form that can be linked with a simulation of the design.

3.1.7 completes: A sequential expression (or property) completes at the last cycle of any design behavior
described by that sequential expression (or property).

3.1.8 computation path: A succession of states of the design, such that the design can actually transition from
each state on the path to its successor.

3.1.9 constraint: A condition (usually on the input signals) which limits the set of behavior to be considered. A
constraint may represent real requirements (e.g., clocking requirements) on the environment in which the design
is used, or it may represent artificial limitations (e.g., mode settings) imposed in order to partition the verification
task.

3.1.10 count: A number or range.

3.1.11 coverage: A measure of the occurrence of certain behavior during (typically dynamic) verification and,
therefore, a measure of the completeness of the (dynamic) verification process.

3.1.12 cycle: An evaluation cycle.

3.1.13 describes: A Boolean expression, sequential expression, or property describes the set of behavior for
which the Boolean expression, sequential expression, or property holds.

3.1.14 design: A model of a piece of hardware, described in some hardware description language (HDL). A
design typically involves a collection of inputs, outputs, state elements, and combinational functions that com-
pute next state and outputs from current state and inputs.

3.1.15 design behavior: A computation path for a given design.

Version 1.0 Property Specification Language Reference Manual 9

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Definitions

3.1.16 dynamic verification: A verification process in which a property is checked over individual, finite
design behavior that are typically obtained by dynamically exercising the design through afinite number of eval-
uation cycles. Generaly, dynamic verification supports no inference about whether the property holds for a
behavior over which the property has not yet been checked.

3.1.17 evaluation: The process of exercising a design by iteratively applying values to its inputs, computing its
next state and output values, advancing time, and assigning to the state variables and outputs their next values.

3.1.18 evaluation cycle: Oneiteration of the evaluation process. At an evaluation cycle, the state of the design
is recomputed (and may change).

3.1.19 extension: An extension of a path is a path that starts with precisely the succession of statesin the given
path.

3.1.20 False: An interpretation of certain values of certain datatypesin an HDL.
In the Verilog flavor, the single bit value 1' b0 is interpreted as the logical value False. In the VHDL
flavor, the values STD. St andar d. Bool ean' (Fal se), STD. Standard.Bit' (' 0"), and
| EEE. std_logic_1164.std_|l ogic' ('0') areal interpreted asthelogical value False. Inthe
EDL flavor, the Boolean value ' f al se' and bit value OB are both interpreted as the logical value
False.

3.1.21 finiterange: A range with afinite high bound.

3.1.22 formal verification: A verification process in which analysis of a design and a property yields a logical
inference about whether the property holds for all behavior of the design. If a property is declared true by afor-
mal verification tool, no simulation can show it to be false. If the property does not hold for all behavior, then the
formal verification process should provide a specific counterexample to the property, if possible.

3.1.23 holds: A term used to talk about the meaning of a Boolean expression, sequential expression or property.
Loosely speaking, a Boolean expression, sequential expression, or property holds in the first cycle of a path iff
the path exhibits the behavior described by the Boolean expression, sequential expression, or property. The def-
inition of holds for each form of Boolean expression, sequential expression, or property is given in the appropri-
ate subsection of Chapter 6.

3.1.24 holds tightly: A term used to talk about the meaning of a sequential expression (SERE). Sequential
expressions are evaluated over finite paths (behavior). Loosely speaking, a sequential expression holds tightly
aong afinite path iff the path exhibits the behavior described by the sequential expression. The definition of
holds tightly for each form of SERE is given in the appropriate subsection of Section 6.1.

3.1.25 liveness property: A property that specifies an eventuality that is unbounded in time. Loosely speaking,
a liveness property claims that "something good" eventually happens. More formally, a liveness property is a
property for which any finite path can be extended to a path satisfying the property. For example, the property
"whenever signal req is asserted, signal ack is asserted sometime in the future” is a liveness property.

3.1.26 logictype: AnHDL datatypethat includes valuesthat areinterpreted aslogical values. A logic type may
include both logical values and metalogical values. Such alogic type usually represents a multi-valued logic.

3.1.27 logical value: A valuein the set { True, False}.
3.1.28 metalogical value: A value of a (multi-valued) logic type that is not interpreted as alogical value.
3.1.29 model checking: A type of formal verification.

3.1.30 monitor: See: checker.

10 Property Specification Language Reference Manual Version 1.0

Definitions

3.1.31 number: A non-negative integer value, and a statically computable expression yielding such avalue.
3.1.32 occurs, occurrence: A Boolean expressionissaid to “occur” inacycleif it holdsin that cycle. For exam-
ple, “the next occurrence of the Boolean expression” refers to the next cycle in which the Boolean expression
holds.

3.1.33 path: A succession of states of the design, whether or not the design can actually transition from one state
on the path to its successor.

3.1.34 positive count: A positive number or a positive range.

3.1.35 positive number: A number that is greater than zero (0).

3.1.36 positiverange: A range with alow bound that is greater than zero (0).

3.1.37 prefix: A prefix of agiven path is a path of which the given path is an extension.

3.1.38 property: A collection of logical and temporal relationships between and among subordinate Boolean
expressions, sequential expressions, and other properties that in aggregate represent a set of behavior.

3.1.39 range: A series of consecutive numbers, from alow bound to a high bound, inclusive, such that the low
bound islessthan or equal to the high bound. In particular, thisincludes the case in which the low bound is equal
to the high bound. Also, a pair of statically computable integer expressions specifying such a series of consecu-
tive numbers, where the left expression specifies the low bound of the series, and the right expression specifies
the high bound of the series.

3.1.40 required (to hold): A property is required to hold if the design is expected to exhibit behavior that is
within the set of behavior described by the property.

3.141 restriction: A statement that the design is constrained by the given sequential expression and a directive
to verification tools to consider only paths on which the given sequential expression holds.

3.1.42 safety property: A property that specifies an invariant over the statesin a design. The invariant is not
necessarily limited to a single cycle, but it is bounded in time. Loosely speaking, a safety property claims that
"something bad" does not happen. Moreformally, a safety property is a property for which any path violating the
property has a finite prefix such that every extension of the prefix violates the property. For example, the prop-
erty, "whenever signal req is asserted, signal ack is asserted within 3 cycles' is asafety property.

3.1.43 sequence: A sequential expression that is enclosed in curly braces.

3.1.44 sequential expression: A finite series of terms that represent a set of behavior.

3.1.45 SERE: A sequentia expression.

3.1.46 simulation: A type of dynamic verification.

3.1.47 starts: A sequential expression starts at the first cycle of any behavior for which it holds. In addition, a
sequential expression starts at the first cycle of any behavior which is the prefix of abehavior for which it holds.
For example, if a holds at cycle 7 and b holdsin every cycle from 8 onward, then the sequential expression

{a; b[*] ;c} dtartsat cycle?.

3.1.48 strictly before: Before, and not in the same cycle as.

3.1.49 strong operator: A temporal operator, the (non-negated) use of which creates a liveness property.

Version 1.0 Property Specification Language Reference Manual 11

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Definitions

3.1.50 terminating condition: A Boolean expression, the occurrence of which causes a property to complete.

3.1.51 terminating property: A property that, when it holds, causes another property to complete.

3.1.52 True: An interpretation of certain values of certain datatypesin an HDL.
In the Verilog flavor, the single bit value 1' b1 isinterpreted as the logical value True. Inthe VHDL fla-
the values STD. St andard. Bool ean' (True), STD.Standard.Bit'('1"), and
| EEE. std _logic _1164.std logic' ('1") areadl interpreted asthe logical value True. Inthe
EDL flavor, the Boolean value' t r ue' and bit value 1B are both interpreted as the logical value True.

vor,

3.1.53 verification: The process of confirming that, for a given design and a given set of constraints, a property
that is required to hold in that design actually does hold under those constraints.

3.1.54 weak operator: A temporal operator, the (non-negated) use of which does not create a liveness property.

3.2 Acronyms and abbreviations

This section lists the acronyms and abbreviations used in this standard.

BNF
cpp
CTL
EDA
EDL
FL
FSM
HDL
iff
LTL
PSL
OBE
RTL
SERE
VHDL

12

extended Backus-Naur Form

C pre-processor

computation tree logic

electronic design automation
Environment Description Language
Foundation Language

finite state machine

hardware description language

if and only if

linear-time temporal logic

Property Specification Language
Optional Branching Extension
Register Transfer Level

Sugar Extended Regular Expression
VHSIC Hardware Description Language

Property Specification Language Reference Manual

Version 1.0

4. Organization

4.1 Abstract structure

PSL consists of four layers, which cut the language along the axis of functionality. PSL also comesin three fla-
vors, which cut the language along the axis of HDL compatibility. Each of these is explained in detail in the fol-
lowing sections.

4.1.1 Layers

PSL consists of four layers: Boolean, temporal, verification, and modeling.

4.1.1.1 Boolean layer

This layer is used to build expressions which are, in turn, used by the other layers. Although it contains expres-
sions of many types, it is known as the Boolean layer because it is the supplier of Boolean expressions to the
heart of the language — the temporal layer. Boolean expressions are evaluated in asingle evaluation cycle.
4.1.1.2 Temporal layer

Thislayer isthe heart of the language; it is used to describe properties of the design. It is known as the temporal
layer because, in addition to simple properties, such as “signals a and b are mutually exclusive’, it can also
describe properties involving complex temporal relations between signals, such as, “if signal ¢ is asserted, then
signal d shall be asserted before signal e is asserted, but no more than eight clock cycleslater.” Temporal expres-
sions are evaluated over a series of evaluation cycles.

4.1.1.3 Verification layer

Thislayer is used to tell the verification tools what to do with the properties described by the temporal layer. For
example, the verification layer contains directives that tell atool to verify that a property holds or to check that a
specified sequence is covered by some test case.

4.1.1.4 Modeling layer

This layer is used to model the behavior of design inputs (for tools, such as formal verification tools, which do
not use test cases) and to model auxiliary hardware that is not part of the design, but is needed for verification.

4.1.2 Flavors

PSL comesin three flavors: one for each of the hardware description languages Verilog, VHDL, and EDL. The
syntax of each flavor conforms to the syntax of the corresponding HDL in a number of specific areas— a given
flavor of PSL is compatible with the corresponding HDL's syntax in those areas.

4.1.2.1 Verilog flavor

In this flavor, all expressions of the Boolean layer, as well as modeling layer code, are written in Verilog syntax

(see |IEEE Std 1364-2001)2. The Verilog flavor also has limited influence on the syntax of the temporal layer.
For example, ranges of the temporal layer are specified using the Verilog-style syntaxi : j .

2For more information on references, see Chapter 2.

Version 1.0 Property Specification Language Reference Manual 13

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Organization

4.1.2.2 VHDL flavor

In thisflavor, all expressions of the Boolean layer, as well as modeling layer code, are written in VHDL syntax.
(See IEEE Std 1076-2002). The VHDL flavor also has some influence on the syntax of the temporal layer. For
example, ranges of the temporal layer are specified using the VHDL-stylesyntax i to j.

4.1.2.3 EDL flavor

In this flavor, all expressions of the Boolean layer, as well as modeling layer code, are written in EDL syntax.

The EDL flavor also has some influence on the syntax of the temporal layer. For example, ranges of the tempo-
ral layer are specified using the EDL-style syntaxi . . j .

4.2 Lexical structure

This section defines the keywords, operators, macros, and comments used in PSL.

4.2.1 Keywords

Keywords in PSL are case-sensitive, regardless of the underlying HDL rules for identifiers. Keywords are
reserved words in PSL, so an HDL name that is a PSL keyword cannot be referenced directly, by its simple
name, inan HDL expression used in a PSL property. However, such an HDL name can be referenced indirectly,

using a hierarchical name or qualified name as allowed by the underlying HDL.

The keywords used in PSL are shownin Table 1.

Table 1—Keywords

A EG next_e union
AF EX next_el until
AG endpoint next_event until!
AX eventually! next_event! until!_
albort next_event_al until_
Zr‘]’é%ys F next_event_e!
assert fairness not® vmode
assume fell J vprop
asgjme_guarantee forall or vunit
before G property W
beforel prev whilenot
before! _ in whilenot!
before_ inf restrict whilenot!
boolean inherit restrict_guarantee | whilenot_
clock i rose w!th!n'
const within!
cover never sequence w!th!n!_

next strong within_
default next!

next_a to® X
E next_al X!
EF U

8and is akeyword only in the VHDL flavor; see the flavor macro AND_OP (4.3.2).
bisisa keyword only in the VHDL flavor; see the flavor macro DEF_SYM(4.3.2).

Cnot isakeyword only in the VHDL flavor; see the flavor macro NOT_OP (4.3.2).

dor is akeyword only in the VHDL flavor; see the flavor macro OR_OP (4.3.2).

14 Property Specification Language Reference Manual Version 1.0

Organization

o isakeyword only in the VHDL flavor; see the flavor macro RANGE _SYM(4.3.2).

4.2.2 Operators

Various operators are available in PSL. Each operator has a precedence relative to other operators. In general,
operators with a higher relative precedence are associated with their operands before operators with alower rela-
tive precedence. If two operators with the same precedence appear in sequence, then in most cases the operators
are associated with their operands in left-to-right order of appearance in the text, except for implication opera-
tors, which are associated with their operands in right-to-left order.

Table 2—Operator precedence

HDL operators

Clocking operator @

SERE construction operatora ; [*] [=1] [->]

Sequence implication operators : [& &&

FL implication operators | -> |-> 1! | => |=> 1

FL occurence operators al ways never eventual | y! next *
wi t hi n* whil enot* G F
X X! [U] [W]

Termination operators abort until* bef or e*

4.2.2.1 HDL operators
For a given flavor of PSL, the operators of the underlying HDL have the highest precedence. In particular, this
includeslogical, relational, and arithmetic operators of the HDL. The HDL'slogical operators for negation, con-
junction, and digunction of Boolean values can be used in PSL for negation, conjunction, and disjunction of
propertiesaswell. In such applications, those operators have their usual precedence, asif the PSL properties that
are operands produced Boolean values of atype appropriate to the logical operators native to the HDL.
4.2.2.2 Foundation Language (FL) operators
4.2.2.2.1 Clocking operator
For any flavor of PSL, the FL operator with the highest precedence after the HDL operatorsis that used to spec-
ify the clock expression which controls when the property is evaluated. The following operator is the unique
member of this class:

@ clock event
The clocking operator is | eft-associative.
4.2.2.2.2 SERE construction operators
For any flavor of PSL, the Foundation Language (FL) operators with the next highest precedence are those used
to construct Sugar Extended Regular Expressions (SERES). These operators are:

Version 1.0 Property Specification Language Reference Manual 15

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Organization

; temporal concatenation
[*] consecutive repetition
[=1] non-consecutive repetition
[->] goto repetition

SERE construction operators are | eft-associative.
4.2.2.2.3 Sequence compaosition operators

For any flavor of PSL, the FL operators with the next highest precedence are those used to compose segquences
into longer or more complex descriptions of behavior. These operators are:

seguence fusion
| seguence digunction
& non-length-matching sequence conjunction
&& length-matching sequence conjunction

Sequence composition operators are | eft-associative.
4.2.2.2.4 FL implication operators

For any flavor of PSL, the FL operators with the next highest precedence are those used to build properties from
Boolean expressions, sequences, and subordinate properties through implication. These operators are:

weak suffix implication

I strong suffix implication
weak next suffix implication

I strong next suffix implication
logical IFimplication

<-> logical IFF implication

V V. V V

\

Thelogical IF and logical |FF implication operators are right-associative.
NOTE—The syntax does not allow cascading of suffix implication operators.
4.2.2.2.5 FL occurrence operators

For any flavor of PSL, the FL operators with the next highest precedence are those used to specify when a subor-
dinate property must hold, if the parent property isto hold. These operators are:

al ways must hold, globally

never must NOT hold, globally

eventual | y! must hold at sometime in the indefinite future

next *3 must hold at some specified future time or range of future times

wi t hi n*4 must hold following completion of a sequence until atermination condition

whi | enot * must hold from the current cycle until atermination condition

3The notation next * represents the operators next, next!, next _a, next _a!, next e, next _e!, next _event,
next _event!,next _event _a!,andnext _event e!.

“The notation Wi t hi n* represents the operators Wi t hi n, Wi t hi n! , within! _, and Wi t hi n_. Similarly, whi | enot *,
unti | *, andbef or e* each represent the corresponding family of operators.

16 Property Specification Language Reference Manual Version 1.0

Organization

FL occurrence operators are | eft-associative.
4.2.2.2.6 Termination operators

For any flavor of PSL, the FL operators with the least precedence are those used to specify when a subordinate
property can cease to hold, if the parent property isto hold. These operators are:

abort must hold, but future obligations may be canceled by a given event
until * must hold up to a given event
bef ore* must hold at some time before a given event

FL termination operators are left-associative.
4.2.2.2.7 LTL operators

PSL also defines the following traditional LTL operators, each of which is equivalent to a corresponding key-
word operator:

X next

X! next !

F eventual | y!
G al ways

[Ul until!

[W] until

In each case, the LTL operator has the same precedence and associativity as its equivalent keyword operator.
4.2.2.3 Optional Branching Extension (OBE) operators

4.2.2.3.1 OBE implication operators

For any flavor of PSL, the Optional Branching Extension (OBE) operators with the highest precedence are those
used to build properties from Boolean expressions and subordinate properties through implication. These opera-

torsinclude:

-> logical IFimplication
<-> logical IFF implication

4.2.2.3.2 OBE occurrence operators

For any flavor of PSL, the OBE operators with the next highest precedence are those used to specify when a sub-
ordinate property must hold, if the parent property isto hold. These operatorsinclude the following:

AX on al paths, at the next state on each path

AG on all paths, at al states on each path

AF on al paths, at some future state on each path
EX on some path, at the next state on the path

EG on some path, at all states on the path

EF on some path, at some future state on the path

Al U] onall paths, inevery state up to a certain state on each path
E[U] onsomepath,inevery state up to acertain state on that path

Version 1.0 Property Specification Language Reference Manual 17

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Organization

The OBE occurrence operators are | eft-associative.
4.2.3 Macros

PSL provides macro-processing capabilities that facilitate the definition of properties. All flavors support cpp-
style pre-processing directives (e.g., #def i ne, #ifdef, #el se, #i ncl ude, and#undef). All flavors
also support special macros for %for and %if, which can be used to conditionally or iteratively generate PSL
statements.

4.2.3.1 The %for construct

The % or construct replicates a piece of text anumber of times, with the possibility of each replication receiving
aparameter. The syntax of the % or construct is as follows:

%or /var/ in /exprl/ .. /[expr2/ do
O/tend.“
or:
%or /var/ in{ /item, Jitem, ... , [item } do
%3nd.”

In the first case, the text inside the %for-%end pairs will be replicated expr2-exprl+1 times (assuming that
expr2>=exprl). In the second case, the text will be replicated according to the number of itemsin thelist. Dur-
ing each replication of the text, the loop variable value is substituted into the text as follows. Suppose the loop
variableiscaledii. Thenthe current value of the loop variable can be accessed from the loop body using the fol-
lowing three methods:

The current value of the loop variable can be accessed using simply i if ii is a separate token in the text. For
instance:

% or ii in 0..3 do
define aa(ii) :=ii > 2
%end

isequivalent to:

defi ne aa(0)
define aa(1l)
define aa(2)
define aa(3)

WN RO
V V VYV
NN

If i is part of an identifier, the value of ii can be accessed using %fii} asfollows:
%or ii in 0..3 do
define aa%qii} :=ii > 2;
%end

isequivalent to:

define aa0 :
define aal :

o
PO
\VARY,
NN

18 Property Specification Language Reference Manual Version 1.0

Organization

defi ne aa2 : > 2;
defi ne aa3 : > 2

2
3 .

If ii needs to be used as part of an expression, it can be accessed as follows:

%or ii in 1..4 do
define aa%ii-1} := %Yii-1} > 2;
%end

The aboveis equivalent to:

define aa0 :
defi ne aal :
defi ne aa2 :
define aa3 :

o
wWN Rk O
MR

V V V V

The following operators can be used in pre-processor expressions:

Al

>
<= >=
+ -
* /

%
4.2.4 The %if construct

The % f construct issimilar tothe#i f construct of the cpp pre-processor. However, % f must be used when
it is conditioned on variables defined in an encapsulating % or . The syntax of % f isasfollows:

% f /expr/ % hen
%3nd. c

or:
% f /expr/ % hen
%l s.e. .
%end. -

4.2.5 Comments

PSL provides the ability to add commentsto PSL specifications. For each flavor, the comment capability is con-
sistent with that provided by the corresponding HDL environment.

For the Verilog flavor, both the block comment style (/ * */) andthetrailing comment style(/ /
<eol>) are supported.

For the VHDL flavor, thetrailing comment style (- - <eol>) issupported.
For the EDL flavor, both the block comment style (/ * */) and the trailing comment style (- -

<eol>) are supported.

Version 1.0 Property Specification Language Reference Manual 19

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Organization

4.3 Syntax

4.3.1 Conventions

The formal syntax described in this standard uses the following extended Backus-Naur Form (BNF).

a)

b)

d)

f)

0)

h)

Theinitia character of each word in a nonterminal is capitalized. For example:
PSL_Statement

A nonterminal can be either asingle word or multiple words separated by underscores. When amultiple-
word nonterminal containing underscores is referenced within the text (e.g., in a statement that describes
the semantics of the corresponding syntax), the underscores are replaced with spaces.

Boldface words are used to denote reserved keywords, operators, and punctuation marks as a required
part of the syntax. These words appear in alarger font for distinction. For example:

vunit (;

The: : = operator separates the two parts of a BNF syntax definition. The syntax category appearsto the
left of this operator and the syntax description appears to the right of the operator. For example, item d)
shows three options for a VUnitType.

A vertical bar separates aternative items (use one only) unless it appears in boldface, in which case it
stands for itself. For example:

VUnitType ::= vunit [vprop | vmode

Square brackets enclose optional items unless they appear in boldface, in which case they stand for
themselves. For example:

Sequence Declaration ::= sequence Name[(Forma_Parameter_List)] DEF_SYM Sequence;
indicates (Formal_Parameter_List) isan optional syntax item for Sequence_Declaration, whereas
| SERE [* [Range]]

indicates that (the outer) square brackets are part of the syntax for this SERE, while Range is optional.

Braces enclose a repeated item unless they appear in boldface, in which case they stand for themselves.
A repeated item may appear zero or more times; the repetition is equivalent to that given by aleft-recur-
siverule. Thus, the following two rules are equivalent:

Formal_Parameter_List ::= Formal_Parameter { ; Formal_Parameter }
Formal_Parameter_List ::= Formal_Parameter | Formal_Parameter_List ; Formal_Parameter

A comment in a production is preceded by a colon (:) unless it appears in boldface, in which case it
stands for itself.

