Course aims

PrOlc)g Lectu re 1 Introduce a declarative style of programming

- Explain fundamental elements of Prolog: terms,
clauses, lists, arithmetic, cuts, backtracking, negation
David Eyers

Michaelmas 2008 Demonstrate Prolog problem-solving techniques

Notes derived from those created

by Andy Rice and Kate Taylor By the end of the course you should be able to:
used with permission - Write and understand Prolog programs
- Use difference structures
- Understand basic constraint programming principles

Assessment Supervision work

One exam question in Paper 3 Some example questions are provided at the end
of the lecture handout
- Note: Prolog examples are often easy to follow ...

Assessed Exercise (a tick) - Make sure you can write your own programs too!
- you must get a tick for either Prolog or C & C++

- tick exercises and submission done in Lent term
— more information to follow closer to the time I will give some pointers and outline solutions
during the lectures
- Make sure you understand the fundamentals well

Recommended text Lecture 1

Logic programming and declarative programs

“PROLOG Programming for Artificial Intelligence”, Introduction to Prolog
Ivan Bratko, Addison Wesley (3™ edition, 2000)
— Provides an alternative angle on the basics
- Examines problem solving with Prolog in detail
- Not all of the textbook is directly relevant Prolog syntax: Terms

Unification of terms

Basic operation of the Prolog interpreter

Solving a logic puzzle

Imperative programming Functional programming
Formulate a “how to compute it” recipe, e.qg.: Again formulate a “how to compute it” recipe
- to compute the sum of the list, iterate through the - Probably will need to do recursive decomposition

list adding each value to an accumulator variable

int sum(int[] list) { (* The sum of the empty list is zero and
int result = 0; the sum of the list with head h and tail
for(int i=0; i<list.length; ++i) { t is h plus the sum of the tail. *)
result += list[i];
} fun sum([]) =0
return result; | sum(h::t) = h + sum(t);

Logic programming

% the sum of the empty list is zero
sum([],0).

% the sum of the list with head H and
% tail T is N if the sum of the list T
isMand N is M + H

sum([H|T],N) :- sum(T,M), N is M+H.

o®

This is a declarative reading of a program
- Not “how to compute” the result
- Instead “this is true about the result”

Prolog came from the field of
Natural Language Processing

PROgramming en LOGique

Colmerauer, A., Kanoui, H., Roussel, P . and
Pasero, R. “Un systeme de communication
homme-machine en francais”, Groupe de
Recherche en Intelligence Artificielle, Université
d'Aix-Marseille, 1973.

11

Prolog programs answer questions

The Prolog “database”

Facts + Rules

V/ /N \N

Questions Answers

Modern Prolog interpreters use the
Warren Abstract Machine

WAM is like a logic programming virtual machine
- David H. D. Warren. “An abstract Prolog
instruction set.” Technical Note 309, SRI
International, Menlo Park, CA, October 1983.

Can significantly improve Prolog memory use
- Modern Prolog implementations will is the WAM
- ... or something similar to it

10

12

You are expected to use SWI-Prolog SWI-Prolog is available to you

Open-source (GPL) Prolog environment SWI-Prolog is installed on the PWF (5.6.38)
— http://www.swi-prolog.org/ - Reboot a PWF terminal into Linux
- Development began in 1987 - Log into linux.pwf.cam.ac.uk
— Available for Linux, MacOS X and Windows
- Fully featured, with many libraries You can easily install it on your own computer

- Linux users: use your package manager
* (e.g. pl on Fedora Core, swi-prolog on Ubuntu)

- Otherwise consult the SWI-Prolog download page
» Windows and MacQOS binary installers are available

We will use SWI-Prolog throughout this course
— Get yourself a copy! (or at least access to one)

— Experiment with it! * Build it from source
13
Prolog can answer simple questions We will usually load Prolog
directly from its database programs from source files on disk
prolog or maybe pl on your system cat milestone.pl ... enter your program in a text file
[user]. . get ready to enter a new program milestone(rousell, 1972). (it should have a .pl extension)
milestone(rousell, 1972). milestone(warren,1983).
milestone(warren,1983). milestone(swiprolog, 1987).
milestone(swiprolog,1987). type [CTRL]-D milestone(yourcourse,2008).
milestone(yourcourse,2008). ... when done prolog
% user://1 compiled 0.01 sec, 764 bytes [milestone]. ... instruct Prolog to load the program
milestone(warren,1983).
milestone(warren,1983). ... ask it a question
____________ the answer is “yes” milestone(X,Y). tettierineeineeneen find @answers
milestone(swiprolog,X). ... let it find an answer
............. the answer is 1987 Hyou type a semi-colon (;) for more answers
milestone(yourcourse,2007). ... ask it a question
................... the answer is “no”you press enter when you've had enough
halt. exit the interpreter

halt.
15

Our program is composed of
facts and queries

cat milestone.pl

milestone(rousell, 1972).
milestone(warren,1983). These are faCtS

milestone(swiprolog,1987). (a particu|ar type of C|ause)
milestone(yourcourse,2008).

prolog
[milestone].
milestone(warren,1983).

