
SystemC Tutorial

John Moondanos
Strategic CAD Labs, INTEL Corp.

&
GSRC Visiting Fellow, UC Berkeley

SystemC Introduction
Why not leverage experience of C/C++
developers for H/W & System Level
Design?
But C/C++ have no

notion of time
No event sequencing

Concurrency
But H/W is inherently concurrent

H/W Data Types
No ‘Z’ value for tri-state buses

SystemC is …
C++ Class Library use for

Cycle-Accurate model for Software Algorithm
Hardware Architecture
Interface of SoC (System-on-Chip)
System-level designs
Executable Specification

www.systemc.org

SystemC Environment

SystemC History
SystemC 1.0

Provide VHDL like capabilities
Simulation kernel
Fixed point arithmetic data types
Signals (communication channels)
Modules

Break down designs into smaller parts

SystemC History
SystemC 2.0

Complete library rewrite to upgrade into
true SLDL
Events as primitive behavior triggers
Channels, Interfaces and Ports
Much more powerful modeling for
Transaction Level

Future SystemC 3.0
Modeling of OSs
Support of embedded S/W models

Objectives of SystemC 2.0
Primary goal: Enable System-Level
Modeling

Systems include hardware and software
Challenge:

Wide range of design models of computation
Wide range of design abstraction levels
Wide range of design methodologies

SystemC 2.0 Objectives (cont)
SystemC 2.0

Introduces a small but very general purpose
modeling foundation => Core Language
Support for other models of computation,
methodologies, etc

They are built on top of the core language, hence are
separate from it

Even SystemC 1.0 Signals are built on top of this core in
SystemC 2.0
Other library models are provided:

FIFO, Timers, ...

Communication and
Synchronization

SystemC 1.0 Modules and Processes are still
useful in system design
But communication and synchronization
mechanisms in SystemC 1.0 (Signals) are
restrictive for system-level modeling

Communication using queues
Synchronization (access to shared data) using
mutexes

SystemC Language Architecture

Core

System

SystemC vs. Metropolis

Constructs to model system architecture
Hardware timing
Concurrency
Structure

Adding these constructs to C
SystemC

C++ Class library
Standard C/C++ Compiler : bcc, msvc, gcc, etc…

Metropolis
New keywords & Syntax
Translator for SystemC
Many More features…

System Design Methodology

Current
Manual Conversion from C to HDL Creates Errors
Disconnect Between System Model and HDL Model
Multiple System Tests

SystemC (Executable-Specification)
Refinement Methodology
Written in a Single Language

Modeling Terms (I)
Untimed Functional (UTF)

Refers to model I/F and functionality
No time used for regulating the execution
Execution & data transport in 0 time

Timed Functional (TF)
Refers to both model I/F and functionality
Time is used for the execution
Latencies are modeled
Data Transport takes time

Modeling Terms (II)
Bus Cycle Accurate (BCA)

Refers to model I/F, not functionality
Timing is cycle accurate, tied to some global
clock
Does not infer pin level detail
Transactions for data transport

Pin Cycle Accurate (PCA)
Refers to model I/F not model functionality
Timing is cycle accurate
Accuracy of the I/F at the pin Level

Register Transfer (RT) Accurate
Refers to model functionality
Everything fully timed
Complete detailed Description, every bus, every
bit is modeled

Model Types (1)
System Architectural

Executable specification for H/W & S/W
Architecture Exploration, algorithm determination & proof
I/Fs are UTF with no pin detail for modeling communication
protocols
Functionality UTF, sequential since it’s untimed

System Performance
Timed executable specification for bith H/W & S/W
Used for time budgeting
Concurrent behavior modeled

Transaction Level (TLM)
Typically describe H/W only
Model I/Fs are TF, functionality TF as well (either not cycle
accurate)
Data Transfers & system Behavior modeled as transactions

Model Types (2)
Functional Model

Above TLM, i.e. System Architectural & System Performance
System Level

Above RTL
Behavioral Synthesis

Architectural Analysis & Implementation
I/F cycle accurate with pin level detail
Functionality TF and not cycle accurate

Bus Functional Model (BFM)
Used for simulation (mainly of processors)
Not meant for synthesis
I/F pin cycle accurate
Transactions for functionality

Register Transfer Level (RTL)
Verilog, VHDL

Gate Level
not good in SystemC

Current Methodology

C/C++
System Level Model

Analysis

Result

Refine
VHDL/Verilog

Simulation

Synthesis

- Manual Conversion Creates Errors
- Disconnect Between System Model and HDL Model
- Multiple System Tests

SystemC Methodology

Using Executable Specifications

Ensure COMPLETENESS of Specification
“Create a program that Behave the same way as the system”

UNAMBIGUOUS Interpretation of the Specification
Validate system functionality before implementation
Create early model and Validate system
performance
Refine and Test the implementation of the
Specification

SystemC and User Module

Executable Specification
Executable Specification

SystemC
SystemC

Hardware Simulation Kernel
(Event Scheduler)

C++ Class Library

User
Module

#1

User
Module

#1
User

Module
#2

User
Module

#2
User

Module
#N

User
Module

#N
.....