If the name of any category startswith anitalicized part, it is equivalent to the category name without the
italicized part. The italicized part is intended to convey some semantic information. For example,
vunit_Nameis equivalent to Name.

The main text uses italicized type when a term is being defined, and nronospace font for examples and refer-
ences to constants such as 0, 1, or x values.

20

Property Specification Language Reference Manual Version 1.0

Organization

4.3.2 HDL dependencies

PSL is defined in several flavors, each of which corresponds to a particular hardware description language with
which PSL can be used. Flavor macros reflect the flavors of PSL in the syntax definition. A flavor macro is
similar to agrammar production, in that it defines alternative replacements for a nonterminal in the grammar. A
flavor macro is different from a grammar production, in that the alternatives are labeled with an HDL name and
in the context of agiven HDL, only the alternative labeled with that HDL name can be selected.

The name of each flavor macro is shown in all uppercase. Each flavor macro defines analogous, but possibly dif-

ferent syntax choices allowed for each flavor. The general format isthe term Fl avor Macr o, then the actual
macro name, followed by the = operator, and, finally, the definition for each of the HDL s.

Example
Fl avor Macro PATH SYM = Verilog: . / VHDL: : / EDL: /
shows the path symbol macro (PATH_SYM).

PSL aso defines afew extensions to Verilog declarations, and one extension to both Verilog and VHDL expres-
sions, as shown in Box 1.

Extended Verilog_Declaration ::=
Verilog_module _or_generate item_declaration
| Extended_Verilog_Type Declaration
Extended Verilog_Expression ::=
Verilog_expression
| Verilog_Union_Expression
Extended VHDL_Expression ::=
VHDL_expression
| VHDL_Union_Expression

Box 1—Flavor macro HDL_UNIT

4.3.2.1 HDL_UNIT

At thetopmost level, a PSL specification consists of aset of HDL design units and aset of PSL verification units.
The Flavor Macro HDL_UNI T identifies the nonterminals that represent top-level design units in the grammar
for each of the respective HDL s, as shown in Box 2.

Flavor Macro HDL_UNIT =
Verilog: Verilog_module_declaration / VHDL: VHDL_design_unit /
EDL: EDL_module_declaration

Box 2—Flavor macro HDL_UNIT

4.3.2.2 HDL_ID and PATH_SYM

Names declared in PSL shall follow the rules for identifiers in the underlying HDL, hence, the definition of
HDL | Dasaflavor macro. Also, pathnames shall be constructed with the separator character appropriate for the
HDL, thus, the definition of PATH_SYM Both of these are shown in Box 3.

Box 3—Flavor macros HDL_ID and PATH_SYM

Version 1.0 Property Specification Language Reference Manual 21

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Organization

Flavor MacroHDL _ID =

Verilog: Verilog_ldentifier / VHDL: VHDL _|dentifier / EDL: EDL_ldentifier
Flavor Macro PATH_SYM =

Verilog: ./ VHDL: : /EDL:/

4.3.2.3 HDL_DECL and HDL_STMT

PSL verification units may contain certain kinds of HDL declarations and statements. Flavor macros
HDL_DECL and HDL__STMT connect the PSL syntax with the syntax for declarations and statementsin the gram-
mar for each HDL. Both of these are shown in Box 4.

Flavor Macro HDL_DECL =
Verilog: Extended_Verilog_Declaration/ VHDL: VHDL_declaration /
EDL: EDL_module item_declaration
Flavor Macro HDL_STMT =
Verilog: Verilog_module_or_generate item/VHDL: VHDL_concurrent_statement /
EDL: EDL_module_item

Box 4—Flavor macros HDL_DECL and HDL_STMT

4.3.2.4 HDL_EXPR

Expressions shall be valid expressions in the underlying HDL description. This applies to expressions appearing
directly within atemporal layer property, as well as to any sub-expressions of those expressions. The definition
of HDL_EXPR captures this requirement, as shown in Box 5.

Flavor Macro HDL_EXPR =
Verilog: Extended_Verilog_Expression/ VHDL: Extended VHDL_Expression /
EDL: EDL_Expression

Box 5—Flavor macro HDL_EXPR

4.3.2.5 AND_OP, OR_OP, and NOT_OP

Each flavor of PSL overloads the underlying HDL's symbols for the logical (i.e., Boolean) conjunction, disjunc-
tion, and negation operators so the same operators are used for conjunction and disjunction of Boolean expres-
sions and for conjunction, digunction, and negation of properties. The definitions of AND_OP, OR_OP, and
NOT_OP reflect this overloading, as shown in Box 6.

Flavor Macro AND_OP =

Verilog: & & /VHDL: and / EDL: &
Flavor Macro OR_OP =

Verilog: || / VHDL: Or / EDL: |
Flavor Macro NOT_OP =

Verilog: | / VHDL: not / EDL: !

Box 6—Flavor macros AND_OP, OR_OP, and NOT_OP

22 Property Specification Language Reference Manual Version 1.0

Organization

4.3.2.6 RANGE_SYM, MIN_VAL, and MAX_VAL

Within properties it is possible to specify a range of integer values representing the number of cycles or number
of repetitions that are allowed to occur. PSL adopts the general form of range specification from the underlying
HDL, asreflected in the definition of RANGE_SYM M N_VAL, and MAX_VAL shownin Box 7.

Flavor Macro RANGE_SYM =

Verilog: . /VHDL: tO/EDL: ..
Flavor Macro MIN_VAL =

Verilog: O/ VHDL: O/ EDL: null
Flavor Macro MAX_VAL =

Verilog: inf / vHDL: inf / EDL: null

Box 7— Flavor macros RANGE_SYM, MIN_VAL, and MAX_VAL

However, unlike HDLs, in which ranges are always finite, a range specification in PSL may have an infinite
upper bound. For this reason, the definition of MAX_VAL includes the keyword inf, representing infinite.

4.3.2.7 LEFT_SYM and RIGHT_SYM
In replicated properties, it is possible to specify the replication index Nare as a vector of boolean values. PSL

allows this specification to take the form of an array reference in the underlying HDL, as reflected in the defini-
tion of LEFT_SYM and Rl GHT_SYM shown in Box 8.

Flavor Macro LEFT_SYM =
Verilog: [/VHDL: (/EDL: (

Flavor Macro RIGHT_SYM =
Verilog: | /VHDL:) /EDL:)

Box 8—Flavor macro LEFT_SYM and RIGHT_SYM

4.3.2.8 DEF_SYM

Finally, asin the underlying HDL, PSL can declare new named objects. To make the syntax of such declarations
consistent with those in the HDL, PSL adopts the symbol used for declarations in the underlying HDL, as
reflected in the definition of DEF_SYMshown in Box 9.

Flavor Macro DEF_SYM =
Verilog: =/VHDL: IS/EDL: .=

Box 9—Flavor macro DEF_SYM

4.4 Semantics
In this document, the following terms are used to describe the semantics of the language:
— shall indicates arequired aspect of the PSL specification and can indicates an optional aspect of the PSL
specification.

— Intheinformal (i.e., English) description of the semantics of the temporal layer, holds (or doesn't hold)
indicates that the design does (or does not) behave in the manner specified by a property.

Version 1.0 Property Specification Language Reference Manual 23

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Organization

4.4.1 Clocked vs. unclocked evaluation

PSL properties can be modified by using a clock expression to indicate that time shall be measured in clock
cycles of the clock expression. Such a property is a clocked property. The meaning of a clocked property is not
affected by the granularity of time as seen by the verification tool. Thus, a clocked property shall give the same
result for cycle-based and event-based verification.

Properties that are not modified by a clock expression are unclocked properties.

PSL does not dictate how time ticks for an unclocked property. Thus, unclocked properties are used to reason
about the sequence of signal values as seen by the verification tool being used. For instance, a cycle-based sm-
ulator sees a sequence of signal values calculated cycle-by-cycle, while an event-based simulator running on the
same design sees amore detailed sequence of signal values.

4.4.2 Safety vs. liveness properties

A safety property is a property that specifies an invariant over the statesin adesign. The invariant is not neces-
sarily limited to asingle cycle, but it isbounded in time. Loosely speaking, a safety property claims that “some-
thing bad” does not happen. More formally, a safety property is a property for which any path violating the
property has afinite prefix such that every extension of the prefix violates the property. For example, the prop-
erty “whenever signa r eq is asserted, signal ack isasserted within 3 cycles’ is a safety property.

A liveness property is a property that specifies an eventuality that is unbounded in time. Loosely speaking, a
liveness property claims that “something good” eventually happens. More formally, a liveness property is a
property for which any finite path can be extended to a path satisfying the property. For example, the property
“whenever signal r eq is asserted, signal ack is asserted sometime in the future” is aliveness property.

4.4.3 Strong vs. weak operators

Some operators have a terminating condition that comes at an unknown time. For example, the property “busy
shall be asserted until doneis asserted” is expressed using an operator of theunt i | family, which statesthat sig-
na busy shall stay asserted until the signal done is asserted. The specific cycle in which signal done is
asserted is not specified.

Operators such as these come in both strong and weak forms. The strong form requires that the terminating con-
dition eventually occur, while the weak form makes no requirements about the terminating condition. For exam-
ple, the strong and weak forms of “busy shall be asserted until done is asserted” are (busy until! done)
and (busy until done), respectively. The former states that busy shall be asserted until done is asserted
and that done shall eventually be asserted). The latter states that busy shall be asserted until done is asserted
and that if doneis never asserted, then busy shall stay asserted forever.

The distinction between weak and strong operatorsis related to the distinction between safety and liveness prop-
erties. A property which uses a non-negated strong operator is a liveness property, while one that contains only
non-negated weak operators is a safety property.

4.4.4 Linear vs. branching logic

PSL contains both properties that use linear semantics aswell as those that use branching semantics. The former
are properties of the PSL Foundation Language, while the latter belong to the Optional Branching Extension.
Properties with linear semantics reason about computation paths in a design and can be checked in simulation, as
well asin formal verification. Properties with branching semantics reason about computation trees and can be
checked only in formal verification.

24 Property Specification Language Reference Manual Version 1.0

Organization

While the linear semantics of PSL are the ones most used in properties, the branching semantics add important
expressive power. For instance, branching semantics are sometimes required to reason about deadlocks.

4.4.5 Simple subset

PSL can express properties which cannot be easily evaluated in simulation, although such properties can be
addressed by formal verification methods.

In particular, PSL can express properties that involve branching or parallel behavior, which tend to be more diffi-
cult to evaluate in simulation, where time advances monotonically along a single path. The simple subset of PSL
is a subset that conforms to the notion of monaotonic advancement of time, left to right through the property,
which in turn ensures that properties within the subset can be ssimulated easily. The simple subset of PSL con-
tains any PSL FL property meeting al of the following conditions:

— Negation (!) is applied only to Booleans.

— never andevent ual | y! areapplied only to Booleans or to SEREs.
— Theleft-hand side of alogical and is Boolean.

— Theleft-hand side of alogical or isBoolean.

— Theleft-hand side of alogical implication (- >) is Boolean.

— Both sidesof alogical iff (<- >) operator are Boolean.

— Theright-hand side of anhon-overlappingunt i | * operator is Boolean.
— Both sides of an overlappingunt i | * operator are Boolean.

— Both sidesof abef or e* operator are Boolean.

All other operators not mentioned above are supported in the simple subset without restriction. In particular, al
of the next_event operators, both weak and strong suffix implication({} |-> {} and{} |-> {}!),andany
application of thewi t hi n andwhi | enot operators to a SERE are supported in the simple subset.

4.4.6 Finite-length versus infinite-length behavior

The semantics of PSL allow us to decide whether a PSL Foundation Language property holds on a given behav-
ior. How the outcome of this problem relates to the design depends on the behavior that was analyzed.

In dynamic verification only behaviors that are finite in length are considered. Consequently, liveness properties
may appear not to hold just because the end of the simulation was reached, rather than because of an error in the
design.

Similarly, a safety property may be satisfied on afinite-length behavior, but that does not imply that it also holds
on a(possibly infinite) extension of that behavior.

Version 1.0 Property Specification Language Reference Manual 25

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Organization

26

Property Specification Language Reference Manual

Version 1.0

5. Boolean layer

The Boolean layer consists of Boolean expressions, shown in Box 10, the syntax and semantics of which are dic-
tated by the flavor of PSL being used. The Boolean layer also includes certain PSL expressions that are of Bool-
ean type.

Boolean ::=
boolean_HDL_or_PSL_Expression

Box 10—Boolean expression
NOTE—Subexpressions of a Boolean expression may be of any type supported by the corresponding HDL.

5.1 HDL expressions

A Boolean HDL expression, shown in Box 11, isany HDL expression that the HDL allows to be used as the
condition of ani f statement.

HDL_or_PSL_Expression ::=
HDL_Expression

HDL_Expression ::=
HDL_EXPR

Box 11—Boolean HDL expression

Restrictions

In agiven flavor of PSL, the value of a Boolean HDL expression isinterpreted as alogical value according to the
same rules that govern interpretation of that expression as the condition of an if statement in that flavor.

Informal semantics

The meaning of an HDL expression in a PSL context is determined by the meanings of the names and operator
symbols of the HDL expression.

For each name in the HDL expression, the meaning of the name is determined as follows.

a) If the current verification unit contains a (single) declaration of this name, then the object created by that
declaration is the meaning of this name.

b) Otherwise, if the transitive closure with respect to inheritance of al verification units inherited by the
current verification unit contains a (single) declaration of this name, then the object created by that dec-
laration is the meaning of this name.

c) Otherwise, if the default verification mode contains a (single) declaration of this name, then the object
created by that declaration is the meaning of this name.

d) Otherwise, if this name has an unambiguous meaning at the end of the design module or instance associ-
ated with the current verification unit, then that meaning is the meaning of this name.

e) Otherwise, this name has no meaning.

For each operator symbol inthe HDL expression, the meaning of the operator symbol is determined asfollows.

Version 1.0 Property Specification Language Reference Manual 27

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Boolean layer

— For the Verilog and EDL flavors, this operator symbol has the same meaning as the corresponding opera-
tor symbol inthe HDL.

— For the VHDL flavor, if this operator symbol has an unambiguous meaning at the end of the design unit
or component instance associated with the current verification unit, then that meaning is the meaning of
this operator symbol.

— Otherwise, this operator symbol has ho meaning.

Itisan error if more than one declaration of a given name appears in the current verification unit, or in the transi-
tive closure of al inherited verification units, or in the default verification mode.

See 7.2 for an explanation of verification units and modes.

5.2 PSL expressions

PSL defines a collection of predefined functions that return Boolean values. These predefined functions are
described in 8.1.4.

PSL also defines a special variable called an endpoint, which signals the completion of a sequence. Endpoint
declarations and instantiations are described in 6.1.3.1 and 6.1.3.2, respectively.

5.3 Clock expressions

Booleans (either Boolean HDL expressions, or PSL expressions) can be used as clock expressions, which indi-
cate when other Boolean expressions are eval uated.

In the Verilog flavor, any expression that Verilog alows to be used as the conditioninani f statement can be
used as a clock expression. In addition, any Verilog event expression allowed by the modeling layer can be used
asaclock expression.

In the VHDL flavor, any expression that VHDL allows to be used as the conditionin an i f statement can be
used as a clock expression.

Inthe EDL flavor, any expression that EDL allows to be used as the conditioninani f statement can be used as
aclock expression.

5.4 Default clock declaration

A default clock declaration, shown in Box 12, specifies a clock expression for directives that have an outermost
property or sequence that has no explicit clock expression.

PSL_Declaration ::=
Clock_Declaration
Clock_Declaration ::=
default clock DEF_SYM Boolean ;

Box 12—Default clock declaration

Restrictions

At most one default clock declaration shall appear in agiven verification unit.

28 Property Specification Language Reference Manual Version 1.0

Boolean layer

Informal semantics

If the outermost property of an assert, assune, or assume_guar ant ee directive has no explicit clock
expression, then the clock expression for that property is given by the applicable default clock declaration, if one
exists; otherwise the clock expression for the property isthe expression Tr ue.

Similarly, if the outermost sequence of arestrict, restrict_guarant ee, or cover directive has no
explicit clock expression, then the clock expression for that sequence is determined by the applicable default
clock declaration, if one exists; otherwise the clock expression for the sequence isthe expression Tr ue.

The applicable default clock declaration is determined as follows.

a) If the current verification unit contains a (single) default clock declaration, then that is the applicable
default clock declaration.

b) Otherwise, if the transitive closure with respect to inheritance of all verification units inherited by the
current verification unit contains a (single) default clock declaration, then that is the applicable default
clock declaration.

c) Otherwise, if the default verification mode contains a (single) default clock declaration, then that is the
applicable default clock declaration.

d) Otherwise, no applicable default clock declaration exists.

Itisan error if more than one default clock declaration appears in the current verification unit, or in the transitive
closure of all inherited verification units, or in the default verification mode.

Example
default clock = (posedge cl kl);

assert always (req -> next ack);
cover {req; ack; !req; !'ack};

isequivalent to

assert always (req -> next ack) @ posedge clkl);
cover {req; ack; !'req; 'ack} @ posedge clkl);

Version 1.0 Property Specification Language Reference Manual 29

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Boolean layer

30

Property Specification Language Reference Manual

Version 1.0

6. Temporal layer

The temporal layer is used to define properties, which describe behavior over time. Properties can describe the
behavior of the design or the behavior of the external environment. .

A property is built from three types of building blocks:

— Boolean expressions
— sequences (which are themselves built from Boolean expressions)
— subordinate properties

Boolean expressions are part of the Boolean layer; they are described in Section 5. Sequential expressions are
described in 6.1 and propertiesin 6.2.

Some terms used in this section and their definitions are:

holds tightly: The term used to talk about the meaning of a sequential expression (SERE). Sequential expres-
sions are evaluated over finite paths (behaviors). The definition of holds tightly captures the meaning of a SERE
by determining the finite paths that "match” the SERE. The meaning of a SERE depends on the operators and
sub-SEREs that constitute the SERE. Thus, the definition of holds tightly is given in the sub-sections of Section
6.1; for each SERE operator, the sub-section describing that operator defines the finite paths on which a SERE
that combines other SERES using that operator holdstightly, given the meaning of these subordinate SEREs.

For example, {ab;c} holdstightly on a path iff the path is of length three, where 'a istrue in the first cycle, 'b' is
true in the second and 'c' is true in the third. The SERE {a[*];b} holds tightly on a path iff 'b' is true in the last
cycle of the path, and 'a istrue in all preceding cycles.

holds: The term used to talk about the meaning of a Boolean expression, sequential expression, or property. A
Boolean expression, sequential expression, or property is evaluated over thefirst cycle of afinite or infinite path.
The definition of holds captures the meaning of a Boolean expression, sequential expressions or property by
determining the paths (starting at the current cycle) that "obey" them. The meaning of a property depends on the
operators and subordinate properties that constitute the property. Thus, the definition of holdsis given in the sub-
sections of Section 6.2; for each operator it is defined, in the sub-section describing that operator, which are the
paths the composed property holds on (at their first state).

For example, a Boolean expression 'p' holdsin thefirst cycle of a path iff 'p' evaluatesto Truein thefirst cycle. A
SERE holds on the first cycle of a path iff it holds tightly on a prefix of that path. The sequential expression
{ab;c} holds on afirst cycle of apath iff 'a holds on the first cycle, 'b" holds on the second cycle and ‘¢ holds on
thethird. Note that the path itself may be of length more than 3. The sequential expression {a[*];b} holdsin the
first cycle of a path iff: 1) the path contains a cycle in which 'b' holds, and 2) 'a holds in al cycles before that
cycle. It is not necessary that the cyclein which 'b' holds is the last cycle of the path (contrary to the requirement
for {a[*];b} to hold tightly on a path). Finally, the property 'aways p' holdsin afirst cycle of apath iff 'p' holds
in that cycle and in every subsequent cycle.

describes: A Boolean expression, sequential expression, or property describes the set of behavior for which the
Boolean expression, sequential expression, or property holds.

occurs: A Boolean expression issaid to “occur” in acycleif it holdsin that cycle. For example, “the next occur-
rence of the Boolean expression” refers to the next cycle in which the Boolean expression holds.

starts: A sequential expression starts at the first cycle of any behavior for which it holds. In addition, a sequen-
tial expression starts at the first cycle of any behavior which is the prefix of a behavior for which it holds. For
example, if a holds at cycle 7 and b holds at every cycle from 8 onward, then the sequential expression
{a;b[*]; c} startsat cycle 7.

Version 1.0 Property Specification Language Reference Manual 31

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Temporal layer

completes: A sequential expression completes at the last cycle of any design behavior on which it holds tightly.
For example, if a holds at cycle 3, b holds at cycle 4, and ¢ holds at cycle 5, then the sequence{ a; b; ¢} com-
pletesat cycle 5. Similarly, giventhe behavior { a; b; c}, theproperty a bef or e ¢ completeswhen ¢ occurs.
NOTE—A sequence that holds eventually completes, while a sequence that starts may or may not complete.

terminating condition: A Boolean expression, the occurrence of which causes a property to complete.

terminating property: A property that, when it holds, causes another property to complete.

NOTE—These terms are used to describe the semantics of the temporal layer as precisely as possible. |n any case where the
English description is ambiguous or seems to contradict the formal semantics provided in Appendix B, the formal semantics
take precedence.

6.1 Sequential expressions
6.1.1 Sugar Extended Regular Expressions (SERES)

Sugar Extended Regular Expressions (SERES), shown in Box 13, describe single- or multi-cycle behavior built
from a series of Boolean expressions.

SERE ::=
Boolean
| Sequence
Sequence ::=
{ sEre }

Box 13—SEREs and Sequences

The most basic SERE is a Boolean expression. A Sequence (a SERE enclosed in curly braces) is also a SERE.
Both are sequential expressions.

More complex sequentia expressions are built from Boolean expressions using various SERE construction and
sequence composition operators. These operators are described in the sections that follow.

NOTES
1—A sequential expression is not a property on its own; it isabuilding block of a property.

2—SEREs are grouped using curly braces ({}), as opposed to Boolean expressions which are grouped using parentheses

()

3—A Sequence can also be an instance of a Sequence declaration; see Sections 6.1.2.1 and 6.1.2.2.

32 Property Specification Language Reference Manual Version 1.0

Temporal layer

6.1.1.1 SERE construction
6.1.1.1.1 Clocked SERE (@)

The SERE clock operator (@), shown in Box 14, provides away to clock a SERE.

SERE ::=
SERE @ clock_Boolean

Box 14—SERE clock operator

The first operand is the SERE to be clocked. The second operand is a Boolean expression with which to clock
the SERE.

Restrictions

None.

Informal semantics

For unclocked SERE A and Boolean CLK:

A@CLK holds on agiven path iff (if and only if) A holds on the path obtained by extracting from the given
path exactly those cyclesin which CLK holds.

NOTE—When clocks are nested, the inner clock takes precedence over the outer clock. That is, the SERE
{ab@clk2;c} @clk is equivalent to the SERE {a@clk; b@clk2; c@clk}, with the outer clock applied to only the unclocked
sub-SERES. In particular, there is no conjunction of nested clocks involved.

NOTE—There is only one form of a clocked sere. In contrast, a distinction between weak and strong clocks is made for a
clocked property (see Section 6.2.1.1).

Examples
Example 1

Consider the following behavior of Booleans a, b, and clk, where "time" is at the granularity observed by the ver-
ification tool:

The unclocked SERE { a;b} holdstightly fromtime 2totime 3. It doesnot hold tightly over any other interval of
the given behavior.

The clocked SERE {a;b} @clk holds tightly from time 0 to time 3, and also from time 1 to time 3. It does not
hold tightly over any other interval of the given behavior.

Version 1.0 Property Specification Language Reference Manual 33

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Temporal layer

Example 2

Consider the following behavior of Booleans a, b, ¢, clkl, and clk2, where "time" is at the granularity observed
by the verification tool:

The unclocked SERE {{&b};c} holdstightly from time 2 to time 4. It does not hold tightly over any other inter-
val of the given behavior.

The multiply-clocked SERE {{ &b} @clk1;c} @clk2 holds tightly from time O to time 6. It does not hold tightly
over any other interval of the given behavior.

The singly-clocked SEREs {{a;b};c} @clkl and {{ab};c} @clk2 do not hold tightly over any interval of the
given behavior.

6.1.1.1.2 SERE concatenation (;)

The SERE concatenation operator (;), shown in Box 15, constructs a SERE that is the concatenation of two other
SEREs.

SERE ::=
SERE ; SERE

Box 15—SERE concatenation operator

Theright operand is a SERE that is concatenated after the left operand.
Restrictions

None.

Informal semantics

For SEREs A and B:

A; B holds on a path iff thereis afuture cycle n, such that A holdstightly on the path up to and including
the n" cycle and B holds tightly on the path starting at the n+1™ cycle.

6.1.1.1.3 Repetition operators

The repetition operators ([]) describe succinctly repeated concatenation of the same SERE. There are three kinds
of repetition, each of which is detailed in the following subsections.

34 Property Specification Language Reference Manual Version 1.0

Temporal layer

6.1.1.1.4 SERE consecutive repetition ([*])

The SERE consecutive repetition operator ([*]), shown in Box 16, constructs repeated consecutive concatena-
tion of the same SERE.

SERE ::=
SERE[* [Count]]
[[* [Count]]
|SERE[+]
[+]
Count ::=
Number
| Range
Range ::=
LowBound RANGE_SYM HighBound
LowBound ::=
Number | MIN_VAL
HighBound ::=
Number | MAX_VAL

Box 16—SERE consecutive repetition operator

The first operand is a SERE to be repeated. The second operand gives the Count (a number or range) of repeti-
tions.

If the Count is a number, then the SERE describes exactly that number of repetitions.

Otherwise, if the Count is arange, then the SERE describes describes any number of repetitions such that the
number falls within the specified range. If the high value of the range (HighBound) is not specified (or is speci-
fied asi nf), the SERE describes at |east as many repetitions asthe low value of the range. If the low value of the
range (LowBound) is not specified (or is specified as 0), the SERE describes at most as many repetitions as the
high value of the range. If neither of the range values is specified, the SERE describes any number of repetitions,
including zero, i.e., the empty path is also described.

When there is no SERE operand and only a Count, the resulting SERE describes any path whose length is
described by the second operand as above.

The notation + is a shortcut for a repetition of one or more times.
Restrictions
If the SERE contains a Count, and the Count isa Number, then the Number shall be statically computable. If the
SERE contains a Count, and the Count is a Range, then each bound of the Range shall be statically computable,
and the low bound of the Range shall be less than or equal to the high bound of the Range.
Informal semantics
For SERE A and numbersn and m
— Al *n] holds tightly on a path iff the path can be partitioned into n parts, where A holds tightly on each
part.
— Al *n: M holds tightly on a path iff the path can be partitioned into between n and m parts, inclusive,
where A holds tightly on each part.

— Al *0: nm holds tightly on a path iff the path is empty or the path can be partitioned into m or less parts,
where A holdstightly on each part.

Version 1.0 Property Specification Language Reference Manual 35

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Temporal layer

— Al *n: i nf] holds tightly on a path iff the path can be partitioned into at least n parts, where A holds
tightly on each part.

— A] *0: i nf] holdstightly on a path iff the path is empty or the path can be partitioned into some number
of parts, where A holds tightly on each part.

— A *] holds tightly on a path iff the path is empty or the path can be partitioned into some number of
parts, where A holds tightly on each part.

— Al +] holds tightly on a path iff the path can be partitioned into some number of parts, where A holds
tightly on each part.

— [*n] holdstightly on a path iff the path is of length n.

— [*n: m holdstightly on a path iff the length of the path is between n and m, inclusive.

— [*0: m holdstightly on apath iff it isthe empty path or the length of the path ism or less.

— [*n:inf] holdstightly on apath iff the length of the pathis at least n.

— [*0:i nf] holdstightly on any path (including the empty path).

— [*] holdstightly on any path (including the empty path).

— [+] holdstightly on any path of length at |east one.

6.1.1.1.5 SERE non-consecutive repetition ([=])

The SERE non-consecutive repetition operator ([=]), shown in Box 17, constructs repeated (possibly non-con-
secutive) concatenation of a Boolean expression.

SERE ::=

Boolean [= Count]
Count ::=

Number

| Range
Range ::=

LowBound RANGE_SYM HighBound
LowBound ::=

Number | MIN_VAL
HighBound ::=

Number | MAX_VAL

Box 17—SERE non-consecutive repetition operator

The first operand is a Boolean expression to be repeated. The second operand gives the Count (a number or
range) of repetitions.

If the Count is a number, then the SERE describes exactly that number of repetitions.

Otherwise, if the Count is arange, then the SERE describes any number of repetitions such that the number falls
within the specified range. If the high value of the range (HighBound) is not specified (or is specified asi nf),
the SERE describes at |east as many repetitions asthe low value of therange. If the low value of the range (Low-
Bound) is not specified (or is specified as 0), the SERE describes at most as many repetitions as the high value of
the range. If neither of the range values is specified, the SERE describes any number of repetitions, including
zero, i.e., the empty path is also described.

Restrictions
If the SERE contains a Count, and the Count isa Number, then the Number shall be statically computable. If the

SERE contains a Count, and the Count is a Range, then each bound of the Range shall be statically computable,
and the low bound of the Range shall be less than or equal to the high bound of the Range.

36 Property Specification Language Reference Manual Version 1.0

Temporal layer

Informal semantics
For Boolean A and numbersn and m

— Al =n] holdstightly on a path iff A occurs exactly n times along the path.

— Al =n: n{ holds tightly on a path iff A occurs between n and m times, inclusive, along the path.

— A =0: n{ holdstightly on a path iff A occurs m times or less along the path.

— Al =n: i nf] holdstightly on apath iff A occurs at least n times along the path.

— Al =0: i nf] holdstightly on apath iff A occurs any number of times along the path, i.e., A[=0:inf] holds
tightly on any path.

6.1.1.1.6 SERE goto repetition ([->])

The SERE goto repetition operator ([->]), shown in Box 18, constructs repeated (possibly non-consecutive) con-
catenation of a Boolean expression, such that the Boolean expression holds on the last cycle of the path.

SERE ::=

Boolean [-> [positive_Count] |
Count ::=

Number

| Range
Range ::=

LowBound RANGE_SYM HighBound
LowBound ::=

Number | MIN_VAL
HighBound ::=

Number | MAX_VAL

Box 18—SERE goto repetition operator

The first operand is a Boolean expression to be repeated. The second operand gives the Count (a non-zero
number or a non-zero range) of repetitions.

If the Count is a number, then the SERE describes exactly that number of repetitions.

Otherwise, if the Count is a range, then the SERE describes any number of repetitions such that the number falls
within the specified range. If the high value of the range (HighBound) is not specified (or is specified asi nf),
the SERE describes at |east as many repetitions asthe low value of therange. If the low value of the range (Low-
Bound) is not specified, the SERE describes at most as many repetitions as the high value of the range. If neither
of the range values is specified, the SERE describes exactly one repetition, i.e., behavior in which the Boolean
expression holds exactly once (only at the last cycle on the path).

Restrictions
If the SERE contains a Count, it shall be a statically computable, positive Count (i.e., indicating at least one rep-

etition). If the Count isaRange, then each bound of the Range shall be statically computable, and the low bound
of the Range shall be positive and less than or equal to the high bound of the Range.

Version 1.0 Property Specification Language Reference Manual 37

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Temporal layer

Informal semantics
For Boolean A and numbersn and m

— Al - >n] holdstightly on apath iff A occurs exactly n times along the path and the last cycle at which it
occursisthelast cycle of the path.

— Al ->n: nm holdstightly on apath iff A occurs between n and m times, inclusive, along the path, and the
last cycle at which it occursisthe last cycle of the path.

— Al ->1: n] holdstightly on apath iff A occurs m times or less along the path and the last cycle at which
it occursisthe last cycle of the path.

— Al ->n:inf] holds tightly on a path iff A occurs at least n times along the path and the last cycle at
which it occursisthelast cycle of the path.

— Al ->1:inf] holdstightly on a path iff A occurs one or more times along the path and the last cycle at
which it occursisthelast cycle of the path.

— Al - >] holdstightly on apath iff A occursin thelast cycle of the path and in no cycle before that.

6.1.1.2 Sequence composition
6.1.1.2.1 Sequence fusion (:)

The sequence fusion operator (:), shown in Box 19, constructs a SERE in which two sequences overlap by one
cycle. That is, the second sequence starts at the cycle in which the first sequence completes.

SERE ::=

Sequence . Seguence
Sequence ::=

{ sErRe}

Box 19—Sequence fusion operator

The operands of : are both sequences, i.e., brace-enclosed SERES.
Restrictions

None.

Informal semantics

For sequences A and B:

A: B holds tightly on a path iff there is a future cycle n, such that A holds tightly on the path up to and
including the nth cycle and B holds tightly on the path starting at the nth cycle.

38 Property Specification Language Reference Manual Version 1.0

Temporal layer

6.1.1.2.2 Sequence or (|)

The sequence or operator (|), shown in Box 20, constructs a SERE in which one of two aternative sequences
hold at the current cycle.

SERE ::=
Sequence | Sequence

Box 20—Sequence or operator

The operands of | are both Sequences, i.e., brace-enclosed SEREs.
Restrictions

None.

Informal semantics

For sequences A and B:

A| B holdstightly on a path iff at least one of A or B holdstightly on the path.

6.1.1.2.3 Sequence non-length-matching and (&)

The sequence non-length-matching and operator (&), shown in Box 21, constructs a SERE in which two
sequences both hold at the current cycle, regardless of whether they complete in the same cycle or in different
cycles.

SERE ::=
Sequence & Sequence

Box 21—Sequence non-length-matching and operator

The operands of & are both Sequences, i.e., brace-enclosed SEREs.
Restrictions

None.

Informal semantics

For sequences A and B:

A&B holds tightly on a path iff either A holds tightly on the path and B holds tightly on a prefix of the
path or B holds tightly on the path and A holds tightly on a prefix of the path.

Version 1.0 Property Specification Language Reference Manual 39

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Temporal layer

6.1.1.2.4 Sequence length-matching and (&&)

The sequence length-matching and operator (& &), shown in Box 22, constructs a SERE in which two
sequences both hold at the current cycle, and furthermore both complete in the same cycle.

SERE ::=
Sequence & & Sequence

Box 22—Sequence length-matching and operator

The operands of && are both Sequences, i.e., brace-enclosed SEREs.
Restrictions

None.

Informal semantics

For sequences A and B:

A&&B holds tightly on a path iff A and B both hold tightly on the path.

6.1.2 Named sequences

A given sequence may describe behavior that can occur in different contexts (i.e., in conjunction with other
behavior). Insuch acase, it is convenient to be able to define the sequence once and refer to the single definition
in each context in which the sequence applies. Declaration and instantiation of named sequences provide this

capability.
6.1.2.1 Sequence declaration

A sequence declaration, shown in Box 23, defines a sequence and gives it aname. A sequence declaration can
aso specify alist of formal parameters that can be referenced within the sequence.

PSL_Declaration ::=
Sequence_Declaration
Sequence_Declaration ::=
sequence Name | (Formal_Parameter_List)] DEF_SYM Sequence ;
Formal_Parameter List ::=
Formal_Parameter { ; Formal_Parameter }
Formal_Parameter ::=
sequence_ParamKind Name{ , Name}
sequence_ParamKind ::=
const | boolean | sequence

Box 23—Sequence declaration

Restrictions

The Name of adeclared sequence shall not be the same as the name of any other PSL declaration. Formal param-
eters of a sequence declaration are limited to parameter kinds const , bool ean, and sequence.

40 Property Specification Language Reference Manual Version 1.0

Temporal layer

Examples

sequence BusArb (boolean br, bg; const n) ={ br; (br & !'bg)[0:n];
br && bg };

The named sequence BusAr b represents a generic bus arbitration sequence involving formal parameters br
(bus request) and bg (bus grant), as well as a parameter n that specifies the maximum delay in receiving the bus
grant.

sequence ReadCycl e (sequence ba; bool ean bb, ar, dr) = { ba; {bb[*]} &&
{ar[->]; dr[->]}; !bb };

The named sequence ReadCycl e represents a generic read operation involving a bus arbitration sequence and
Boolean conditions bb (bus busy), ar (address ready), and dr (data ready).

NOTE—There is no requirement to use formal parameters in a sequence declaration. A declared sequence may refer directly
to signalsin the design as well as to formal parameters.

6.1.2.2 Sequence instantiation

A sequence instantiation, shown in Box 24, creates an instance of a named sequence and provides actual param-
etersfor formal parameters (if any) of the named sequence.

Sequence ::=

sequence_Name|[(Actual_Parameter_List)]
Actual_Parameter_List ::=

sequence_Actual_Parameter { , sequence_Actua_Parameter }
sequence_Actual_Parameter ::=

Number | Boolean | Sequence

Box 24—Sequence instantiation

Restrictions
For each formal parameter of the named sequence sequence_Nane, the sequence instantiation shall provide a
corresponding actual parameter. For aconst formal parameter, the actual parameter shall be a statically evalu-
able integer expression. For abool ean formal parameter, the actual parameter shall be a Boolean expression.
For asequence formal parameter, the actual parameter shall be a Sequence.
Informal semantics
An instance of a named sequence describes the behavior that is described by the sequence obtained from the
named sequence by replacing each forma parameter in the named sequence with the corresponding actual
parameter from the sequence instantiation.
Examples
Given the declarations for the sequences Bus Ar b and ReadCycl e in6.1.2.1,

BusArb (breq, back, 3)

isequivalent to

{ breqg; (breq && !'back)[0:3]; breq && back }

Version 1.0 Property Specification Language Reference Manual 41

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Temporal layer

and
ReadCycl e(BusArb(breq, back, 5), breq, ardy, drdy)
isequivalent to

{ { breqg; (breq && !back)[0:5]; breq & back }; {breq[*]} && {ardy[->];
drdy[->]}; !'breq }

6.1.3 Named endpoints

An endpoint is a special kind of Boolean-valued variable that indicates when an associated sequence completes.
6.1.3.1 Endpoint declaration

An endpoint declaration, shown in Box 25, defines an endpoint for a given sequence and gives the endpoint a

name. An endpoint declaration can also specify a list of formal parameters that can be referenced within the
sequence.

PSL_ Declaration ::=
Endpoint_Declaration
Endpoint_Declaration ::=
endpoint Name[(Formal_Parameter_List)] DEF_SYM Sequence
Formal_Parameter_List ::=
Formal_Parameter { ; Formal_Parameter }
Formal _Parameter ::=
sequence_ParamKind Name{ , Name}
sequence_ParamKind ::=
const | boolean | sequence

Box 25—Endpoint declaration

Restrictions

The Name of an endpoint shall not be the same as the name of any other PSL declaration. Formal parameters of
an endpoint declaration are limited to parameter kindsconst , bool ean, and sequence.

Example

endpoi nt ActiveLowReset (boolean rb, clk; const n) ={ rb!'=1"bl[*n:inf];
rb==1'bl } @ posedge clk);

The endpoint Act i veLowReset represents ageneric reset sequence in which the reset signal is asserted (set to
0) for at least n cycles of the relevant clock before being released (set to 1).

NOTE—There is no requirement to use formal parameters in an endpoint declaration. The sequence in an endpoint declara-
tion may refer directly to signalsin the design aswell asto formal parameters.

42 Property Specification Language Reference Manual Version 1.0

Temporal layer

6.1.3.2 Endpoint instantiation

An endpoint instantiation, shown in Box 26, creates an instance of a named endpoint and provides actual param-
etersfor formal parameters (if any) of the named endpoint.

Boolean ::=

boolean_HDL_or_PSL_Expression
boolean_HDL_or_PSL_Expression ::=

endpoint_Name[(Actual_Parameter_List)]
Actual_Parameter_List ::=

sequence_Actual_Parameter { , sequence_Actua_Parameter }
sequence_Actual_Parameter ::=

Number | Boolean | Sequence

Box 26—Endpoint instantiation

Restrictions
For each formal parameter of the named endpoint endpoi nt _Name, the endpoint instantiation shall provide a
corresponding actual parameter. For aconst formal parameter, the actual parameter shall be a statically evalu-
able integer expression. For abool ean formal parameter, the actual parameter shall be a Boolean expression.
For asequence forma parameter, the actual parameter shall be a Sequence.
Informal semantics
An instance of a named endpoint has the value True in any evaluation cycle that is the last cycle of abehavior on
which the associated sequence, modified by replacing each formal parameter in the named sequence with the
corresponding actual parameter from the sequence instantiation, holds tightly.
Examples
Given the declaration for the endpoint Act i veLowReset in6.1.3.1,

ActiveLowReset (res, ntlk, 3)

isTrueeach timer es hasthevalue 1' b1 at therising edge of ntl k, provided that r es did not have the value
1' b1 at the threeimmediately preceding rising edges of ntl k; it is False otherwise.

6.2 Properties

Properties express temporal relationships among Boolean expressions, sequential expressions, and subordinate
properties. Various operators are defined to express various temporal rel ationships.

Some operators occur in families. A family of operatorsis a group of operators which are related. A family of
operators usually share a common prefix, which is the name of the family, and optional suffixes which include,
for example, the strings!, _, and! _. For instance, the until family of operatorsinclude the operatorsunt i | !,
until,until!_,anduntil _.

Version 1.0 Property Specification Language Reference Manual 43

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Temporal layer

6.2.1 FL properties

FL Properties, shown in Box 27, describe single- or multi-cycle behavior built from Boolean expressions,
sequential expressions, and subordinate properties.

FL_Property ::=
Boolean
| (FL_Property)

Box 27—FL properties

The most basic FL Property isaBoolean expression. An FL Property enclosed in parenthesesis aso an FL prop-
erty.

More complex FL properties are built from Boolean expressions, sequential expressions, and subordinate proper-
ties using various temporal operators.

NOTE—Like Boolean expressions, FL properties are grouped using parentheses (()), as opposed to SEREs which are
grouped using curly braces ({ }).

6.2.1.1 Clocked FL properties

The FL clock operator operator (@), shown in Box 28, provides away to clock an FL Property.

FL_Property ::=
FL_Property (Q clock_Boolean
| FL_Property (@ clock Boolean !

Box 28—FL property clock operator

The first operand is the FL Property to be clocked. The second operand is a Boolean expression with which to
clock the FL Property.

Restrictions

None.

Informal semantics

For FL property A and Boolean CLK:
A@CLK holds on a given path iff A holds on the path obtained by extracting from the given path exactly
those cyclesin which CLK holds, or if CLK never holds on that path. A@CLK! holds on a given path iff
CLK holds at least once on the given path, and A holds on the path obtained by extracting from the given

path exactly those cycles in which CLK holds.

NOTE—When clocks are nested, the outer clock causes alignment before the inner clock is considered. For example,
(A@CLK_A) @LK_B holdson agiven path iff, starting at thefirst cycle of the given path in which CLK_B holds, A holdson
the path obtained by extracting from the given path those cyclesin which CLK_A holds.

NOTE—A distinction between weak and strong clocks is made for a clocked property. In contrast, thereis only one form of
aclocked SERE (see Section 6.1.1.1.1), although it is syntactically similar to the weak clocking of properties.

44 Property Specification Language Reference Manual Version 1.0

Temporal layer

Example 1

Consider the following behavior of Booleans a, b, and cl k, where "time" is at the granularity observed by the
verification tool:

The unclocked FL Property

(@ until! b)
holds at times 5, 7, and 8, because b holds at each of those times. The property also holds at times 3 and 4,
because a holds at those times and continues to hold until b holds at time 5. It does not hold at any other time of
the given behavior.
The clocked FL Property

(a until! b)
@ k holdsat times 2, 3, 4, 5, 6, and 7. It does not hold at any other time of the given behavior.

Example 2

Consider the following behavior of Booleans a, b, c, cl k1, and cl k2, where "time" is at the granularity
observed by the verification tool:

timree 0 1 2 3 4 5 6 7 8 9

The unclocked FL Property
(c & next! (a until! b))
holds at time 6. It does not hold at any other time of the given behavior.
The singly-clocked FL Property
(c & next! (a until! b)) @l k1l
holds at times 4 and 5. It does not hold at any other time of the given behavior.
The singly-clocked FL Property

(a until! b)@l k2

Version 1.0 Property Specification Language Reference Manual 45

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Temporal layer

does not hold at any time of the given behavior.
The multiply-clocked FL Property
(c & next! (a until! b)@l kl) @l k2
holds at time 0. It does not hold at any other time of the given behavior.
6.2.1.2 Simple FL properties
6.2.1.2.1 always

The alway's operator, shown in Box 29, specifies that an FL property or a sequence holds at all times, starting
from the present.

FL_Property ::=
always FL_Property
| always Sequence

Box 29—always operator

The operand of the al ways operator is an FL Property or Sequence.
Restrictions

None.

Informal semantics

An al ways property holds in the current cycle of a given path iff the FL Property or Sequence that is the oper-
and holds at the current cycle and all subsequent cycles.