Event & Signal I/F

Events

SystemC Highlights (1)
SystemC 2.0 introduces general-purpose

Events
Flexible, low-level synchronization primitive
Used to construct other forms of synchronization

Channels
A container class for communication and synchronization
They implement one or more interfaces

Interfaces
Specify a set of access methods to the channel

Other comm & sync models can be built based on
the above primitives

Examples
HW-signals, queues (FIFO, LIFO, message queues, etc)
semaphores, memories and busses (both at RTL and
transaction-based models)

SystemC Highlights (2)
Support Hardware-Software Co-Design
All constructs are in a C++ environment

Modules
Container class includes hierarchical Modules and
Processes

Processes
Describe functionality
Almost all SLDL have been developed based on
some underlying model of network of processes

Ports
Single-directional(in, out), Bi-directional mode

A system in SystemC

A system in SystemC

SystemC Highlights (3)

Constructs in a C++ environment (continued)
Clocks

Special signal, Timekeeper of simulation and Multiple clocks, with
arbitrary phase relationship

Event Driven simulation
High-SpeedEvent Driven simulation kernel

Multiple abstraction levels
Untimed from high-level functional model to detailed clock cycle
accuracy RTL model

Communication Protocols
Debugging Supports

Run-Time error check
Waveform Tracing

Supports VCD, WIF, ISBD

Data Types

SystemC supports
Native C/C++ Types
SystemC Types

SystemC Types
Data type for system modeling
2 value (‘0’,’1’) logic/logic vector
4 value (‘0’,’1’,’Z’,’X’) logic/logic vector
Arbitrary sized integer (Signed/Unsigned)
Fixed Point types (Templated/Untemplated)

Communication and
Synchronization (cont’d)

Channel

Module1 Module2

Events

Interfaces

Ports to Interfaces

A Communication
Modeling Example: FIFO

FIFO

Producer Consumer
Write Interface

Read Interface

FIFO Example:
Declaration of Interfaces

class write_if : public sc_interface
{

public:
virtual void write(char) = 0;
virtual void reset() = 0;

};

class read_if : public sc_interface
{

public:
virtual void read(char&) = 0;
virtual int num_available() = 0;

};

FIFO
p c

Declaration of FIFO
channel FIFO

p c

class fifo: public sc_channel,
public write_if,
public read_if

{
private:

enum e {max_elements=10};
char data[max_elements];
int num_elements, first;
sc_event write_event,

read_event;
bool fifo_empty() {…};
bool fifo_full() {…};

public:
fifo() : num_elements(0),

first(0);

void write(char c) {
if (fifo_full())

wait(read_event);

data[<you calculate>] = c;
++num_elements;
write_event.notify();

}

void read(char &c) {
if (fifo_empty())

wait(write_event);

c = data[first];
--num_elements;
first = …;
read_event.notify();

}

Declaration of
FIFO channel (cont’d) FIFO

p c

void reset() {
num_elements = first = 0;

}

int num_available() {
return num_elements;

}
}; // end of class declarations

FIFO Example (cont’d)
Any channel must

be derived from sc_channel class
be derived from one (or more) classes
derived from sc_interface
provide implementations for all pure
virtual functions defined in its parent
interfaces

FIFO Example (cont’d)

Note the following wait() call
wait(sc_event) => dynamic sensitivity
wait(time)
wait(time_out, sc_event)

Events
are the fundamental synchronization primitive
have no type, no value
always cause sensitive processes to be resumed
can be specified to occur:

immediately/ one delta-step later/ some specific time later

Completing the Comm.
Modeling Example FIFO

p c

SC_MODULE(producer) {
public:

sc_port<write_if> out;

SC_CTOR(producer) {
SC_THREAD(main);

}

void main() {
char c;
while (true) {

out.write(c);
if(…)

out.reset();
}

}

};

SC_MODULE(consumer) {
public:

sc_port<read_if> in;

SC_CTOR(consumer) {
SC_THREAD(main);

}

void main() {
char c;
while (true) {

in.read(c);
cout<<

in.num_available(); }
}

};

Completing the Comm.
Modeling Example (cont’d)

FIFO
p cSC_MODULE(top) {

public:
fifo afifo;
producer *pproducer;
consumer *pconsumer;