NOTE—If the operand (FL property or sequence) is temporal (i.e., spans more than one cycle), then the al ways operator
defines a property that describes overlapping occurrences of the behavior described by the operand. For example, the prop-
erty dways{ a; b; c} describesany behavior inwhich{ a; b; c} holdsin every cycle, thus any behavior in which a holdsin
thefirst and every subsequent cycle, b holdsin the second and every subsequent cycle, and ¢ holdsin the third and every sub-
sequent cycle.

6.2.1.2.2 never

The never operator, shown in Box 30, specifiesthat an FL property or a sequence never holds.

FL_Property ::=
never FL_Property
| NEVEr Sequence

Box 30—never operator

The operand of the never operator isan FL Property or a Sequence.

46 Property Specification Language Reference Manual Version 1.0

Temporal layer

Restrictions

Within the simple subset (see Section 4.4.5), the operand of a never property is restricted to be a Boolean
expression or a SERE.

Informal semantics

A never property holdsin the current cycle of a given path iff the FL Property or Sequence that is the operand
does not hold at the current cycle and does not hold at any future cycle.

6.2.1.2.3 eventually!

The eventually! operator, shown in Box 31, specifies that an FL property or a Sequence holds at the current
cycle or at some future cycle.

FL_Property ::=
eventually! FL_Property
|eventually! sequence

Box 31—eventually! operator

The operand of theevent ual | y! operator isan FL Property or a Sequence.
Restrictions

Within the simple subset (see Section 4.4.5), the operand of an event ual | y! property is restricted to be a
Boolean or a SERE.

Informal semantics

Aneventual | y! property holdsin the current cycle of agiven path iff the FL Property or Sequence that isthe
operand holds at the current cycle or at some future cycle.

6.2.1.2.4 next

The next family of operators, shown in Box 32, specify that an FL property holds at some next cycle.

FL_Property ::=
next! (FL_Property)
| next (FL_Property)
| next! [Number] (FL_Property)
| next [Number |"(FL_Property)

Box 32—next operators

The FL Property that is the operand of thenext ! or next operator is a property that holds at some next cycle.
If present, the Number indicates at which next cycle the property holds, that is, for number i, the property holds
at the i™ next cycle. If the Number operand is omitted, the property holds at the very next cycle.

Version 1.0 Property Specification Language Reference Manual 47

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Temporal layer

Thenext ! operator is a strong operator, thus it specifies that there is a next cycle (and so does not hold at the
last cycle, no matter what the operand). Similarly, next ! [i] specifiesthat there are at least i next cycles.

Thenext operator isaweak operator, thusit does not specifiesthat thereisanext cycle, only that if thereis, the
property that isthe operand holds. Thus, aweak next property holds at the last cycle of afinite behavior, no mat-
ter what the operand. Similarly, next [i] does not specify that there are at least i next cycles.

NOTE—The Number may be 0. That is, next [0] (f) isallowed, which saysthat f holds at the current cycle.
Restrictions

If aproperty contains a Number, then the Number shall be statically computable.

Informal semantics

— A next! property holdsin the current cycle of agiven path iff:
1) thereisanext cycleand
2) the FL property that isthe operand holds at the next cycle.
— A next property holdsin the current cycle of a given path iff:
1) thereisnot anext cycleor
2) theFL property that isthe operand holds at the next cycle.
— A next![i] property holdsin the current cycle of agiven path iff:
1) thereisani next cycle and
2) theFL property that isthe operand holds at the it next cycle.
— A next[i] property holdsin the current cycle of agiven path iff:
1) thereisnot an i next cycle or
2) theFL property that isthe operand holds at the it next cycle.

NOTE—The formulanext (f) isequivaent totheformulanext [1] (f).

6.2.1.3 Extended next FL properties
6.2.1.3.1 next_a

The next_a family of operators, shown in Box 33, specify that an FL property holds at all cycles of arange of
future cycles.

FL_Property ::=
next_al [finite Range] (FL_Property)
| next_a [finite_Range] (FL_Property)

Box 33—next_a operators

The FL Property that is the operand of the next _a! or next _a operator is a property that holds at all cycles
between the it and jth next cycles, inclusive, where i and j are the low and high bounds, respectively, of the finite
Range.

The next _a! operator is a strong operator, thus it specifies that there is ajth next cycle, where j is the high
bound of the Range.

48 Property Specification Language Reference Manual Version 1.0

Temporal layer

Thenext _a operator isaweak operator, thusit does not specify that any of the ith through jth next cycles neces-
sarily exist.

Restrictions

If anext _aornext _a! property contains a Range, then the Range shall be a finite Range, each bound of the
Range shall be statically computable, and the left bound of the Range shall be less than or equal to the right
bound of the Range.

Informal semantics

— A next_al[i:]j] property holdsin the current cycle of agiven path iff:
1) thereisaj™ next cycle and
2) theFL Property that isthe operand holds at all cycles between the it and jth next cycle, inclusive.
— A next_af[i:j] property holdsin the current cycle of a given path iff the FL Property that is the
operand holds at all cycles between the it and jth next cycle, inclusive. (If not all those cycles exist, then
the FL Property that is the operand holds on as many as do exist).

NOTE—The left bound of the Range may be 0. For example, next _a[0: n] (f) isallowed, which saysthat f holds start-
ing in the current cycle, and for n cycles following the current cycle.

6.2.1.3.2 next_e

The next_e family of operators, shown in Box 34, specify that an FL property holds at least once within some
range of future cycles.

FL_Property ::=
next_e! [finite Range] (FL_Property)
| next_e [finite_ Range] (FL_Property)

Box 34—next_e operators

The FL Property that is the operand of the next _e! or next _e operator is a property that holds at least once
between the it and jth next cycle, inclusive, wherei and j are the low and high bounds, respectively, of the finite
Range.

Thenext _e! operator isastrong operator, thus it specifies that there are enough cycles so the FL property that
is the operand has a chance to hold.

Thenext _e operator isaweak operator, thusit does not specify that there are enough cycles so the FL property
that is the operand has a chance to hold.

Restrictions
If anext_e or next_e! property contains a Range, then the Range shall be afinite Range, each bound of the Range

shall be statically computable, and the left bound of the Range shall be less than or equal to the right bound of the
Range.

Version 1.0 Property Specification Language Reference Manual 49

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Temporal layer

Informal semantics

— A next _e![i..j] property holdsinthe current cycle of agiven path iff thereis some cycle between
the it and jth next cycle, inclusive, where the FL Property that is the operand holds.
— A next_e[i..]j] property holdsin the current cycle of agiven path iff
1) therearelessthanj next cyclesfollowing the current cycle, or
2) thereis some cycle between the it and jth next cycle, inclusive, where the FL Property that is the
operand holds.

NOTE—The left bound of the Range may be 0. For example, next _e[0: n] (f) isallowed, which saysthat f holds either
in the current cycle or in one of the n cycles following the current cycle.

6.2.1.3.3 next_event

The next_event family of operators, shown in Box 35, specify that an FL property holds at the next occurrence
of a Boolean expression. The next occurrence of the Boolean expression includes an occurrence at the current
cycle..

FL_Property ::=
next_event! (Boolean) (FL_Property)
| next_event (Boolean) (FL_Property)
| next_event! (Boolean) [positive Number] (FL_Property)
| next_event (Boolean) [positive_Number | (FL_Property)

Box 35—next_event operators

Therightmost operand of thenext _event! ornext _event operator isan FL Property that holds at the next
occurrence of the leftmost operand. If the FL Property includes a Number, then the property holds at the it
occurrence of the leftmost operand (wherei isthe value of the Number), rather than at the very next occurrence.

Thenext event! operator isastrong operator, thusit specifiesthat thereis a next occurrence of the leftmost
operand. Similarly, next _event ! [i] specifiesthat there are at least i occurrences.

Thenext _event operator isaweak operator, thusit does not specify that there is a next occurrence of the left-
most operand. Similarly, next _event [i] doesnot specify that there are at least i next occurrences.

Restrictions

If anext _event or next _event! property contains a Number, then the Number shall be a statically com-
putable, positive Number.

Informal semantics

— A next_event! property holdsin the current cycle of a given path iff:
1) the Boolean expression and the FL Property that are the operands both hold at the current cycle, or
at some future cycle, and
2) the Boolean expression holds at some future cycle, and the FL property that is the operand holds at
the next cycle in which the Boolean expression holds.

50 Property Specification Language Reference Manual Version 1.0

Temporal layer

— A next_event property holdsin the current cycle of agiven path iff:
1) theBoolean expression that is the operand does not hold at the current cycle, nor doesit hold at any
future cycle; or
2) theBoolean expression that isthe operand holds at the current cycle or at some future cycle, and the
FL property that isthe operand holds at the next cycle in which the Boolean expression holds.
— A next_event![i] property holdsin the current cycle of agiven path iff:
1) the Boolean expression that isthe operand holds at least i times, starting at the current cycle, and
2) theFL property that isthe operand holds at the it occurrence of the Boolean expression.
— A next_event[i] property holdsinthe current cycle of agiven path iff:
1) theBoolean expression that isthe operand does not hold at least i times, starting at the current cycle,
or
2) theBoolean expression that isthe operand holds at least i times, starting at the current cycle, and the
FL property that is the operand holds at the i occurrence of the Boolean expression.

NOTE—The formula next _event (true) (f) isequivalent to the formulanext [0] (f). Similarly, if p holds in the
current cycle, then next _event (p) (f) is equivalent to next _event (true) (f) and therefore to next [0] ().
However, none of theseis equivalent to next (f) .

6.2.1.3.4 next_event_a

The next_event_a family of operators, shown in Box 36, specify that an FL property holds at a range of the
next occurrences of a Boolean expression. The next occurrences of the Boolean expression include an occur-
rence at the current cycle.

FL_Property ::=
next_event_a! (Boolean) [finite_positive Range] (FL_Property)
|next_event_a (Boolean) [finite_positive Range] (FL_Property)

Box 36—next_event_a operators

The rightmost operand of the next _event _al or next _event _a operator isan FL Property that holds at
the specified Range of next occurrences of the Boolean expression that isthe leftmost operand. The FL Property
that isthe rightmost operand holds on the ith through jth occurrences (inclusive) of the Boolean expression, where
i and j are the low and high bounds, respectively, of the Range.

Thenext _event _al! operator is astrong operator, thus it specifies that there are at least j occurrences of the
leftmost operand.

Thenext _event _a operator isaweak operator, thusit does not specify that there are j occurrences of the left-
most operand.

Restrictions
If anext _event _aornext_event _al! property contains a Range, then the Range shall be afinite, positive

Range, each bound of the Range shall be statically computable, and the left bound of the Range shall be less than
or equal to the right bound of the Range.

Version 1.0 Property Specification Language Reference Manual 51

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Temporal layer

Informal semantics

— A next_event _al[i..]j] property holdsinthe current cycle of agiven path iff:
1) the Boolean expression that is the operand holds at least j times, starting at the current cycle, and
2) theFL property that isthe operand holds at the ith through jth occurrences, inclusive, of the Boolean
expression.

— A next_event _a[i..j] property holdsinagiven cycle of agiven path iff the FL property that is
the operand holds at the ith through j™ occurrences, inclusive, of the Boolean expression, starting at the
current cycle. If there are less than j occurrences of the Boolean expression, then the FL property that is
the operand holds on all of them, starting from the it occurrence.

6.2.1.3.5 next_event_e

The next_event_e family of operators, shown in Box 37, specify that an FL property holds at |east once dur-
ing a range of next occurrences of a Boolean expression. The next occurrences of the Boolean expression
include an occurrence at the current cycle.

FL_Property ::=
next_event_e! (Boolean) [finite positive Range] (FL_Property)
|next_event_e (Boolean) [finite_positive Range] (FL_Property)

Box 37—next_event_e operators

The rightmost operand of the next _event _e! or next _event _e operator is an FL Property that holds at
least once during the specified Range of next occurrences of the Boolean expression that is the leftmost oper-
and. The FL Property that is the rightmost operand holds on one of the ith through jth occurrences (inclusive) of
the Boolean expression, wherei and j are the low and high bounds, respectively, of the Range.

Thenext _event _e! operator isastrong operator, thus it specifies that there are enough cycles so that the FL
Property has a chance to hold.

The next _event _e operator is aweak operator, thus it does not specify that there are enough cycles so that
the FL Property has a chance to hold.

Restrictions

If anext _event _e ornext _event _e! property contains a Range, then the Range shall be afinite, positive
Range, each bound of the Range shall be statically computable, and the left bound of the Range shall be lessthan
or equal to the right bound of the Range.

Informal semantics

— A next _event _e![i..]] property holdsinthe current cycle of agiven path iff thereis some cycle
during the ith through jth next occurrences of the Boolean expression at which the FL Property that is the
operand holds.

— A next_event _e[i..]] property holdsinthe current cycle of agiven path iff:

1) therearelessthanj next occurrences of the Boolean expression or
2) thereis some cycle during the ith through jth next occurrences of the Boolean expression at which
the FL Property that is the operand holds.

52 Property Specification Language Reference Manual Version 1.0

Temporal layer

6.2.1.4 Compound FL properties
6.2.1.4.1 abort

The abort operator, shown in Box 38, specifies a condition that removes any obligation for agiven FL property
to hold.

FL_Property ::=
FL_Property abort Boolean

Box 38—abort operator

The left operand of theabor t operator isthe FL Property to be aborted. The right operand of the abor t oper-
ator is the Boolean condition which causes the abort to occur.

Restrictions
None.
Informal semantics
Anabort property holdsin the current cycle of a given path iff:
— theFL Property that is the left operand holds, or
— the series of cycles starting from the current cycle and ending with the cycle in which the Boolean condi-
tion that is the right operand holds does not contradict the FL Property that is the |eft operand.

Example

Using abort to model an asynchronous interrupt: “A request is always followed by an acknowledge, unless a
cancellation occurs.”

always ((req -> eventually! ack) abort cancel);
6.2.1.4.2 before

The before family of operators, shown in Box 39, specify that one FL property holds before a second FL prop-
erty holds.

FL_Property ::=
FL_Property before! FL_Property
| FL_Property before! FL_Property
| FL_Property befor e FL_Property
| FL_Property before_ FL_Property

Box 39—before operators

The left operand of the bef or e family of operatorsisan FL Property that hol ds before the FL Property whichis
the right operand holds.

Thebef or e! andbef or e! _ operators are strong operators, thus they specify that the left FL Property eventu-
aly holds.

Version 1.0 Property Specification Language Reference Manual 53

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Temporal layer

The bef or e and bef or e_ operators are weak operators, thus they do not specify that the left FL Property
eventually holds.

The bef ore! and bef or e operators are non-inclusive operators, that is, they specify that the left operand
holds strictly before the right operand holds.

Thebef ore! _andbef or e_ operatorsareinclusive operators, that is, they specify that the left operand holds
before or at the same cycle as the right operand holds.

Restrictions

Within the simple subset (see Section 4.4.5), each operand of abef or e property is restricted to be a Boolean
expression.

Informal semantics

— A before! property holdsin the current cycle of agiven path iff:
1) theFL Property that isthe left operand holds at the current cycle or at some future cycle and
2) theFL Property that isthe left operand holds strictly before the FL Property that is the right operand
holds, or the right operand never holds.
— A before! _ property holdsin the current cycle of agiven path iff:
1) theFL Property that isthe left operand holds at the current cycle or at some future cycle and
2) theFL Property that is the left operand holds before or at the same cycle as the FL Property that is
the right operand, or the right operand never holds.
— A bef ore property holdsin the current cycle of a given path iff:
1) neither the FL Property that is the left operand nor the FL Property that is the right operand ever
hold in any future cycle; or
2) theFL Property that isthe left operand holds strictly before the FL Property that is the right operand
holds.
— A bef ore_ property holdsin the current cycle of agiven path iff:
1) neither the FL Property that is the left operand nor the FL Property that is the right operand ever
hold in any future cycle; or
2) the FL Property that is the left operand holds before or at the same cycle as the FL Property that is
the right operand.

6.2.1.4.3 until

The until family of operators, shown in Box 40, specify that one FL property holds until a second FL property
holds.

FL_Property ::= .
FL_Property until! FL_Property
| FL_Property until! _FL_Property
| FL_Property until FL_Property
| FL_Property until_ FL_Property

Box 40—until operators

The left operand of theunt i | family of operatorsis an FL Property that holds until the FL Property that is the
right operand holds. The right operand is called the “terminating property”.

54 Property Specification Language Reference Manual Version 1.0

Temporal layer

Theuntil! anduntil|! _ operatorsare strong operators, thus they specify that the terminating property even-
tually holds.

Theuntil anduntil _ operators are weak operators, thus they do not specify that the terminating property
eventually holds (and if it does not eventually hold, then the FL Property that is the left operand holds forever).

Theuntil! andunti | operators are non-inclusive operators, that is, they specify that the left operand holds
up to, but not necessarily including, the cycle in which the right operand holds.

Theuntil! anduntil _ operatorsareinclusive operators, that is, they specify that the left operand holds up
to and including the cycle in which the right operand holds.

Restrictions

Within the simple subset (see Section 4.4.5), theright operand of anunti | ! orunti | property isrestricted to
be a Boolean expression, and both the left and right operandsof anunti | ! _orunti | _ property arerestricted
to be a Boolean expression.

Informal semantics

— An until! property holdsin the current cycle of agiven path iff:
1) theFL Property that is the right operand holds at the current cycle or at some future cycle; and
2) the FL Property that is the left operand holds at all cycles up to, but not necessarily including, the
earliest cycle at which the FL Property that is the right operand holds.
— An until!_ property holdsin the current cycle of agiven path iff:
1) theFL Property that is the right operand holds at the current cycle or at some future cycle and
2) the FL Property that is the left operand holds at all cycles up to and including the earliest cycle at
which the FL Property that is the right operand holds.
— An until property holdsin the current cycle of agiven path iff:
1) theFL Property that is the left operand holds forever; or
2) theFL Property that isthe right operand holds at the current cycle or at some future cycle, and the
FL Property that isthe left operand holds at all cycles up to, but not necessarily including, the earli-
est cycle at which the FL Property that is the right operand holds.
— An until _ property holdsin the current cycle of agiven path iff:
1) theFL Property that isthe left operand holds forever or
2) the FL Property that is the right operand holds at the current cycle or at some future cycle, and the
FL Property that isthe left operand holds at al cycles up to and including the earliest cycle at which
the FL Property that is the right operand holds.

Version 1.0 Property Specification Language Reference Manual 55

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Temporal layer

6.2.1.5 Sequence-based FL properties
6.2.1.5.1 Suffix implication

The suffix implication family of operators, shown in Box 41, specify that an FL property or sequence holds if
some pre-requisite sequence holds.

FL_Property ::=
Sequence FL_Property?
| Sequence |-> Sequence!
| Sequence |-> Sequence
| Sequence |=> Sequence!
| Sequence [=> Sequence

Box 41—Suffix implication operators

The right operand of the operator is an FL Property or Sequence that is specified to hold if the Sequence that is
the | eft operand holds.

The Sequence |-> Sequence! and Sequence |=> Sequence! properties are strong properties, so
they specify that the rightmost Sequence compl etes.

The Sequence |-> Sequence and Sequence | => Sequence properties are weak properties, so they
do not specify that the rightmost Segquence necessarily completes (this can happen, for example, if the rightmost
Sequence containsal *]).

Restrictions
None.
Informal semantics

— A Sequence (FL_Property) property holdsinagiven cycle of agiven path iff:
1) the Sequencethat isthe left operand does not hold at the given cycle or
2) theFL Property that isthe right operand holdsin any cycle C such that the left operand holdstightly
from the given cycleto C.
— A Sequence |-> Sequence! property holdsinagiven cycle of agiven path iff:
1) the Sequencethat isthe left operand does not hold at the given cycle or
2) the Sequence that is the right operand holds in any cycle C such that the Sequence that is the left
operand holds tightly from the given cycleto C.
— A Sequence |-> Sequence property holdsin agiven cycle of agiven path iff:
1) the Sequencethat isthe left operand does not hold at the given cycle or
2) inany cycle C such that the Sequence that isthe left operand holds tightly from the given cycleto C,
either
i) the Sequencethat isthe right operand holds, or
ii) any prefix of the path beginning at C can be extended such that the Sequence that is the right
operand holds tightly on the extension.
— A Sequence | => Sequence! property holdsinagiven cycle of agiven path iff:
1) the Sequencethat isthe left operand does not hold at the given cycle or
2) the Sequence that is the right operand holds in the cycle after any cycle C such that the Sequence
that is the left operand holds tightly from the given cycleto C.
— A Sequence | => Sequence property holdsin agiven cycle of agiven path iff:
1) the Sequencethat isthe left operand does not hold at the given cycle; or

56 Property Specification Language Reference Manual Version 1.0

Temporal layer

2) inthe cycle after any cycle C such that the Sequence that is the left operand holds tightly from the
given cycleto C, either
i) the Sequence that isthe right operand holds, or
ii) any prefix of the path beginning in the cycle after C can be extended such that the Sequence
that is the right operand holds tightly on the extension.

6.2.1.5.2 whilenot

The whilenot family of operators, shown in Box 42, specify that a sequence holds on the interval between the
current cycle and a terminating condition.

FL_Property ::
whilenot! (Boolean) Sequence
|whilenot (Boolean) Sequence
|whilenot! (Boolean) Sequence
whilenot_"{ Boolean) Sequence

Box 42—whilenot operators

The left operand of the whi | enot family of operators is a Boolean expression that defines the end of the inter-
val in which the sequence holds. Theleft operand is called the “terminating condition”. Theright operand isthe
sequence that holds within the interval.

Thewhi | enot! andwhi | enot ! _ operators are strong operators, thus they specify that the terminating con-
dition eventually holds.

The whi | enot and whi | enot _ operators are weak operators, thus they do not specify that the terminating
condition eventually holds (and if the terminating condition does not eventually hold, then the sequence that is
the right operand starts but never completes).

Thewhi | enot! and whi | enot operators are non-inclusive operators, that is, they specify that the sequence
completes strictly before the terminating condition.

Thewhi | enot! _ and whi | enot _ operators are inclusive operators, that is, they specify that the sequence
completes in the same cycle as the terminating condition.

Restrictions
None.
Informal semantics

— A whil enot! property holdsin agiven cycle of agiven path iff either
1) the terminating condition holds in the given cycle and the Sequence operand holds on the empty
path, or
2) thereisacycle C subsequent to the given cycle such that the terminating condition holds at C, the
terminating condition does not hold at any cycle from the given cycle to the cycle before C, and the
Sequence operand holds tightly from the given cycle to the cycle before C.
— A whil enot! _ property holdsin agiven cycle of agiven path iff either
1) theterminating condition holds in the given cycle and the Sequence operand holds tightly from the
given cycleto itself, or

Version 1.0 Property Specification Language Reference Manual 57

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Temporal layer

2) thereisacycle C subsequent to the given cycle such that the terminating condition holds at C, the
terminating condition does not hold at any cycle from the given cycle to the cycle before C, and the
Sequence operand holds tightly from the given cycle to C.

— A whi |l enot property holdsin agiven cycle of agiven path iff

1) the terminating condition holds in the given cycle and the Sequence operand holds on the empty
path; or

2) thereisacycle C subsequent to the given cycle such that the terminating condition holds at C, the
terminating condition does not hold at any cycle from the given cycle to the cycle before C, and the
Sequence operand holds tightly from the given cycle to the cycle before C; or

3) any prefix of the given path can be extended such that the corresponding whi | enot sequence
holds tightly on the extended path and the termination condition does not hold on any cycle of the
extended path.

— A whi |l enot _ property holdsin agiven cycle of agiven path iff

1) theterminating condition holds in the given cycle and the Sequence operand holds tightly from the
given cycletoitself; or

2) thereisacycle C subsequent to the given cycle such that the terminating condition holds at C, the
terminating condition does not hold at any cycle from the given cycle to the cycle before C, and the
Sequence operand holds tightly from the given cycleto C; or

3) any prefix of the given path can be extended such that the corresponding whi | enot _ sequence
holds tightly on the extended path and the terminating condition does not hold on any cycle of the
extended path.

6.2.1.5.3 within

The within family of operators, shown in Box 43, specify that a given sequence holds on an interval starting
with either the occurrence of an initial condition or completion of an initial sequence, and ending with the occur-
rence of aterminating condition.

FL_Property ::=
within! (Sequence or_Boolean , Boolean) Sequence
|within (Sequence or_Boolean , Boolean) Sequence
|within!__ (' Sequence or_Boolean , Boolean) Sequence
|within_"(sequence or_Boolean , Boolean) Sequence
Sequence_or_Boolean ::=
Sequence | Boolean

Box 43—within operators

The leftmost operand of the wi t hi n family of operators is a Sequence or Boolean expression that defines the
beginning of an interval. If the leftmost operand is a Sequence, then completion of that Sequence defines the
beginning of the interval. If the leftmost operand is a Boolean expression, then it is treated as if it were a
Sequence containing exactly that Boolean expression. The middle operand is a Boolean condition (the “terminat-
ing condition”), the occurrence of which definesthe end of the interval. The rightmost operand is a Sequence that
holds on the interval.

Thewi t hi n! andwi t hi n! _ operators are strong operators, thus they specify that the terminating condition
eventually holds.

Thewi t hi n and wi t hi n_ operators are weak operators, thus they do not specify that the terminating condi-

tion eventually holds (and if the terminating condition does not eventually hold, then the sequence that is the
rightmost operand starts but never compl etes).

58 Property Specification Language Reference Manual Version 1.0

Temporal layer

Thewi t hi n! andwi t hi n operators are non-inclusive operators, that is, they specify that the sequence that is
the rightmost operand completes strictly before the cycle in which the terminating condition holds.

Thewi t hi n! _andwi t hi n_ operators are inclusive operators, that is, they specify that the sequence whichis
the rightmost operand completes at the same cycle as that in which the terminating condition holds.

Restrictions
None.
Informal semantics

— A within! property holdsin agiven cycle of agiven path iff
1) theleftmost operand does not hold at the given cycle, or
2) inany cycle C such that the leftmost operand holds tightly from the given cycle to C, either
i) theterminating condition holds at C and the rightmost operand holds on the empty path, or
ii) thereisacycle D subsequent to C such that the terminating condition holds at D, the terminat-
ing condition does not hold at any cycle from C to the cycle before D, and the rightmost oper-
and holdstightly from C to the cycle before D.
— A within!_ property holdsin agiven cycle of agiven path iff
1) theleftmost operand does not hold at the given cycle, or
2) inany cycle C such that the leftmost operand holds tightly from the given cycle to C, either
i) theterminating condition holds at C and the rightmost operand holdstightly from C to itself, or
ii) thereisacycle D subsequent to C such that the terminating condition holds at D, the terminat-
ing condition does not hold at any cycle from C to the cycle before D, and the rightmost oper-
and holdstightly from C to D.
— A within property holdsin agiven cycle of agiven path iff:
1) theleftmost operand does not hold at the given cycle, or
2) inany cycle C such that the leftmost operand holds tightly from the given cycle to C, either
i) theterminating condition holds at C and the rightmost operand holds on the empty path, or
ii) thereisacycle D subsequent to C such that the terminating condition holds at D, the terminat-
ing condition does not hold at any cycle from C to the cycle before D, and the rightmost oper-
and holdstightly from C to the cycle before D, or
iii) any prefix of the path beginning at C can be extended such that the corresponding within
sequence holds tightly on the extended path and the termination condition does not hold on any
cycle of the extended path.
— A wit hin_ property holdsin agiven cycle of agiven path iff:
1) theleftmost operand does not hold at the given cycle, or
2) inany cycle C such that the leftmost operand holds tightly from the given cycle to C, either
i) theterminating condition holds at C and the rightmost operand holds tightly from C to itself, or
ii) thereisacycle D subsequent to C such that the terminating condition holds at D, the terminat-
ing condition does not hold at any cycle from C to the cycle before D, and the rightmost oper-
and holdstightly from Cto D, or
iii) any prefix of the path beginning at C can be extended such that the corresponding within_
sequence holds tightly on the extended path and the termination condition does not hold on any
cycle of the extended path.

Version 1.0 Property Specification Language Reference Manual 59

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Temporal layer

6.2.1.6 Logical FL properties
6.2.1.6.1 Logical implication

Thelogical implication operator (->), shown in Box 44, is used to specify logical implication.

FL_Property ::=
FL_Property -> FL_Property

Box 44—L ogical implication operator

Theright operand of the logical implication operator isan FL Property that is specified to hold if the FL Property
which is the |eft operand holds.

Restrictions

Within the simple subset (see Section 4.4.5), the left operand of alogical implication property isrestricted to be a
Boolean expression.

Informal semantics
A logical implication property holds in agiven cycle of agiven path iff:

— theFL Property that is the left operand does not hold at the given cycle or
— theFL Property that isthe right operand does hold at the given cycle.

6.2.1.6.2 Logical iff

The logical iff operator (<->), shown in Box 45, is used to specify the iff (if and only if) relation between two
properties.

FL_Property ::=
FL_Property <-> FL_Property

Box 45—Logical iff operator

The two operands of the logical iff operator are FL Properties. The logical iff operator specifies that either both
operands hold, or neither operand holds.

Restrictions

Within the simple subset (see Section 4.4.5), both operands of alogical iff property are restricted to be aBoolean
expression.

Informal semantics
A logical iff property holdsin a given cycle of agiven path iff:

— both FL Properties that are operands hold at the given cycle or
— neither of the FL Properties that are operands holds at the given cycle.

60 Property Specification Language Reference Manual Version 1.0

Temporal layer

6.2.1.6.3 Logical and

The logical and operator, shown in Box 46, is used to specify logical and.

FL_Property ::=
FL_Property AND_OP FL_Property

Box 46—Logical and operator

The operands of the logical and operator are two FL Properties that are both specified to hold.
Restrictions

Within the simple subset (see Section 4.4.5), the left operand of alogical and property is restricted to be a Bool-
ean expression.

Informal semantics

A logical and property holdsin a given cycle of agiven path iff the FL Properties that are the operands both hold
at the given cycle.

6.2.1.6.4 Logical or

Thelogical or operator, shown in Box 47, is used to specify logical or.

FL_Property ::=
FL_Property OR_OP FL_Property

Box 47—Logical or operator

The operands of the logical or operator are two FL Properties, at least one of which is specified to hold.
Restrictions

Within the simple subset (see Section 4.4.5), the left operand of alogical or property is restricted to be aBoolean
expression.

Informal semantics

A logical or property holdsin agiven cycle of agiven path iff at |east one of the FL Properties that are the oper-
ands holds at the given cycle.

Version 1.0 Property Specification Language Reference Manual 61

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Temporal layer

6.2.1.6.5 Logical not

Thelogical not operator, shown in Box 48, is used to specify logical negation.

FL_Property ::=
NOT_OP FL_Property

Box 48—Logical not operator

The operand of the logical not operator is an FL Property that is specified to not hold.
Restrictions

Within the simple subset (see Section 4.4.5), the operand of alogical not property is restricted to be a Boolean
expression.

Informal semantics

A logical not property holdsin agiven cycle of agiven path iff the FL Property that is the operand does not hold
at the given cycle.

6.2.1.7 LTL operators

The LTL operators, shown in Box 49, provide standard LTL syntax for other PSL operators.

FL_Property ::=

X FL_Property

X! FL_Property

F FL_Property

G FL_Property
FL_Property U FL_Property]
FL

|
|
|
|| FL_Property W FL_Property |

Box 49—LTL operators

The standard LTL operators are alternate syntax for the equivalent PSL operators, as shown in Table 3.

Table 3—PSL equivalents

Sandard LTL Equivalent PSL
oper ator oper ator

X next

X! next!

F eventual | y!

G al ways

U until!

W until

62 Property Specification Language Reference Manual Version 1.0

Temporal layer

Restrictions

The restrictions that apply to each equivalent PSL operator also apply to the corresponding standard LTL opera-
tor.

6.2.2 Optional Branching Extension (OBE) properties

Properties of the Optional Branching Extension (OBE), shown in Box 50, are interpreted over trees of states as
opposed to properties of the Foundation Language (FL), which are interpreted over sequences of states. A tree of
states is obtained from the model by unwrapping, where each path in the tree corresponds to some computation
path of the model. A node in the tree branches to several nodes as a result of non-determinism in the model. A
completely deterministic model unwrapsto atree of exactly one path, i.e., to asequence of states. An OBE prop-
erty holds or does not hold for a specific state of the tree.

OBE_Property ::=
Boolean
| (OBE_Property)

Box 50—OBE properties

The most basic OBE Property is aBoolean expression. An OBE Property enclosed in parenthesesis also an OBE
Property.

6.2.2.1 Universal OBE properties
6.2.2.1.1 AX operator

The AX operator, shown in Box 51, specifies that an OBE property holds at all next states of the given state.

OBE_Property ::=
AX OBE_Property

Box 51—AX operator

The operand of AX is an OBE Property that is specified to hold at all next states of the given state.
Restrictions

None.

Informal semantics

An AX property holds at a given state iff, for all paths beginning at the given state, the OBE Property that isthe
operand holds at the next state.

Version 1.0 Property Specification Language Reference Manual 63

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Temporal layer

6.2.2.1.2 AG operator

The AG operator, shown in Box 52, specifies that an OBE property holds at the given state and at all future
states.

OBE_Property ::=
AG OBE_Property

Box 52—AG operator

The operand of AGis an OBE Property that is specified to hold at the given state and at all future states.
Restrictions

None.

Informal semantics

An AG property holds at a given state iff, for all paths beginning at the given state, the OBE Property that is the
operand holds at the given state and at all future states.

6.2.2.1.3 AF operator

The AF operator, shown in Box 53, specifies that an OBE property holds now or at some future state, for all
paths beginning at the current state.

OBE_Property ::=
AF OBE_Property

Box 53—AF operator

The operand of AF is an OBE Property that is specified to hold now or at some future state, for al paths begin-
ning at the current state.

Restrictions
None.
Informal semantics

An AF property holds at a given state iff, for all paths beginning at the given state, the OBE Property that is the
operand holds at the first state or at some future state.

64 Property Specification Language Reference Manual Version 1.0

Temporal layer

6.2.2.1.4 AU operator

The AU operator, shown in Box 54, specifies that an OBE property holds until a specified terminating property
holds, for al paths beginning at the given state.

OBE_Property ::=
A'[OBE_Property U OBE_Property |

Box 54—AU operator

The first operand of AU is an OBE Property that is specified to hold until the OBE Property that is the second
operand holds along all paths starting at the given state.

Restrictions
None.
Informal semantics
An AU property holds at a given state iff, for al paths beginning at the given state:
— the OBE Property that is the right operand holds at the current state or at some future state; and

— the OBE Property that is the left operand holds at all states, up to but not necessarily including, the state
in which the OBE Property that is the right operand holds.

6.2.2.2 Existential OBE properties
6.2.2.2.1 EX operator
The EX operator, shown in Box 55, specifies that an OBE property holds at some next state.

The operand of EX is an OBE property that is specified to hold at some next state of the given state.

OBE_Property ::=
EX OBE_Property

Box 55—EX operator

Restrictions
None.
Informal semantics

An EX property holds at a given state iff there exists a path beginning at the given state, such that the OBE Prop-
erty which isthe operand holds at the next state.

Version 1.0 Property Specification Language Reference Manual 65

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Temporal layer

6.2.2.2.2 EG operator

The EG operator, shown in Box 56, specifies that an OBE property holds at the current state and at all future
states of some path beginning at the current state.

OBE_Property ::=
OBE_Property

Box 56—EG operator

The operand of EGisan OBE Property that is specified to hold at the current state and at all future states of some
path beginning at the given state.

Restrictions
None.
Informal semantics

An EG property holds at a given state iff there exists a path beginning at the given state, such that the OBE Prop-
erty that isthe operand holds at the given state and at all future states.

6.2.2.2.3 EF operator

The EF operator, shown in Box 57, specifies that an OBE property holds now or at some future state of some
path beginning at the given state.

OBE_Property ::=
EF OBE_Property

Box 57—EF operator

The operand of EF is an OBE Property that is specified to hold now or at some future state of some path begin-
ning at the given state.

Restrictions
None.
Informal semantics

An EF property holds at a given state iff there exists a path beginning at the given state, such that the OBE Prop-
erty that isthe operand holds at the current state or at some future state.

66 Property Specification Language Reference Manual Version 1.0

Temporal layer

6.2.2.2.4 EU operator

The EU operator, shown in Box 58, specifies that an OBE property holds until a specified terminating property
holds, for some path beginning at the given state.

OBE_Property ::=
E [oBE_Property U OBE_Property]

Box 58—EU operator

The first operand of EU is an OBE Property that is specified to hold until the OBE Property that is the second
operand holds for some path beginning at the given state.

Restrictions
None.
Informal semantics
An EU property holds at a given state iff there exists a path beginning at the given state, such that:
— the OBE Property that is the right operand holds at the current state or at some future state; and

— the OBE Property that is the left operand holds at all states, up to but not necessarily including, the state
in which the OBE Property that is the right operand holds.

6.2.2.3 Logical OBE properties
6.2.2.3.1 OBE implication

The OBE implication operator (->), shown in Box 59, is used to specify logical implication.

OBE_Property ::=
OBE_Property -> OBE_Property

Box 59—OBE implication operator

Theright operand of the OBE implication operator is an OBE Property that is specified to hold if the OBE Prop-
erty that isthe left operand holds.

Restrictions

None.

Informal semantics

An OBE implication property holdsin a given state iff:

— the OBE property that isthe left operand does not hold at the given state or
— the OBE property that isthe right operand does hold at the given state.

Version 1.0 Property Specification Language Reference Manual 67

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Temporal layer

6.2.2.3.2 OBE iff

The OBE iff operator (<->), shown in Box 60, is used to specify theiff (if and only if) relation between two prop-
erties.

OBE_Property ::=
OBE_Property <-> OBE_Property

Box 60—OBE iff operator

The two operands of the OBE iff operator are OBE Properties. The OBE iff operator specifies that either both
operands hold or neither operand holds.

Restrictions

None.

Informal semantics

An OBE iff property holdsin agiven stateiff:

— both OBE Properties that are operands hold at the given state or
— neither of the OBE Properties that are operands hold at the given state.

6.2.2.3.3 OBE and

The OBE and operator, shown in Box 61, is used to specify logical and.

OBE_Property ::=
OBE_Property AND_OP OBE_Property

Box 61—OBE and operator

The operands of the OBE and operator are two OBE Properties that are both specified to hold.
Restrictions

None.

Informal semantics

An OBE and property holds in a given state iff the OBE Properties that are the operands both hold at the given
state.

68 Property Specification Language Reference Manual Version 1.0

Temporal layer

6.2.2.3.4 OBE or

The OBE or operator, shown in Box 62, is used to specify logical or.

OBE_Property ::=
OBE_Property OR_OP OBE_Property

Box 62—OBE or operator

The operands of the OBE or operator are two OBE Properties, at least one of which is specified to hold.
Restrictions

None.

Informal semantics

A OBE or property holds in a given state iff at least one of the OBE Properties that are the operands holds at the
given state.

6.2.2.3.5 OBE not

The OBE not operator, shown in Box 63, is used to specify logical negation.

OBE_Property ::=
NOT_OP OBE_Property

Box 63—OBE not operator

The operand of the OBE not operator is an OBE Property which is specified to not hold.
Restrictions

None.

Informal semantics

An OBE not property holds in a given state iff the OBE Property that is the operand does not hold at the given
state.

Version 1.0 Property Specification Language Reference Manual 69

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Temporal layer

6.2.3 Replicated properties

Replicated properties are specified using the operator forall, as shown in Box 64. Thefirst operand of the rep-
licated property isaRepl i cat or and the second operand is a parameterized property.

Property ::=

Replicator Property
Replicator ::= .

forall Name[IndexRange] IN ValueSet
IndexRange ::=

LEFT_SYM finite_ Range RIGHT_SYM
Flavor Macro LEFT_SYM =

Verilog: [/ VHDL: (/EDL: (
Flavor Macro RIGHT_SYM =

Verilog: | / VHDL:) / EDL:)
ValueSet ::=

ValueRange{ , ValueRange} }

| boolean

ValueRange ::=
Value

| finite_Range
Range ::=

LowBound RANGE_SYM HighBound

Box 64—Replicating properties

The first operand of a Repl i cat or isthe parameter in the parameterized property. This parameter can be an
array. The second operand is the set of values over which replication occurs.

1) If the parameter is not an array, then the property is replicated once for each value in the set of val-
ues, with that value substituted for the parameter. The total number of replications is equal to the
size of the set of values.

2) If the parameter isan array of size N, then the property isreplicated once for each possible combina-
tion of N (not necessarily distinct) values from the set of values, with those values substituted for
the N elements of the array parameter. If the set of values has size K, then the total number of repli-
cationsis equal to KAN.

The set of values can be specified in three different ways

— The keyword boolean specifies the set of values { True, False}.

— A Val ueRange specifies the set of al values within the given range.

— The comma (,) between ValueRanges indicates the union of the obtained sets.
Restrictions
If the Name has an associated IndexRange, the IndexRange shall be specified as a finite Range, each bound of
the Range shall be statically computable, and the left bound of the Range shall be less than or equal to the right
bound of the Range.
If aVaueis used to specify a ValueRange, the Value shall be statically computable.

If aRange is used to specify a ValueRange, the Range shall be a finite Range, each bound of the Range shall be
statically computable, and the left bound of the Range shall be less than or equal to the right bound of the Range.

70 Property Specification Language Reference Manual Version 1.0

Temporal layer

The Name shall be used in one or more expressionsin the Property, or as an actual parameter in the instantiation
of aparameterized Property, so that each of the replicated instances of the Property corresponds to a unique value
of the Name.

An implementation may impose restrictions on the use of a replication variable Name defined by a Replicator.
However, an implementation shall support at least comparison (equality, inequality) between the Name and an
expression, and use of the Name as an index or repetition count.

Replicators can be nested, but all nested Replicators shall be at the top level. A replicated property shall not be
nested within a non-replicated property.

NOTE—The Name defined by a replicator represents a non-static variable. Since the bounds of both an IndexRange and a
VaueRange must be defined by statically computable expressions, those expressions cannot refer to the replication variable
Name of another Replicator, and therefore neither the IndexRange nor the ValueRange of a nested Replicator can be defined
in terms of the replicator variable Name of a containing Replicator.

Informal semantics

— Aforall i inbool ean: f(i) propertyisreplicated to define two instances
of the property f (i) :

f(true)
f(fal se)

— Aforall i in {j:k} : f(i) propertyisreplicated to define k-j+1 instances
of the property f (i) :

£(j)
f(j+1)
f(j+2)
(k)
— Aforall i in {j,1} : f(i) propertyisreplicated to define two instances
of the property f (i) :
£(j)
f(l)
— Aforall i[0:1] in boolean : f(i) propertyisreplicated to define four instances
of the property f (i) :

f({fal se, fal se})
f({fal se,true})
f({true, fal se})
f({true,true})

— Aforall i[0:2] in {4,5} : f(i) propertyisreplicated to define eight instances of the prop-
erty f (i):

Version 1.0 Property Specification Language Reference Manual 71

10

15

20

25

30

35

40

45

50

55

Temporal layer

10

15

20

25

forall i[0:3]

i n bool ean:

request && (data_in == i) -> next(data out == i)

forall i
forall

forall

Illegal:

i n bool ean:
j in {0:7}:

FCi g, k)

al ways (request ->

k in {0:3}:

forall i in boolean: next_e[1l:10](response[i]))

forall j in {0:7}:
forall k in {0:j}:
f(j, k)

35

40

50

55

6.2.4 Named properties

A given property may be applicable in more than one part of the design. In such acase, it is convenient to be able
to define the property once and refer to the single definition wherever the property applies. Declaration and
instantiation of named properties provide this capability.

72

Property Specification Language Reference Manual

Version 1.0

Temporal layer

6.2.4.1 Property declaration

A property declaration, shown in Box 65, defines a property and givesit aname. A property declaration can also
specify alist of formal parameters that can be referenced within the property.

PSL_ Declaration ::=
Property_Declaration
Property_Declaration ::=
property Name[(Formal_Parameter_List)] DEF_SYM Property ;
Formal_Parameter_List ::=
Formal_Parameter { ; Formal_Parameter }
Formal _Parameter ::=
ParamKind Name{ , Name}
ParamKind ::=
const |boolean | property | sequence

Box 65—Property declaration

Restrictions
The Narre of a declared property shall not be the same as the name of any other PSL declaration.

Example

property Resul t AfterN (bool ean start; property result; const n; bool ean stop) =
al ways ((start -> next[n] (result)) @ (posedge clk) abort stop);

This property could also be declared as follows:

property Resul t AfterN (bool ean start, stop; property result; const n) =
al ways ((start -> next[n] (result)) @ (posedge clk) abort stop);

The two declarations have slightly different interfaces (i.e., different forma parameter orders), but they both
declare the same property Resul t Af t er N. This property describes behavior in which a specified result (a
property) occurs n cycles after an enabling condition (parameter start) occurs, with cycles defined by rising edges
of signal clk, unless an (asynchronous) abort condition (parameter stop) occurs.

NOTE—Thereis no requirement to use formal parametersin a property declaration. A declared property may refer directly to
signalsin the design as well asto formal parameters.

6.2.4.2 Property instantiation

A property instantiation, shown in Box 66, creates an instance of a named property and provides actual parame-
tersfor formal parameters (if any) of the named property.