SC_CTOR(top) {
pproducer=new producer(“Producer”);
pproducer->out(afifo);

pconsumer=new consumer(“Consumer”);
pconsumer->in(afifo);

};

Completing the Comm.
Modeling Example (cont’d)

Note:
Producer module

sc_port<write_if> out;
Producer can only call member functions of write_if
interface

Consumer module
sc_port<read_if> in;

Consumer can only call member functions of read_if
interface

Producer and consumer are
unaware of how the channel works
just aware of their respective interfaces

Channel implementation is hidden from
communicating modules

Completing the Comm.
Modeling Example (cont’d)

Advantages of separating communication
from functionality

Trying different communication modules
Refine the FIFO into a software implementation

Using queuing mechanisms of the underlying RTOS
Refine the FIFO into a hardware implementation

Channels can contain other channels and modules
Instantiate the hw FIFO module within FIFO channel
Implement read and write interface methods to properly
work with the hw FIFO
Refine read and write interface methods by inlining them
into producer and consumer codes

SystemC refinement

SystemC Channel Replacement

SystemC Adapter Insertion

SystemC Adapter Merge

SystemC scheduler
Like most modeling languages
SystemC has a simulation kernel, too
Event Based Simulation for modeling
concurrency
Processes executed & their outputs
updated based on events
Processes are scheduled based on
their sensitivity to events
Similarity with key VHDL simulation
kernel aspects is evident

SystemC & VHDL Similarities
SC_THREAD(proc_1);

sensitive << Trig.pos();

SC_THREAD(proc_2);

sensitive << Trig.pos();

Which process should go first?
Does it actually matter?
On sc_signals follows VHDL paradigm

Process execution and signal update done in 2
phases, order of processes does not matter
Concept of delta cycles
Simulation is deterministic

But SystemC can model concurrency, time &
communication in other ways as well

SystemC & non Determinism

Delta Cycle = Evaluation Phase +
Update Phase

Presence of 2 phases guarantees
determinism

But for modeling S/W we need non-
determinism

Employ the notify() method of an
sc_event (see previous
producer/consumer example)

SystemC Scheduler & Events

notify() with no arguments
Called Immediate Notification
Processes sensitive to this event will run
in current evaluation phase

notify(0)
Processes sensitive to this event will run
in evaluation phase of next delta cycle

notify(t) with t>0
Processes sensitive to this event will run
during the evaluation phase of some
future simulator time

SystemC Simulator Kernel
1. Init: execute all processes in unspecified order
2. Evaluate: Select a ready to run process & resume its

execution. May result in more processes ready for
execution due to Immediate Notification

3. Repeat 2 until no more processes to run
4. Update Phase
5. If 2 or 4 resulted in delta event notifications, go back to

2
6. No more events, simulation is finished for current time
7. Advance to next simulation time that has pending

events. If none, exit
8. Go back to step 2

Metropolis vs. SystemC

Metro more general model of
computation
Different operational & denotational
semantics
Metro Formal Semantics & tools
Metro Quantity Managers

For performance analysis
For modeling of Operating Systems

References
www.doulos.com
www.forteds.com

http://www.doulos.com/
http://www.forteds.com/

	SystemC Tutorial
	SystemC Introduction
	SystemC is …
	SystemC Environment
	SystemC History
	SystemC History
	Objectives of SystemC 2.0
	SystemC 2.0 Objectives (cont)
	Communication and Synchronization
	SystemC Language Architecture
	SystemC vs. Metropolis
	System Design Methodology
	Modeling Terms (I)
	Modeling Terms (II)
	Model Types (1)
	Model Types (2)
	Current Methodology
	SystemC Methodology
	Using Executable Specifications
	SystemC and User Module
	SystemC Highlights (1)
	SystemC Highlights (2)
	A system in SystemC
	A system in SystemC
	SystemC Highlights (3)
	Data Types
	Communication and Synchronization (cont’d)
	A Communication Modeling Example: FIFO
	FIFO Example:Declaration of Interfaces
	Declaration of FIFO channel
	Declaration of FIFO channel (cont’d)
	FIFO Example (cont’d)
	FIFO Example (cont’d)
	Completing the Comm. Modeling Example
	Completing the Comm. Modeling Example (cont’d)
	Completing the Comm. Modeling Example (cont’d)
	Completing the Comm. Modeling Example (cont’d)
	SystemC refinement
	SystemC Channel Replacement
	SystemC Adapter Insertion
	SystemC Adapter Merge
	SystemC scheduler
	SystemC & VHDL Similarities
	SystemC & non Determinism
	SystemC Scheduler & Events
	SystemC Simulator Kernel
	Metropolis vs. SystemC
	References