FL_Property ::=

property_Name [(Actual_Parameter_List)]
Actual_Parameter_List ::=

Actual_Parameter { , Actual_Parameter }
Actual_Parameter ::=

Number | Boolean | Property | Sequence

Box 66—Property instantiation

Version 1.0 Property Specification Language Reference Manual 73

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Temporal layer

Restrictions

For each formal parameter of the named property pr operty_Nane, the property instantiation shall provide a
corresponding actual parameter. For aconst formal parameter, the actual parameter shall be a staticaly evalu-
able integer expression. For abool ean formal parameter, the actual parameter shall be a Boolean expression.

For aproperty forma parameter, the actual parameter shall be an FL Property. For a sequence formal
parameter, the actual parameter shall be a Sequence.

Informal semantics
An instance of a named property holds at a given evaluation cycle if and only if the named property, modified by

replacing each formal parameter in the property declaration with the corresponding actual parameter in the prop-
erty instantiation, holdsin that evaluation cycle.

Example
Given thefirst declaration for the property Resul t Aft er Nin 6.2.4.1,
Resul t AfterN (wite_req, eventually! ack, 3, cancel)
Resul t AfterN (read_req, eventually! (ack | retry), 5,
(cancel | wite_req))

isequivalent to

always ((wite req -> next[3] (eventually! ack)) @ (posedge clk) abort

cancel)
al ways ((read_req -> next[5] (eventually! (ack | retry))) @(posedge cl k)
abort (cancel | wite_req))

74 Property Specification Language Reference Manual Version 1.0

7. Verification layer

The verification layer provides directives which tell the verification tools what to do with the specified proper-
ties. The verification layer also provides constructs which group related directives and other PSL statements.

7.1 Verification directives
The verification directives are:

— assert

— assume

— assune_guar ant ee

— restrict

— restrict_guarantee

— cover

— fairnessandstrong fairness

7.1.1 assert

The verification directive assert, shown in Box 67, instructs the verification tool to verify that a property
holds.

Assert_Statement ::=
assert Property ;

Box 67—Assert statement

Example
The directive
assert always (ack -> next !ack);
instructs the verification tool to verify that the property
al ways (ack -> next !ack)
holds in the design.
7.1.2 assume

The verification directive assune, shown in Box 68, instructs the verification tool to constrain the verification
(e.g., the behavior of the input signals) so that a property holds.

Assume_Statement =
assume Property ;

Box 68—Assume statement

Version 1.0 Property Specification Language Reference Manual 75

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Verification layer

Restrictions
The Property that is the operand of an assune directive must be an FL Property.
Example
The directive
assune always (ack -> next !ack);

instructs the verification tool to constrain the verification (e.g., the behavior of the input signals) so that the prop-
erty

al ways (ack -> next !ack)
holdsin the design.
Verification tools are not obligated to verify the assumed property. Assumptions are often used to specify the
operating conditions of a design property by constraining the behavior of the design inputs. In other words, an
asserted property is required to hold only along those paths which obey the assumption.
7.1.3 assume_guarantee
The assume_guar ant ee directive, shown in Box 69, instructs the verification tool to constrain the verifica-

tion (e.g., the behavior of the input signals) so that a property holds and aso to verify that the assumed property
holds.

Assume_Guarantee Statement ::=
assume_guar antee Property ;

Box 69—Assume_guarantee statement

Restrictions
The Property that isthe operand of anassune_guar ant ee directive must be an FL Property.
Example
The directive
assume_guar ant ee al ways (ack -> next !ack);
instructs the tool to assume that whenever signal ack is asserted, it is not asserted at the next cycle, while also
verifying that the property holds. To illustrate how this verification directive is used, imagine two design blocks,
Aand B, and the signal ack as an output from block B and an input to block A. The property

assume_guar ant ee al ways (ack -> next !ack);

can be assumed to verify some other properties related to block A. However, verification tools shall also indicate
the proof obligation of this property when block B is present. How thisinformation is used is tool-dependent.

76 Property Specification Language Reference Manual Version 1.0

Verification layer

7.1.4 restrict

Theverification directiver est ri ct , shownin Box 70, isaway to constrain the design inputs using sequences.

Restrict_Statement ::=
restrict Sequence;

Box 70—Restrict statement

Arestrict directive can be usedto initialize the design to get to a specific state before checking assertions.
Note-Verification tools are not obligated to verify that the restricted sequence holds.
Example
The directive
restrict {!rst;rst[*3];!rst[*]};

is a constraint that every execution trace begins with one cycle of r st low, followed by three cycles of r st
high, followed by r st being low forever.

7.1.5 restrict_guarantee

Thedirectiver est ri ct _guar ant ee, shown in Box 71, instructs the verification tool to constrain the design
inputs so that a sequence holds and also to verify that the restrict sequence holds.

Restrict_Guarantee_Statement ::=
restrict_guar antee Sequence;

Box 71—Restrict_guarantee statement

Example
The directive

restrict_guarantee {!rst;rst[*3];!rst[*]};
is a constraint that every execution trace begins with one cycle of r st low, followed by three cycles of r st
high, followed by r st being low forever, while also verifying that the constraint holds. How thisinformation is
used is tool-dependent.

7.1.6 cover

The verification directive cover, shown in Box 72, directs the verification tool to check if a certain path was
covered by the verification space based on a simulation test suite or a set of given constraints.

Cover_Statement ::=
COver Sequence,

Box 72—Cover statement

Version 1.0 Property Specification Language Reference Manual 77

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Verification layer

Example
The directive
cover {start _trans;!end trans[*];start _trans & end_trans};

instructs the verification tool to check if there is at least one case in which a transaction starts and then another
one starts the same cycle which the previous one compl eted.

7.1.7 fairness and strong fairness

Thedirectivesf ai r ness andstrong fairness, showninBox 73, are specia kinds of assumptions which
correspond to liveness properties.

Fairness_Statement ::=
fairnessBoolean ;
| strong fairnessBoolean , Boolean ;

Box 73—Fairness statement

If the fairness constraint includes the keyword st r ong, then it is a strong fairness constraint; otherwise it is a
simple fairness constraint.

Fairness constraints can be used to filter out certain behaviors. For example, they can be used to filter out a
repeated occurrence of an event that blocks another event forever. Fairness constraints guide the verification tool
to verify the property only over fair paths. A path isfair if every fairness constraint holds along the path. A sim-
ple fairness constraint holds along a path if the given Boolean expression occurs infinitely many times along the
path. A strong fairness constraint holds along the path if a given Boolean expression does not occur infinitely
many times along the path or if another given Boolean expression occurs infinitely many times along the path.
Examples

The directive

fairness p;

instructs the verification tool to verify the formula only over paths in which the Boolean expression p occurs
infinitely often. Semanticaly it is equivalent to the assumption

assunme G- p;
The directive

strong fairness p,q;
instructs the verification tool to verify the formulaonly over paths in which either the Boolean expression p does
not occur infinitely often or the Boolean expression g occurs infinitely often. Semanticaly it is equivalent to the

assumption

assune (GF p) -> (GF q);

78 Property Specification Language Reference Manual Version 1.0

Verification layer

7.2 Verification units

A verification unit, shown in Box 74, is used to group verification directives and other PSL statements.

Verification Unit ::=
VUnitType Name [(Hierarchical_HDL_Name)] {

{ Inherit_Spec}

{ VUnit_Item}

VUnitType ::=

vunit |vprop |vmode
Name ::=

HDL_ID
Hierarchica HDL_Name ::=

module_Name { PATH_SYM instance_Name}
Inherit_Spec ::=

inherit vunit Name{ , vunit_Name} ;
VUnit_Item ::=

HDL_Decl_or_Stmt
| PSL_Declaration
| Verification_Directive

Box 74—V erification unit

The Name is the name by which this verification unit is known to the verification tools.

The optiona Hierarchical HDL_Name indicates the design module or modul e instance to which the verification
unit is bound. If the Hierarchical_HDL_Name is not present, then the verification unit binds to the top-level
module of the design under verification. See 7.2.1 for adiscussion of binding.

An Inherit_Spec indicates another verification unit from which this verification unit inherits contents. See 7.2.2
for adiscussion of inheritance.

A VUnit_Itemisaverification directive or other PSL statement grouped by this verification unit. See 7.2.3 for a
discussion of which PSL statements can be grouped by verification units.

The VUnitType specifiesthe type of the Verification Unit. Verification unit typesvpr op and vnode enable sep-
arate definition of assertions to verify and constraints (i.e., assumptions or restrictions) to be considered in
attempting to verify those assertions. Variousvpr op verification units can be created containing different sets of
assertionsto verify and various vimode verification units containing different sets of constraints can be created to
represent the different conditions under which verification should take place. By combining one or morevpr op
verification units with one or more vimode verification units, the user can easily compose different verification
tasks.

Verification unit type vuni t enables a combined approach in which both assertions to verify and applicable
congtraints, if any, can be defined together. All three types of verification units can be used together in asingle
verification run.

The default verification unit (i.e., one named def aul t) can be used to define constraints that are common to al
verification environments, or defaults that can be overridden in other verification units. For example, the default
verification unit might include a default clock declaration or a sequence declaration for the most common reset
sequence.

Version 1.0 Property Specification Language Reference Manual 79

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Verification layer

Restrictions

A Verification Unit of type vihode shall not contain an assert directive.

A Verification Unit of type vpr op shall not contain a directivethat isnot anassert directive.
A Verification Unit of type vpr op shal not inherit a Verification Unit of typevuni t or vinode.
A default Verification Unit, if it exists, shall be of type vnode.

7.2.1 Verification unit binding

The connection between signalsreferred to in averification unit and signals of the design under verification is by
name, relative to the module or module instance to which the verification unit is bound.

If the verification unit is bound to a modul e (as opposed to amodule instance), then thisis equivalent to duplicat-
ing the contents of the verification unit and binding each duplication to one instance.

Examples

vunit exla(top_block.il.i2) {
assert never (ena && enb);

}

vunit exla is bound to instance t op_bl ock.i 1.i 2. This is equivaent to the following non-bound
vuni t exlb:

vunit exlb {
assert never (top_block.il.i2.ena & top_block.i1l.i2.enb);

}

As asecond example, consider:

vunit ex2a(nmodl) {
assert never (ena &&% enb);

}

The verification unit is bound to module nod1. If this module is instantiated twice in the design, once as
top_bl ock.il.i2andonceast op_bl ock.i 1.i 3,thenvuni t ex2a isequivalent to the following non-
bound vuni t ex2b:

vunit ex2b {
assert never(top_block.il.i2.ena &k top_block.il.i2.enb);
assert never(top_block.il.i3.ena & top_block.il.i3.enb);

}

The binding of averification unit to a module or modul e instance affects all the namesin the vunit.
vunit ex3a (top_block.il) {

property nutex = never (ena && enb);
assert nutex;

80 Property Specification Language Reference Manual Version 1.0

Verification layer

vunit ex3a is bound to the instance t op_bl ock. i 1. This is equivalent to the following non-bound
vuni t ex3b:

vunit ex3b {
property tob bl ock.il.nmutex =
never (tob_block.il.ena && tob bl ock.i 1. enb);
assert tob_bl ock.i 1. nutex;

}

7.2.2 Verification unit inheritance

When a verification unit inherits another verification unit, the effect is asif the contents of the inherited verifica-
tion unit had appeared within the inheriting verification unit, except:

a) Theinherited verification unit is bound according to its own definition, and is not affected by the binding
of the inheriting verification unit.

b) Inthe case where theinheriting verification unit and the inherited verification unit declare items with the
same name (after taking into account the respective bindings), then the declaration in the inheriting veri-
fication unit takes precedence. A vunit can contain HDL declarations and PSL declarations.

For more on resolution of apparent declaration conflicts, see 7.2.4.
Examples

vunit ex4a(top_block.il) {

assert never (read_en && wite_en);
}
vunit ex4b(top_block.il.i2) {

i nherit ex4a;

assert never (ena && enb);

}

vuni t ex4b inheritsvuni t ex4a. Thisisequivalent to the following non-bound vuni t ex4c:

vunit ex4c {
assert never (top_block.il.read en & top block.il.wite_en);
assert never (top_block.il.i2.ena && top _block.il.i2.enb);

}

As a second example, consider:

vunit exb5a(top_block.il) {
wre tenp;
assign tenp = ackl || ackz;
assert always (reqa -> next tenp);
}
vunit ex5b(top_block.il) {
i nherit exba;
wre tenp;
assign tenp = ackl || ack2 || acks3;
assert always (regb -> next tenp);

Version 1.0 Property Specification Language Reference Manual 81

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Verification layer

vuni t ex5b inherits ex5a. Both verification units are bound to the same instance and both declare wires
named t enp. The declaration of t enp in the inheriting verification unit takes precedence, sovuni t ex5b is
equivalent to the following non-bound vuni t ex5c:

vunit ex5c {
wire top_block.il.tenp;
assign top_block.il.tenmp =
top_block.il.ackl || top_block.il.ack2 || top_block.il.ack3;

assert always (top_block.il.reqa -> next top_block.il.temp);
assert always (top_block.il.reqb -> next top_block.il.temp);

}

As an example of how binding and inheritance affect PSL declarations, consider:

vunit ex6a (top_block.i1l) {
property Ackl nOneCycl e (bool ean req, ack, clKk)
= always (req -> next ack) @ (posedge clk);
}
vunit ex6b (top_block.il) {
i nherit ex6a;
assert Ackl nOneCycl e(req, ack, clKk);

}

Thevunit ex6b isequivaent to the following non-bound vuni t ex6c:

vunit ex6c¢c {
property top_bl ock.i 1. Ackl nOneCycl e (bool ean req, ack, clk)
= always (req -> next ack) @ (posedge clk);
assert top_block.i1l. Ackl nOneCycl e(top_bl ock.i1l.req,
top_bl ock.i 1. ack,
top_bl ock.i1.clk);

}

7.2.3 Verification unit contents
The declarations and statements that can be grouped inside a verification unit are:

a) Any modeling layer statement or declaration.

b) A property, endpoint, sequence, or clock declaration.

c) A verification directive.
7.2.4 Verification unit scoping rules
As discussed in 7.2.2, when an inheriting verification unit and an inherited verification unit declare items with
the same name (after taking into account the respective bindings), then the declaration in the inheriting verifica-
tion unit takes precedence. This general scoping rule has a specific use: it allows a verification unit to redeclare
and/or give new behavior to asignal in the design under verification.
PSL recognizes four levels at which an identifier isdeclared. In order of increasing precedence, they are:

a) Inthedesign.

b) Inthe default verification unit.
¢) Inaninherited verification unit.

82 Property Specification Language Reference Manual Version 1.0

d) Inthecurrent verification unit.

Itisillegal for anidentifier to be declared twice at the same level.

Example
vunit V {
wire S;
assign S =req || ack;
sequence S = {req;ack}; // illegal - S already declared
}
Version 1.0 Property Specification Language Reference Manual

Verification layer

83

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Verification layer

84

Property Specification Language Reference Manual

Version 1.0

8. Modeling layer
The modeling layer provides a means to model behavior of design inputs (for tools such as formal verification
tools in which the behavior is not otherwise specified), and to declare and give behavior to auxiliary signals and

variables. The modeling layer comes in three flavors, corresponding to Verilog, VHDL, and EDL. Each is
described in the following sections.

8.1 The Verilog-flavored modeling layer
The Verilog flavor of the modeling layer consists of a synthesizable subset defined by IEEE P1364.1.
This subset of Verilog has also been augmented with the following:
— integer ranges
— structures
— non-determinism
— built-in functionsr ose() ,fel | (), next (),andprev()
as defined in the following subsections.

8.1.1 Integer ranges

The Verilog flavor of the modeling layer extends the Verilog data types with a finite integer type, shown in
Box 75, where the range of values which the variable can take onisindicated at the declaration.

Extended_Verilog_Type_Declaration ::=

| nteger Integer_Range list_of variable identifiers;
Integer_Range ::=

egconstant_expressi on . constant_expression)

Box 75—integer range declaration

The nonterminals list_of variable _identifiers and constant_expression are defined in the syntax for IEEE 1364-
2001 Verilog.

Example
integer (1:5) a, b[1:20];

This declares an integer variable a, which can take on values between 1 and 5, inclusive, and an integer array b,
each of whose twenty entries can take on values between 1 and 5, inclusive.

8.1.2 Structures

The Verilog flavor of the modeling layer also extends the Verilog data types to allow declaration of C-like struc-
tures, as shown in Box 76.

Version 1.0 Property Specification Language Reference Manual 85

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

Modeling layer

Extended_Verilog_Type Declaration ::=

struct { Declaration_List } list_of_variable identifiers ;
Declaration_List ::=

HDL_Variable or_Net Declaration { HDL_Variable or_Net_Declaration }
HDL_Variable or_Net_Declaration ::=

net_declaration
| reg_declaration
| integer_declaration

Box 76—Structure declaration

The nonterminals list_of variable identifiers, net_declaration, reg_declaration, and integer_declaration are
defined in the syntax for IEEE 1364-2001 Verilog.

Example

struct {
wire wl, wz;
reg r;
integer(0..7) i;
} sl, s2;

which declares two structures, s1 and s2, each with four fields, wl, w2, r, and i . Structure fields are accessed
assl.wl,sl. w2, etc.

8.1.3 Non-determinism

The Union operator specifies two values, shown in Box 77, either of which can be the value of the resulting
expression.

Union_Expression ::= .
HDL_or_PSL_Expression UNION HDL _or_PSL_Expression

Box 77—Structure declaration

Example
a = b union c;

Thisis anon-deterministic assignment of either b or ¢ to variable or signal a.

86 Property Specification Language Reference Manual Version 1.0

Modeling layer

8.1.4 Built-in functions rose(), fell(), next(), prev()

The Verilog-flavored modeling layer adds the built-in functions r ose(), fel I (), prev(), and next (),
shown in Box 78.

Built_In_Function_Cal ::=
rose (Boolean)
|fell (Boolean)
|prev (HDL_or_PSL_Expression [, Number])
|next (Boolean)

Box 78—Built-in functions

8.1.4.1rose()

The built-in functionr ose() issimilar to posedge in Verilog. It takes a Boolean signal as argument and pro-
duces a Boolean that is true if the argument's value is 1 at the current cycle and O at the previous cycle, with
respect to the clock of its context, otherwiseit isfalse.

The clock context may be provided by the PSL property in which the function call is nested, or by a relevant
default clock declaration. If the context does not specify a clock, the relevant clock is that corresponding to the
granularity of time as seen by the verification tool.

The function r ose() can be expressed in terms of the built-in function prev() as follows: r ose(b) is
equivalent to the expressonb && ! prev(b), whereb isaBoolean signal. The functionr ose(b) can be
used just like any other Boolean.

For four-valued logic, the value of r ose() isextended in the same way that Verilog extends posedge.

Example

In the timing diagram below, the function call r ose(a) istrue at times2 and 5 and at no other time, if it has no
clock context. In the context of clock cl k, the function call r ose(a) istrueat thetick of cl k at time 3 and at
no other tick point of cl k.

tinme 01234567

8.1.4.2 fell()

The built-in functionf el | () issimilar to negedge in Verilog. It takes a Boolean signal as argument and pro-
duces a Boolean that is true if the argument's value is 0 at the current cycle and 1 at the previous cycle, with
respect the clock of its context, otherwiseiit isfalse.

The clock context may be provided by the PSL property in which the function call is nested, or by a relevant
default clock declaration. If the context does not specify a clock, the relevant clock is that corresponding to the
granularity of time as seen by the verification tool.

The function f el | () can be expressed in terms of the built-in function prev() asfollows. fell (b) is

equivaent totheexpression! b & prev(b),wherebisaBoolean signal. Thefunctionf el | (b) canbeused
just like any other Boolean.

Version 1.0 Property Specification Language Reference Manual 87

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Modeling layer

For four-valued logic, thevalue of f el | () isextended in the same way that Verilog extends negedge.

Example

In the timing diagram below, thefunctioncall f el | (a) istrueat times4 and 6 and at no other timeiif it does not
have a clock context. In the context of clock cl k, thefunctioncall f el | (a) istrueat thetick of cl k at time 7
and at no other tick point of cl k.

tinme 01234567

8.1.4.3 prev()

The built-in function pr ev() takes an expression of arbitrary type as argument and returns a previous value of
that expression. With a single argument, the built-in function pr ev() gives the value of the expression in the
previous cycle, with respect to the clock of its context. If a second argument is specified and has the value i, the
built-in function pr ev() givesthe value of the expression in the ith previous cycle, with respect to the clock of
its context.

The clock context may be provided by the PSL property in which the function call is nested, or by a relevant
default clock declaration. If the context does not specify a clock, the relevant clock is that corresponding to the
granularity of time as seen by the verification tool.

Note-Thefirst argument of pr ev() isnot necessarily a Boolean expression. For example, pr ev(dat a(0. . 31)) returns
the previous value of the entire bit vector.

Restrictions

If acall toprev() includesaNumber, it must be a positive Number that is statically evaluatable.

Example

In the timing diagram below, the function call pr ev(a) returnsthe value 1 at times 3, 4, and 6, and the value 0
at other times, if it does not have a clock context. In the context of clock cl k, the call prev(a) returns the
value 1 at times 5 and 7, and the value O at other tick points. In the context of clock cl k, the call prev(a, 2)

returnsthe value 1 at time 7, and O at other tick points.

tinme 01234567

8.1.4.4 next()

The built-in function next () givesthe value of asigna of arbitrary type at the next cycle, with respect to the
finest granularity of time as seen by the verification tool. In contrast to the built-in functionsr ose() ,fel | (),
and pr ev() , thefunction next () isnot affected by the clock of its context.

Restrictions

The argument of next () shall be the name of asignal; an expression other than a simple name is not allowed.
A cal to next () can only be used on the right-hand-side of an assignment to a memory element (register or

88 Property Specification Language Reference Manual Version 1.0

Modeling layer

latch). It cannot be used on the right-hand-side of an assignment to a combinational signal, nor can it be used
directly in aproperty.

Example
In the timing diagram below, the function call next (a) returnsthevalue 1 at times 1, 2, and 4.

tinme 01234567

8.2 Other flavors

8.2.1 The VHDL-flavored modeling layer

The VHDL-flavored modeling layer remains undefined at this time. In the future, it can be defined as a synthe-
sizable subset of VHDL, augmented with the same features with which the Verilog flavor is augmented. The
additional features shall take on a VHDL-like syntax in the VHDL-flavored modeling layer and support VHDL -
style comments.

8.2.2 The EDL-flavored modeling layer

The EDL-flavored modeling layer is defined separately; see [B2].

Version 1.0 Property Specification Language Reference Manual 89

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Modeling layer

90

Property Specification Language Reference Manual

Version 1.0

Appendix A

(normative)

Syntax rule summary

The appendix summarizes the syntax .

A.1l Meta-syntax

The formal syntax described in this standard uses the following extended Backus-Naur Form (BNF).

a)

b)

d)

e

f)

9

Theinitia character of each word in a nonterminal is capitalized. For example:
PSL_Statement

A nonterminal can be either asingle word or multiple words separated by underscores. When amultiple-
word nonterminal containing underscores is referenced within the text (e.g., in a statement that describes
the semantics of the corresponding syntax), the underscores are replaced with spaces.

Boldface words are used to denote reserved keywords, operators, and punctuation marks as a required
part of the syntax. These words appear in alarger font for distinction. For example:

vunit (;

The: : = operator separates the two parts of a BNF syntax definition. The syntax category appearsto the
left of this operator and the syntax description appears to the right of the operator. For example, item d)
shows three options for a VUnitType.

A vertical bar separates aternative items (use one only) unless it appears in boldface, in which case it
stands for itself. For example:

VUnitType ::= vunit |[vprop | vmode

Square brackets enclose optional items unlessit appears in boldface, in which caseit stands for itself. For
example:

Sequence Declaration ::= sequence Name[(Formal_Parameter_List)] DEF_SYM Sequence;
indicates Formal_Parameter_List is an optional syntax item for Sequence_Declaration, whereas
| SERE [* [Range]]

indicates that (the outer) square brackets are part of the syntax for this SERE, while Range is optional.

Braces enclose a repeated item unless it appearsin boldface, in which caseit stands for itself. A repeated
item may appear zero or more times; the repetitions occur from left to right as with an equivalent left-
recursive rule. Thus, the following two rules are equival ent:

Formal_Parameter_List ::= Formal_Parameter { ; Formal_Parameter }
Formal_Parameter_List ::= Formal_Parameter | Formal_Parameter_List ; Formal_Parameter

A comment in a production is preceded by a colon (:) unless it appears in boldface, in which case it
stands for itself.

Version 1.0 Property Specification Language Reference Manual 91

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Syntax rule summary

h) If the name of any category startswith an italicized part, it is equival ent to the category name without the
italicized part. The italicized part is intended to convey some semantic information. For example,
vunit_Nameis equivalent to Name.

i) Flavor macros, containing embedded underscores, are shown in uppercase. These reflect the various
HDLs which can be used within the PSL syntax and show the definition for each HDL. The general for-
mat istheterm Fl avor Macr o, then the actual macro name, followed by the = operator, and, finally,
the definition for each of the HDLs. For example;

Flavor Macro PATH_SYM = Verilog: ./ VHDL: : / EDL: /

shows the path symbol macro. See 4.3.2 for further details about flavor macros.

The main text uses italicized type when a term is being defined, and nonospace font for examples and refer-
encesto constants such as 0, 1, or x values.

A.2 HDL Dependencies

PSL depends upon the syntax and semantics of an underlying hardware description language. In particular, PSL
syntax includes productions that refer to nonterminalsin Verilog, VHDL, or EDL. PSL syntax also includes Fla-
vor Macros which cause each flavor of PSL to match that of the underlying HDL for that flavor.

For Verilog, the PSL syntax refersto the following nonterminalsin the IEEE 1364-2001 Verilog syntax:

— module_or_generate item_declaration
— module or_generate item

— list_of_variable identifiers

— identifier

— expression

— constant_expression

For VHDL, the PSL syntax refersto the following nonterminalsin the IEEE 1076-1993 VHDL syntax:

— declaration

— concurrent_statement
— design_unit

— identifer

— expression

For EDL, the PSL syntax refersto the following nonterminalsin the EDL syntax:

— module_item_declaration
— module_item

— module_declaration

— identifer

— expression

A.2.1 Verilog Extensions
For the Verilog flavor, PSL extends the forms of declaration that can be used in the modeling layer by defining

two additional forms of type declaration. PSL also adds an additional form of expression for both Verilog and
VHDL flavors.

92 Property Specification Language Reference Manual Version 1.0

Extended Verilog_Declaration ::=
Verilog_module or_generate item_declaration
| Extended Verilog_Type Declaration

Extended_Verilog_Type Declaration ::=
integer Integer_Rangelist_of_variable identifiers;
| struct { Declaration_List } list_of variable identifiers;

Integer_Range ::=
(constant_expression : constant_expression)

Declaration List ::=
HDL_Variable or_Net Declaration{ HDL_Variable or_Net Declaration }

HDL_Variable or Net Declaration ::=
net_declaration
| reg_declaration
| integer_declaration

Extended_Verilog_Expression ::=
Verilog_expression
| Verilog_Union_Expression

Extended_VHDL_Expression ::=
VHDL_expression
| VHDL_Union_Expression

Union_Expression ::=
HDL_or_PSL_Expression Union HDL_or_PSL_Expression

A.2.2 Flavor macros

Flavor Macro PATH_SYM =

Verilog: ./ VHDL: : /EDL: /
Flavor Macro HDL_ID =

Verilog: Verilog_ldentifier / VHDL: VHDL_Identifier / EDL: EDL_ldentifier
Flavor Macro DEF_SYM =

Verilog: =/VHDL: iS/EDL: :=
Flavor Macro RANGE_SYM =

Verilog: : / VHDL: tO/EDL: ..
Flavor Macro AND_OP =

Verilog: & & /VHDL: and / EDL: &
Flavor Macro OR_OP =

Verilog: ||/ VHDL: or / EDL: |
Flavor Macro NOT_OP =

Verilog: ! / VHDL: not / EDL: !
Flavor Macro MIN_VAL =

Verilog: 0/ VHDL: O/ EDL: null
Flavor Macro MAX_VAL =

Version 1.0 Property Specification Language Reference Manual

Syntax rule summary

93

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Syntax rule summary

Verilog: inf / VHDL: inf / EDL: null
Flavor Macro HDL_EXPR =

Verilog: Extended_Verilog_Expression/ VHDL: Extended VHDL_Expression

/ EDL: EDL_Expression
Flavor MacroHDL_UNIT =

Verilog: Verilog_module_declaration / VHDL: VHDL_design_unit/ EDL: EDL_module_declaration

Flavor Macro HDL_DECL =
Verilog: Extended_Verilog_Declaration/ VHDL: VHDL _declaration
/ EDL: EDL_module item_declaration

Flavor Macro HDL_STMT =

Verilog: Verilog_module_or_generate_item / VHDL: VHDL_concurrent_statement

/ EDL: EDL_module_item
Flavor Macro LEFT_SYM =

Verilog: [/VHDL: (/EDL: (
Flavor Macro RIGHT_SYM =

Verilog:] /VHDL:) /EDL:)

A.3 Syntax productions

Therest of this section defines the PSL syntax.

A.3.1 Verification units

PSL_Specification ::=
{ Veification Item}
Verification_ltem ::=
HDL_UNIT | Verification_Unit
Verification_Unit ::=
VUnitType Name [(Hierarchical_HDL_Name)] {
{ Inherit_Spec}
{ VUnit_ltem}
}
VUnitType ::=
vunit | vprop | vmode
Name ::=
HDL_ID
Hierarchica HDL_Name ::=
module_Name{ PATH_SYM instance_ Name}
Inherit_Spec ::=
inherit vunit_ Name{ , vunit. Name} ;
VUnit_Item ::=
HDL_Decl_or_Stmt
| PSL_Declaration
| Verification_Directive
HDL_Decl_or_Stmt ::=
HDL_DECL |HDL_STMT

A.3.2 PSL declarations

PSL_Declaration ::=
Property_Declaration

94 Property Specification Language Reference Manual

(seeA.3.2)
(see A.3.3)

Version 1.0

| Sequence Declaration
| Endpoint_Declaration
| Clock_Declaration

Property Declaration ::=

property Name [(Formal_Parameter_List)] DEF_SYM Property ;
Formal _Parameter List ::=

Formal_Parameter { ; Formal _Parameter }
Formal_Parameter ::=

ParamKind Name { , Name}
ParamKind ::=

const | boolean | property | sequence
Sequence_Declaration ::=

sequence Name [(Formal_Parameter_List)] DEF_SYM Sequence ;
Endpoint_Declaration ::=

endpoint Name[(Formal_Parameter_List)] DEF_SYM Sequence ;
Clock_Declaration ::=

default clock DEF_SYM Boolean ;
Actual_Parameter List ::=

Actual_Parameter { , Actual _Parameter }

Actual_Parameter ::=
Number | Boolean | Property | Sequence

A.3.3 PSL statements

Verification_Directive ::=
Assert_Statement

| Assume_Statement

| Assume_Guarantee Statement

| Restrict_Statement

| Restrict_ Guarantee Statement

| Cover_Statement

| Fairness_Statement
Assert_Statement =

assert Property ;
Assume_Statement ::=

assume Property ;
Assume_Guarantee_Statement .=

assume_guar antee Property ;
Restrict_Statement ::=

restrict Sequence ;
Restrict_Guarantee_Statement ::=

restrict_guarantee Sequence;
Cover_Statement .=

cover Sequence;
Fairness Statement ::=

fairnessBoolean ;
| strong fairnessBoolean , Boolean ;

Version 1.0 Property Specification Language Reference Manual

Syntax rule summary

(see A.3.5)
(see A.3.5)

(see A.3.7)

(see A.3.7) (see A.3.7) (see A.3.4) (see A.3.5)

(seeA.3.4)
(see A.3.4)
(seeA.3.4)
(seeA.3.5)
(see A.3.5)

(see A.3.5)

(see A3.7)

95

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Syntax rule summary

A.3.4 PSL properties

Property ::=

Replicator Property
| FL_Property
| OBE_Property

Replicator ::=

forall Name[IndexRange] in ValueSet :

IndexRange ::=

LEFT_SYM finite_ Range RIGHT_SYM

ValueSet =

{ valueRange{ , VaueRange} }
| boolean

ValueRange ::=

Value
| finite_Range

FL_Property ::=

Boolean
| (FL_Property)
| property_Name [(Actual_Parameter_List)]

| FL_Property @ clock Boolean[!]
| FL_Property abort Boolean

: Logical Operators:

| NOT_OP FL_Property
| FL_Property AND_OP FL_Property
| FL_Property OR_OP FL_Property

| FL_Property -> FL_Property
| FL_Property <-> FL_Property

: Primitive LTL Operators:

| X FL_Property

| X! FL_Property

| F FL_Property

| G FL_Property

| [FL_Property U FL_Property |
| [FL_Property W FL_Property]

: Simple Tempora Operators:

96

| always FL_Property

| never FL_Property

| next FL_Property

| next! FL_Property

| eventually! FL_Property

| FL_Property until! FL_Property

| FL_Property until FL_Property

| FL_Property until! _FL_Property
| FL_Property until _FL_Property

| FL_Property before! FL_Property

| FL_Property before FL_Property
| FL_Property before! FL_Property

Property Specification Language Reference Manual

(see A.3.7)
(see A.3.5)

(see A.3.7)

Version 1.0

| FL_Property before FL_Property
: Extended Next (Event) Operators :

| X [Number] (FL_Property)

| X! [Number] (FL_Property)

| next [Number | (FL_Property)

| next! [Number] (FL_Property)

|next_a | finite Range] (FL_Property)
|next_al [finite_ Range] (FL_Property)
|next_e| finite Range] (FL_Property)
|next_e! [finite_Range] (FL_Property)

| next_event! (Boolean) (FL_Property)

| next_event (Boolean) (FL_Property)

| next_event! (Boolean) [positive Number] (FL_Property)
| next_event (Boolean) [positive Number] (FL_Property)

|next_event_a! (Boolean) [finite_positive Range] (FL_Property)
|next_event_a (Boolean) [finite_positive_Range] (FL_Property)
|next_event_e! (Boolean) [finite_positive_Range] (FL_Property)
| next_event_e (Boolean) [finite_positive Range | (FL_Property)

: Operatorson SERES :
| Sequence (FL_Property)
| Sequence |-> Sequence[!]
| Sequence |=> Sequence[!]

| alway's Sequence
| never Sequence
| eventually! Sequence

|within! (' Sequence_or_Boolean , Boolean) Sequence

| within (Sequence or_Boolean , Boolean) Sequence
|within! (' Sequence or_Boolean , Boolean) Sequence
| within_ (Sequence _or_Boolean , Boolean) Sequence

| whilenot! (Boolean) Sequence

| whilenot (Boolean) Sequence
|whilenot! _ (Boolean) Sequence
| whilenot_ (Boolean) Sequence

Sequence_or_Boolean ::=
Sequence | Boolean

A.3.5 Sequences
Sequence ::=

{ SERE }
| sequence_Name[(Actual_Parameter_List)]

Version 1.0 Property Specification Language Reference Manual

Syntax rule summary

(seeA3.7)

(see A.3.5)

(see A.3.5)

97

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Syntax rule summary

A.3.6 Sugar extended regular expressions

SERE ::=
Boolean

| Sequence
| SERE @ clock_Boolean

: Composition Operators :
| SERE ; SERE

| Sequence . Sequence
| Sequence AndOrOp Sequence

: RegExp Quadlifiers:
| SERE[* [Count]]
[* [Count]]
| SERE[+]

I0+]

| Boolean [= Count]

| Boolean [->[positive_Count]]
AndOrOp ::=

&& |& ||

Count ::=
Number | Range
Range ::=
LowBound RANGE_SYM HighBound

LowBound ::=
Number | MIN_VAL

HighBound ::=
Number | MAX_VAL

A.3.7 Forms of expression

Value ::=
Boolean | Number
Boolean ::=
boolean HDL _or_PSL_Expression
HDL_or_PSL_Expression ::=
HDL_Expression
| endpoint_Name [(Actual_Parameter_List)]
| Built_In_Function_Call
| HDL_or_PSL_Expression union HDL_or_PSL_Expression
HDL_Expression ::=
HDL_EXPR
Built_In_Function_Call ::=
rose (Boolean)
|fell (Boolean)
|prev (HDL_or_PSL_Expression [, Number])
| next (Boolean)
Number ::=
integer_ HDL_Expression

98 Property Specification Language Reference Manual

(see A.3.7)

Version 1.0

A.3.8 Optional branching extension

OBE_Property ::=
Boolean
| (OBE_Property)

| property_Name [(Actual_Parameter_List)]

: Logical Operators:
|! OBE_Property

| OBE_Property & OBE_Property

| OBE_Property | OBE_Property

| OBE_Property -> OBE_Property

| OBE_Property <-> OBE_Property

: Universal Operators :
| AX OBE_Property
| AG OBE_Property
| AF OBE_Property

| A [OBE_Property U OBE_Property]

: Existential Operators:
| EX OBE_Property
| EG OBE_Property
| EF OBE_Property

| E [OBE_Property U OBE_Property |

Version 1.0

Property Specification Language Reference Manual

Syntax rule summary

99

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Syntax rule summary

100

Property Specification Language Reference Manual

Version 1.0

Appendix B

(normative)

Formal syntax and semantics of the temporal layer

This appendix formally describes the syntax and semantics of the temporal layer.

B.1 Syntax

Boolean expression syntax varies according to the Sugar Havor used. The formal syn-
tax definition uses the complete set | =, A1, and semantics are given here only to these
two operators. Semantics of any other boolean expression follow directly from these.

Definition 1 (Boolean expression).

Every atomic proposition is a boolean expression.

It b, . and by are boolean crpressions, then so ave the following:
e (0]
& b

L] |rjI1 -"l"-, F}E

Definition 2 (Sugar Extended Regular Expressions (SEREs)).

Every boolean expression is a SERE.
Ifr.ryoand ro are SEREs. and ek iés o boolean crpression, then the following are
SERFESs:
. {r]
i T
rocoTa
irit [rad
(71} dede {1
."[:i:]
ridelk

& & & & & &

Definition 3 (Formulas of the Sugar Foundation Language (FL)).

Fvery boolean expression is a Sugar FL formula.

If b oand ol are hoolean expressions, . fi, and fo are Sugar FL formulas and r,
ri, and ro are SEREs, then the following are Sugar FL formulas:

(f)

- f
fin,
X f
[fi U7 fa
s

fa

* & & & & @

Version 1.0 Property Specification Language Reference Manual 101

10

15

20

25

30

35

40

45

50

55

Formal syntax and semantics of the temporal layer

. o {r1}s {ra)!
o {rifbe {rzf
o [aborth
5 o flielk
s flielf!
10 In Section B.3. we show additional operators which provide syutactic sugaring to
those described above.
Definition 4 {Formulas of the Optional Branching Extension (OBE)).
15 Every boolean expression is an OBE formula.
If f. fi. and fo ave OBE formulas, then so are the following:
s (f]
e f
20 o fifa
o X[
o Elfi U fof
s« EGf
25 Additional OBE operators are derived from these as follows 1:
v fa=-l-fhN—fa)
fi— fa=-f1Vv fa
30 fie= fa=1f — f2)n(fa— 1)
EFf=ETU [
AXf=-FEX~f
Alfy U fo] = ~(E[~fa U (=fi A ~fa)] V EG—f2)
35 AGF = =E[TU —f]
AFf=A[T U f]
Definition 5 {Sugar Formulas).
40
Every Sugar FL formula is a Sugar formula.
Fvery OBE formula is a Sugar formula.
45

B.2 Semantics

The semantics of a Sugar formula are defined with respect to a model M. A model
15 a quintuple (5,55, B, FP. L), where S 1= a finite =set of states, 55 © 5 15 a set of

50 mitial states, B = 5 = 5 15 the transition relation. P 1s a non-empty set of atomie
propositions, and L is the valuation, a function L : § — 27 mapping each state
with a set of atomic propositions valid in that state.

55 'Where T = pv —p for some p © P.

102 Property Specification Language Reference Manual Version 1.0

Formal syntax and semantics of the temporal layer

A path 7 1= a Hinite (or infinite) sequence of states ™ = (mo.m.ma. - T lor
T = (mg.m.ma, 1. A computation path m of o model M 18 a finite (or infinite) path
m such that for every ¢ < n, f{m. mipq) and for no s, B{7,.s) (or such that for every
i Rimi.mipq)). Given a finite (or infinite) path 7. we define L, an extension of the
valuation function L from states to paths as follows: L{7) = Limg)L{7) ... Li7,) (or
Lim) = L{mg)L{my) ...). Thus we have a mapping from states in M to letters of 27,
and from finite (or infinite) sequences of states in M to finite (or infinite) words over
G P

We will denote a letter from 27 by £, and a finite or infinite word from 27 by w.
We denote the length of word w as [w|. A finite word w = €gf1f2 -+ {5, has length n+ 1,
while an infinite word has length ~c. We denote by w® the suffix of w starting at #;.
That is, w? = £ - 0, lor w' = G0 -~). We denote by w®? the finite sequence
of letters starting from #; and ending in ;. That is, w* = (60 .. 0.

For readability, we first define the semantics of uneclocked Sugar formmlas (and
SEREs) and only then the semantics of clocked Sugar formmlas (and clocked SEREs).
In fact, the semantics of unclocked Sugar formulas (and unclocked SEREs) can be
obtained from the semantics of clocked Sugar formmlas (and clocked SERE=s) by re-
placing the clock context with T2

B.2.1 Semantics of Boolean expressions

We define the semantics of boolean expressions over letters from the alphabet 27,
thus a letter is a subset of the set of atomic propositions P. The notation ¢ |= b means
that boolean expression b holds under the truth assigmment represented by . The
semantics of boolean expressions are defined as follows, where p denotes an atomic
proposition and b, by, and by denote boolean expressions.

(pempet
{ (b)) == f|=h
i |= =l = f |:;:|r,1

i |= by by == F |= by and f |=h2

B.2.2 Unclocked semantics

B.2.2.1 Semantics of unclocked SEREs

The semantics of unelocked SEREs are defined over finite words from the alphabet 27
We will denote a finite word over 27 by . The coneatenation of vy and ws 15 denoted
by wqtwrs. The empty word is denoted by e, so that we = ew = w. The notation w |=r,
where r 15 a SERE., means that w15 in the language of r. The semantics of SEREs
are defined as follows, where § denotes a boolean expression. . rq. and rq denote
unclocked SEREs, and [7..k] denotes the set of integers {j @ i=j ~ j<k}.

* Where T = pv —p for some p = P.

Version 1.0 Property Specification Language Reference Manual 103

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

50

55

Formal syntax and semantics of the temporal layer

w =h == |w| =1and iy =0

wErl = wkEr

w = rpiry == there exist wy and wy such that w = wywg, wy =7y, and wy =1y
= ryirg == there exist wy, wo. and ¢ such that w = wylwg, wyf =y, and
i |: g

w = Hr = w Erorw g

w = &b {ra} == w =y and w =

e = r|#| == either a = € or there exist wq.wa, ..., wy =uch that w = wqwa ..oy

and for every ¢ € [1..j], wy v

B.2.2.2 Semantics of unclocked Sugar FL formulas

The semantics of Sugar FL formnlas are defined over finite or infinite words from the
alphabet 2¥. The notation w = f means that formula f holds along the (finite or
infinite} word w. The notation M |= f means that L(7) = f for every computation
path = in M such that mp € S50 The semantics of an FL formula are defined as
follows® where b denotes a hoolean expression. r. . and o denote SERE=. f. fi. and
fa denote FL formulas, and [i..k) denotes the set of integers |j : i<j ~n j<k}.

! |= b= 1 |= b

._,:,'I:I:Ifl —_ |_f

wh—f = wlt]

whkEfirfie=wlEfandwl= fo

whEX fe= |w|>1and 't = f

|= [fi U fa] == there exists k = [0..|w|) such that w* = fa. and for every
- [0.k). 9 - i

Ve f) == for every j € [0.|w|) such that w7 = v, wd |= f

{1} b= {ra}! == for every j £ [0..|w|) such that W™ |= ry there exists
L € [j.. |w|| such that w!™* |= g

wk{r = {ra) == for every j € [0..|w[) such that w™ =y either there exists
k€ [j..Jw|) such that w?F = ra or for every k < [J..|w|) there exists a finite word
W such that w/ ' = rg

w = fabort b == either w |= f or w = b or there exists § < [1..[|w|) and word &'
such that w' |= b and w1 = f

T)
IT\I

‘n—"ﬂ'

B.2.3 Clocked semantics

In the above we disregarded the clock operator (@) in the defimtion of Sugar formmlas
(and SEREs). The semantics of clocked SEREs and clocked Sugar formulas are
defined formally below?

* The semantics presented here for the LTL operators are the standard ones.
1 An equivalent definition in terms of rewrite rules is given in Appendix B.5.

104

Property Specification Language Reference Manual Version 1.0

Formal syntax and semantics of the temporal layer

B.2.3.1 Semantics of clocked SEREs

Clocked SEREs are defined over finite words from the alphabet 27 and a boolean
expression that serves as the clock context. The notation w = r, where v is o SERE
and ¢ 1= a boolean expression. means that w 1= in the language of v in context of clock
c. The semantics of clocked SEREs are defined as follows, where b o, and ¢ denote
boolean expressions, r, ri, and ra denote clocked SEREs, and [i..k) denotes the set of
integers 14 1 i<=j M j<k}.

w b == |w| = 1. for every i € [0.]w| — 1), & = —cand £, 1 = enb

wE{rl = wEr

e 5 vy rg == there exists wy and wy such that w = wywg, wy 5 ry, and wg = g
il |é riiro == there exists wq. wo. and ¢ such that w = wy e, unf |£ ri. and
g Ié a

w = e e} == w o orw g

P Ié Irq } dzbe {1} — w |£ 1 and w |£)

w = r[#] == either w = € or there exists wy. wa, .. . wj such that w = wywa . oLow
and for every i € [1.j]. w; For

P! Ié rivey == there exists i £ [0..|w|) such that i |:T [—e [#]:eq) and wi Ig .

B.2.3.2 Semantics of clocked Sugar FL formulas

We now turn to the semantics of clocked Sngar FL formuilas. The notation w = f
where [i= a formnla and ¢ is a boolean expression means that formmla f holds along,
the (Hinite or infinite) word w in the context of clock e. The notation M = f means that
L(rrj |; [tor every computation path 7 in A such that mp £ S5 (where T = pv —p tor
some p £ P). The semantics of a {clocked) Sugar FL formula are defined as follows®,
where b, ¢, and ¢ denote boolean expressions, . rq. and ra denote SEREs, f, fi. and
f2 denote (clocked) FL formulas, [i..k) denotes the set of integers {7 @ i< § A <k},
and (i..k) denotes the set of integers {§ @ <o) A <k}

L |£ b= fp I: h
WwE(fleswES

wE-fe=wltf
Lt |£ If]_ i Iflg E—— |=|" .fl ::Lllfl o |£ IIIF2
w = X! f == there exists i £ [1..[w]) such that wli Ii [—e[+]; e} and o Ié f

[

wE[fi U fo] == there exists k & [0..w]) such that «® [E e, &* [£ fo, and for
every j < [0..k) for which w/ |; e w! Ié h

w e (f) == for every i £ [(0..|w|) such that w™ = ¢ there exists j £ [i..|w])
such that w®d [[—ef+]; e} and wi [f

% When the context is T, the semantics reduce to the unclocked semantics as previously
presented. Thus, the semantics of the LTL operators in context T reduce to the standard
ones.

Version 1.0 Property Specification Language Reference Manual 105

10

15

20

25

30

35

40

45

55

10

15

20

25

30

35

50

55

Formal syntax and semantics of the temporal layer

w) = {rg ! == for every i € [0..|w|) such that w™ |5 there exists j €
[i..|w|) snch that w™" = ry

wFEr) = g} == for every i £ [0..|w|) such that W™ = ry, either there exists
j e [i]w|) such that w™ Erg or for every j € [i.|w|) there exists a finite word
W such that wiw' [

W |£ f abort b == either w |£ forw |é bor there exists ¢ € [1..|w|) and word @'
such that w® = ¢ A b and w1 [f

w = flaey! == there exists i = [0..|w|) such that ™ |:T [—eq[#]ier } and wi [f

B.2.4 Semantics of OBE formulas

The semantics of OBE formalas are defined over states in the model, rather than
finite or infinite words. The notation M. s |= f means that formula [holds in state
s of model M. The notation M = f is equivalent to vs € Sp : M.s = f. In other
words, [is valid for every initial state of M. The semanties of an OBE formula are
defined as follows" . where b denotes a boolean expression and . fi. and fo denote

OBE formulas.

;‘I.,lr_."'i |= |r; —_ s |= |r_:|

MskE(f) = M.sk f

M,skE~f e Msf

M. s |= ..Fl Iflg = . = |= fl and M. s |= fz

M.s |= EX [== there exists a computation path = of M such that |7| = 1,
o= s, and M m = f

M.s = E[fi U fa] == there exists a compntation path = of M such that 75 = s
and there exists k< such that M. = fa and for every j such that j < k:
M, T |= .Jfll

M.s = FG [== there exists a computation path = of M such that 75 = = and
for every j such that 0 < j < |r|: M.m; = f

il

B.3 Syntactic sugaring

The remaimder of the temporal layer 1s syntactic sugar. In other words, 1t does not
acld expressive power, and every piece of syntactic sugar can be defined in terms of
the basic Sugar FL operators presented above. The syntactic sugar is defined below™.

Note: the defimitions given here do not necessarily represent the most efhicient
implemnentation. In some cazes, there is an equivalent syntactic sugaring, or a direct
implementation. that s more efficient.

f The semantics are those of standard CTL.
" Where T =pv —p for some p = F and F = p A —p for some p = P.

106 Property Specification Language Reference Manual Version 1.0

Formal syntax and semantics of the temporal layer

B.3.1 Additional SERE operators

It i, j. k. and | are mbteger constants such that ¢+ = 0, 3 = 4 F = 1 and [= E.
them additional SERE operators can he viewed as abbreviations of the basic SERE
operators defined above, as follows, where b denotes a boolean expression. and »r

denotes o SERE.

treh & {rat = {{r} && {rai T+ | {{r Tl#]} &ke {ra}

r[+] = e[+
F[+] ifi=0
r[xi] = a .'I::E:r-.::.a

FT e otherwise
rlxi..]= {rfea] oo [{ e[
."[:a:.'..} = {r[+é]}; {r[+]}

Lr[FO[[o]}
r :i:..] — ."[:i:[]..]

[+ =T[+]
(4] = T[3)

] =Tl

e] = Tli..j]

[#..] = T[#..]

b= i] = {=b[+]; b} [«i]: —b[+]
bl=i..j| = {b[=#]}|...|{b[= 7]}
bl= i..] = b[=i]; [+]

bl= ..i| = {b]=0]}]...|{b]=i]}
b= ..] =b=10.]

bl—| = —b|+]: b

h[—- J'-'.'] = {—rh[:i:]:h}[:: JL']

bl— k.1 = {b[— E|}|...|{b[—]}
bl— k.| = {b|— E|}{b]— k] [#]; b}
h[—- ﬁ] = -HJ[—- I]HHD[—- .I.H
bl— .| = b[— 1..]

B.3.2 Additional operators

It i. 3.k and [are mmtegers such that ¢ = 0, § = i, & = 0 and | = k then additional
operators can he viewed as abbreviations of the]]-:L‘."\-K Ul')':.lcltulh defined above, as
follows, where b denotes a boolean expression, r. 1. and ra denote SEREs, and f. f1,
and fa denote FL formulas.

AV fa=—(—fLA—fa)
fl— fa=-fiv fa
fi—= fa=1fi— f2) " fa— f1)

Version 1.0 Property Specification Language Reference Manual 107

10

15

20

25

30

35

40

45

55

10

15

20

25

30

35

Formal syntax and semantics of the temporal layer

Gf =-F-f

Xf=-X!-f

Fr=[rU f

i W fa] = [U fa] v G 1

always f =G f

never f =G —f

nert! =X f

next f=X f

cventually! f = Ff

fi releases fo = [fi V' fa]

frantil! fa =|f1 U fa]
frantil fo=[f1 W [y
foantidl_ fa =1 U f1 7 fa
fwntil_ fo=[fi W f1 2~ fql

frbeforel fa=[=fa U fi 1 —fa
fi before fo=[=fa W fi n =[]
.fl e Ifl::l."! !_ Ifg = [—'fz U fl]
1 before_ fa = [_‘.Jr? W fl]

i times

—
XU f :_.‘ﬁ.’_! XXV f

i timneas
X[i|f=XX.X[f
nertld] f=X![i] f
next(i| f = X[i] f

nextalli. j|f = (XUl £) A ... A (XU F)
neatali j|f = (X[|f) /.. A (XL
neat_elfi.j|f = (XU f) V... v (XI[]f)
newt_eli.j|f = (X[i|f) v ... (X[]f)

nert_event! (b)(f) = [-b U b f]

next_event(b)()= [-b W b f]

I k-1 times

o

eaxt_event! (B)[k|(f) = next_event!(h) Eﬁf! neat_cvent! () (X! nert_ r‘ruﬂ[hﬁ,f}l]...j

E—1 times

e,

ext_event(B[k (f) = next_event (b) T‘i next_cvent(bl. (XNnext_eve .l.la‘{hi{fj:l...]
ext_event_al (b)) f) = nextevent! (B[R () A o0 nexi_event B F)
eat_event_a(bj[k.A|(f) = next_event(b)[k|(F) A . next_event (b) [T f)
ext_event_el (DR 1|(f) = nexi_cvent (D)|E|(f1 v v next_event! (B)|1](f)
ext_event_e(b) [k 1|(f) = next_event(b)[E[(f) v . W next_event (B[f)

&

[

50 7

[V

55

108 Property Specification Language Reference Manual Version 1.0

Formal syntax and semantics of the temporal layer

(i} {rall = {r1} i {Tira}! '
irip B qrap =t (Tirg)
always{r} = {T[#|} — {r}
never{r} = {T[#];r} — |F} 5
eventually! {r} = {T} — {T[+];r}!
within!(ry. b)ra} = {ry | = |rg & b= 0]; b}!
within(ri.b){ra} = r] = g && b[= 0]: 5] 10
within!_(ry,b){ra} = {r } = {ra&& {b|=0];b} 1!
within_(r{, bj{rat = {r1} = {ra &ie {b[=0]; b}
el enot!(bidr b = within!(T. b))} 15
whilenat (b){r} = within(T.b){r!
whilenat! _(b)] r} = within!_(T, b){r!
whilenot_(b){rl = within_(T,b){r}
flae = ~(~fac))
20
B.3.3 forall
It fis a Sugar formuala, vo.m, -« -0y are constants, and §. k.1 and m are integers.
then the following are Sugar formmlas: 25
forall ¢ in Jvg.vp. - Lenl o f
forall @ in j bk f
Forall ¢ in boolean © f 30
forall ill.m) in {vo.vr, - ont o f
Fforall i(l.m) in j.k: f
forall i(l.m) in boolean - f
Forall does not add expressive power. Rather, it can be viewed as additional syn- %
tactic sugar, as follows:
forall ¢ in {vg.m, - ont: f= A fli— u]
. W {0, e | 0
forall i in j.k: f = A Fli +— ul
=
1
forall i in boolean : f = /\ fli— u] 45
TS|
forall ¢(l.m)in {vg,vq, - vn}: f = /‘\ /\ Flalomm) — (e,)]
) o0, e | fiam & V0L U1 U |
k k 50
Fforall il in j.k: f= f\ /\ FlELm) — (o,)]
=1 m=]
1 1
Fforall i(l.m) in boolean : f = A /‘\ flEllm) — (wg. i)
ey =0 g =0 55

Version 1.0

Property Specification Language Reference Manual

109

Formal syntax and semantics of the temporal layer

where f|i «— wu] is the formula obtained from f by replacing every ocemrrence of
i by woand fli{lom) — (o iy,)| is the formumla obtained from f by replacing every
occurrence of index j (where I = § < m) in the vector ¢ by ;.
5
B.4 Typed-text representation of symbols
10 Table 1 shows the mapping of varions symbols nsed in this definition to the corre-
sponding typed-text Sngar representation.
Table 1. Typed-text svmbols in the Verilog, VHDL, and EDL flavars
15
Verilog|VHDL[EDL
| [-> [== | |=->
= | == | == | ==
20 . - - -
> | <> |<->»
! not !
ki and &
\ [or |
25 . : to ..
SR O
30

B.5 Rewriting rules for clocks

In Section B.2 we gave the semantics of clocked Sugar formmlas directly. There is an
equivalent definition in terms of unclocked Sugar fornmlas, as follows: Starting from

35 the ontermost clock, use the following rules to translate clocked SEREs into uneclocked
SERE=, and clocked Sugar formulas into nneloclked Sugar formulas. The rewrite roles
for SEREs are:

1. T=(h) | —e|#]ie Aob)

0 2Ty sra)=T%r) : T%ra)
3Ty crg) =T) T rg)
LoT(ry | ra) = T%(ry) | T%(rg)

45 B, Te(ry &&) = To(ry) &ede Te(ry)
6. Te(r[+]) = {T(r) [+
7. To(rey) = {—ey[+]; Lep: T (r)}]

50 The rewriting rules for Sugar formulas are:
L. Teb) = b
2T =f)==T°(f)

55 3T AN f) =T A) AT fa))

110 Property Specification Language Reference Manual Version 1.0

Formal syntax and semantics of the temporal layer

L Te(Xf) =X [=e U (en TE(f))]
5. TR U fa) = [le — T(A) U (e A T(f2))]]
6. T({r i f)) = 4T {[e U (e n TO(f)])

ToTo(r b e dl) = 4T) = 4T ())
BT b= {rmb =17) = {T%ra))
9. T f abort &) = T f) abort (e /0h)

10, Te(fiaey) = [meq U (e A TEN)

B.6 Status of the formal semantic definition

The formal semantics presented above contain three anomalies, described below. They
will he addressed in version 1.1. A preliminary version of the proposed version 1.1
semantics can be found at: http://www.eda.org/viv/does/truncated semantics.pdf.

1. The strength of the clock has a minimal efect, n that it distinguishes only
hetween paths with no ticks of the clock and paths with one or more ticks of the
clock. Thus, for mstance. {eventually! bhj@elk evaluates to true if there are no ticks
of cllk. but to false if there's just one tick. at which b doesn’'t hold. This issue will he
addressed by defining the semantics of nnelocked Sugar formulas over empty as well
as non-empty paths. This will eliminate the need for two clock operators of varying
strengths. From the user’s point of view, this will have minimal effect. since it is
a corner case resulting from a multi-clocked trace “ending too early”™ after a clock
domain switch, To minimize the tmpact of this change, tool bulders can use the
rewrite rules to unplement the clock operators, and then move to the new rewrite
riles in the next version.

2. As pointed ont by Armoni et al. in http:/ /www.cs.rice.edu) vardi/misc/ abortre-
seb.pdf, the complexity of the abort operator 1= problematical. This issue will be ad-
dressed by modifying the semantics of abort to what Armoni et al. term “reset seman-
tics”. Thus, in the semantics presented above the formuala ((eventually! false) abort B
must fail in all designs, while 1n version 1.1, this formula will pass if b i=s asserted.
From the user’s point of view, this will have minimal etfect, since 1t s a corner case
resilting from aborting a non-satisfiable formula. From a tool builder’s point of view.
this will involve removing one step in the algorithm that builds the antomaton for a
given formula (the step that removes states from which there 1s no accepting run).

3. An izsue related to #2 above involves what happens to weak suflix implications
in which the right-hand side contains a SERE whose language 1s empty. According to
the semantics presented above, such a formula will fail in all designs. While n the case
of SEREs there is no complexity issue, the sermantics for version 1.1 may be modified
in =uch a way that such a formula can pass in some cirewmstances. This will align the
treatinent of formmlas containing an unsatisfiable sub-formmla with the treatment of
SEREs whose language 1= empty. For instance, according to the semanties presentecd
above, the formula {arbe o} 1= {d: e|#|; false} fails in all designs. since there 1= no word
in the langnage of {d:el+|; false}. In version 1.1, the semantics may be modified to
allow this formuila to pass in the case that the trace ends with an e, or if there are

Version 1.0 Property Specification Language Reference Manual 111

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

50

55

Formal syntax and semantics of the temporal layer

an infinite number of ¢'s. From the nser’s point of view. this will have minimal effect
since 1t 1s a corner case resulting from coding a SERE whose language 12 empty. From
a tool builder’s point of view. this will have minimal effect since the change involves
TEIoVInG one step 1m the algorithm that bailds the antomaton for the a given SERE
(the step that removes states from which there 1s no accepting run).

112 Property Specification Language Reference Manual Version 1.0

Appendix C

(informative)

Bibliography

[B1] The IEEE Standard Dictionary of Electrical and Electronics Terms, Sixth Edition.

[B2] EDL Informal Description, IBM, July 4, 2001.

Version 1.0

Property Specification Language Reference Manual

113

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

50

55

Bibliography

114

Property Specification Language Reference Manual

Version 1.0

A

abort 53
AF 64
AG 64
aways 46
and
length-matching 40
non-length-matching 39
assert 75
assertion 2, 9
assume 75
assume_guarantee 76
assumption 9
assumptions 2
AU 65
AX 63

B

before 53
behavior 9
Boolean 9
Boolean expression 2, 9, 13, 27
Boolean layer 13, 27
branching semantics 24
built-in function

fell 87

next 88

prev 88

rose 87
built-in functions 87

C

checker 9
clock 33, 44

rewriting rules 110
clock expression 15, 24, 28
clocked

property 24

Sugar FL formula 105
comments 19
completes 9
computation path 9
concatenation 34
consecutive repetition 35
constraint 9
count 9
cover 77
coverage 9
CTL 4
cycle 9

Version 1.0

| ndex

D

default clock declaration 28

describes 9

design 9

design behavior 9
directives 75

dynamic verification 10

E

EF 66

EG 66

endpoint 28, 42
declaration 42
instantiation 43

EU 67

evaluation 10

evaluation cycle 10

eventually! 47

EX 65

extension 10

F

fair 78
fairness 78
fairness constraints 78
False 10
family of operators 43
fell() 87
finite range 10
FL operators 15
FL properties 44
flavor 13, 19
EDL 14
Verilog 13
VHDL 14
flavor macro 21
forall 70
form
strong 24
weak 24
formal verification 10

Foundation Language 15

fusion 38

G
goto repetition 37

H

HDL expression 27

Property Specification Language Reference Manual

Index-115

holds 10, 23
holdstightly 10

iff 12
integer range 85

K
keywords 14

L

layers 13
length-matching and 40
linear semantics 24
liveness property 10, 24
logic type 10
logical

and 61

iff 60

implication 60

not 62

or 61
logical operators 15
logical value 10
LTL 4
LTL operators 62

M

metalogical value 10
model checking 10
modeling layer 13
Verilog 87
VHDL 89
multi-cycle behavior 2, 32, 44

N

named properties 72

named sequences 40

never 46

next 47

next() 88

next_a48

next_e 49

next_event 50
next_event_a 51
next_event_e 52
non-consecutive repetition 36
non-length-matching and 39
number 11

O
OBE 17, 63

Index-116

and 68
iff 68
implication 67
not 69
or 69
occurrence 11
occurs 11
operator
clock 33, 44
HDL 15
LTL 62
OBE 17
precedence 15
strong 24
temporal 2
weak 24
operators 15, 43

Optional Branching Extension 17, 63

or 39
overlap 38

P

path 11

positive count 11

positive number 11

positiverange 11

precedence 15, 82

prefix 11

prev() 88

properties 43, 63

property 2, 11, 16, 17, 31
clocked 24
declaration 73
instantiation 73
liveness 10, 24
safety 24
unclocked 24

R

range 11
repetition
consecutive 35
goto 37
non-consecutive 36
replicated properties 70
required 11
restrict 77
restrict_guarantee 77
restriction 11
rewriting rules 110
rose() 87

Property Specification Language Reference Manual

Version 1.0

S whilenot 57

safety property 11, 24 within 58
satellite 4
scoping 82
sequence 11, 16
declaration 40
instantiation 41
sequential expression 11
sequential expressions 2
SERE 11, 15, 32
simple subset 3
simulation 11
simulation checker 2
standard temporal logics 4
starts 11
strictly before 11
strong
form 24
operator 11
strong fairness 78
struct 86
structure 85
suffix implication 56
Sugar Extended Regular Expression 15, 32

T

temporal layer 13

temporal operators 2
terminating condition 12, 24
terminating property 12

tree of states 63

True 12

U

unclocked
property 24

union 86

until 54

V

verification 12

verification layer 13

verification unit 79
binding 80
groupings 82
inheritance 81
scoping rule 82

w

weak
form 24

operator 12

Version 1.0 Property Specification Language Reference Manual Index-117

Index-118 Property Specification Language Reference Manual Version 1.0

	1. Overview
	1.1 Scope
	1.2 Purpose
	1.2.1 Motivation
	1.2.2 Goals

	1.3 Usage
	1.3.1 Functional specification
	1.3.2 Functional verification

	1.4 Contents of this standard

	2. References
	3. Definitions
	3.1 Terminology
	3.2 Acronyms and abbreviations

	4. Organization
	4.1 Abstract structure
	4.1.1 Layers
	4.1.2 Flavors

	4.2 Lexical structure
	4.2.1 Keywords
	4.2.2 Operators
	4.2.3 Macros
	4.2.4 The %if construct
	4.2.5 Comments

	4.3 Syntax
	4.3.1 Conventions
	4.3.2 HDL dependencies

	4.4 Semantics
	4.4.1 Clocked vs. unclocked evaluation
	4.4.2 Safety vs. liveness properties
	4.4.3 Strong vs. weak operators
	4.4.4 Linear vs. branching logic
	4.4.5 Simple subset
	4.4.6 Finite-length versus infinite-length behavior

	5. Boolean layer
	5.1 HDL expressions
	5.2 PSL expressions
	5.3 Clock expressions
	5.4 Default clock declaration

	6. Temporal layer
	6.1 Sequential expressions
	6.1.1 Sugar Extended Regular Expressions (SEREs)
	6.1.2 Named sequences
	6.1.3 Named endpoints

	6.2 Properties
	6.2.1 FL properties
	6.2.2 Optional Branching Extension (OBE) properties
	6.2.3 Replicated properties
	6.2.4 Named properties

	7. Verification layer
	7.1 Verification directives
	7.1.1 assert
	7.1.2 assume
	7.1.3 assume_guarantee
	7.1.4 restrict
	7.1.5 restrict_guarantee
	7.1.6 cover
	7.1.7 fairness and strong fairness

	7.2 Verification units
	7.2.1 Verification unit binding
	7.2.2 Verification unit inheritance
	7.2.3 Verification unit contents
	7.2.4 Verification unit scoping rules

	8. Modeling layer
	8.1 The Verilog-flavored modeling layer
	8.1.1 Integer ranges
	8.1.2 Structures
	8.1.3 Non-determinism
	8.1.4 Built-in functions rose(), fell(), next(), prev()

	8.2 Other flavors
	8.2.1 The VHDL-flavored modeling layer
	8.2.2 The EDL-flavored modeling layer

	Syntax rule summary
	A.1 Meta-syntax
	A.2 HDL Dependencies
	A.3 Syntax productions

	Formal syntax and semantics of the temporal layer
	B.1 Syntax
	B.2 Semantics
	B.3 Syntactic sugaring
	B.4 Typed-text representation of symbols
	B.5 Rewriting rules for clocks
	B.6 Status of the formal semantic definition

	Bibliography