These are queries
(and replies to the queries)

milestone(X,Y).

halt.
17

Terms are the building blocks with
which Prolog represents data
Numbers:

EIEDIES
X A variable _
1 -2

Atoms: Compound terms

tigger likes(pooh_bear,honey)
100 Acre Wood'

Constants

plus(4,mult(3,plus(1,9)))

Each term is either a constant, a variable, or a
compound term.

19

Using the Prolog shell

The Prolog shell at top-level only accepts queries

When a query result is being displayed:

- Press enter to accept a query answer and return to
the top level shell

- Type a semi-colon (;) to request the next answer

- Type w to display fully a long result that Prolog has
abbreviated

18

Prolog can build compound terms
from infix operators

Placing compound terms within compound terms
builds tree structures:
- E.g. html (head(), body ())
- This is a prefix notation
* i.e. the name of a tree node comes before its children

Prolog also supports infix expressions:
- e.g. X-Y, 2+3, etc.
- Any infix expression has an equivalent prefix form
- Ensure that you are comfortable with this equivalence

20

You can ask Prolog to display any
term using prefix notation alone

Infix notation is just for human convenience
- Does not affect Prolog's internal data structures
— Requires operator precedence to be defined

* Otherwise terms such as x-y -z are ambiguous

The query write_cannonical(7erm) will display
Term without using any infix operators
- Potentially useful for your Prolog experimentation
- We will gloss over how this actually works for now

WRONOUDWNE

21

Zebra Puzzle

There are five houses.

The Englishman lives in the red house.

The Spaniard owns the dog.

Coffee is drunk in the green house.

The Ukrainian drinks tea.

The green house is immediately to the right of the ivory house.

The Old Gold smoker owns snails.

Kools are smoked in the yellow house.

Milk is drunk in the middle house.

The Norwegian lives in the first house.

The man who smokes Chesterfields lives in the house next to the man with the fox.
Kools are smoked in the house next to the house where the horse is kept.
The Lucky Strike smoker drinks orange juice.

The Japanese smokes Parliaments.

The Norwegian lives next to the blue house.

Who drinks water? Who owns the zebra?

(clearly some of the assumptions aren't explicitly stated above!)

23

Unification is Prolog's
fundamental operation

Do these terms unify with each other?

1 a a 2 |a b

3 a A 4 |a B

5 |tree(l,r) |A 6 tree(l,r) |tree(B,C)
7 |tree(Ar) |tree(l,C) 8 |tree(A,r) tree(A,B)
9 A a(A) 10 |a a(A)

Note: _ is a special variable that unifies with anything.
- Each _ in an expression unifies independently
* (as if they were all unique, one-use named variables)

Form a model of the situation

Represent each house with the term:
house(Nationality, Pet,Smokes, Drinks,Colour)
Represent the ordered row of houses as follows:
(H1,H2,H3,H4,H5)

We will show that the Zebra Puzzle can be solved

using facts, unification and a single (large) query.
- More conventional Prolog programs will define
predicates to help solve problems
- (we will talk about these soon)

22

24

Question

What sort of a term is:
house(Nationality, Pet,Smokes, Drinks,Colour)

a) number

b) atom

c) compound

d) variable

Question
What sort of a term is:
(H1,H2,H3,H4,H5)

a) humber

b) atom

c) compound
d) variable

25

27

Question

What sort of a term is:
Nationality

a) number
b) atom

c) compound
d) variable

26

Define relevant facts

Let's consider one of the puzzle statements:
- The Englishman lives in the red house.
- Thatis: house(british, , , ,red)

This term must unify with one of the houses
- Simplify: let's say it unifies with the first house.

- The “houses” 5-tuple would then unify with term:
 (house(british, , , ,red), , , ,)

Generalise into a fact:
- firstHouse(HouseTerm,(HouseTerm,_,_,_,_)).
- Really we want “atLeastOneHouse"” though...

28

Define relevant facts Define relevant facts

To query two properties about the first house: Call our atLeastOneHouse fact “exists”
firstHouse(SomeCondition,Houses), - i.e. there exists a house that has a certain property
firstHouse(OtherCondition,Houses). - We discussed firstHouse (A, (A, , , ,)).

- The comma requires both parts of the query to hold

)) . _) o - The generalisation to “at least one house” is:
— Prolog will progressively bind variables via unification

* Including binding variables within compound terms exists(A, (A, , , ,)
exists(A,(A, , ,)).
Prolog attempts to prove the query exists(A, (_, _,A,_,_)).
- Variable bindings are a side-effect of the proof exists (A, (., A,)).
: - : : exists(A,(_,_,_,_,A))
However, we're usually specifically interested in
what the variables actually get bound to! 29
Feeling lost? Ask Prolog! More constraint-building facts
Test the exists predicate on simpler data: The facts we are defining allow us to encode the
exists(1,(1,2,3,4,5)). explicit constraints in the problem statement
- We are encoding just the red highlighted part:
Other thll’lgS to tl‘y! - The green house is immediately to the right of the ivory house.
exists(2,(1,2,3,4,5)).
A right0f(A,B, (B,A, , ,))
exists(l applé)’ ’ | rightOf(A'B'(_’B'A'_'_))
exists(1,(1,2,3,4)). rightof(A,B,(, ,B,A,))
rightOf(A,B,(, , ,B,A)).

31

More constraint-building facts

9, Milk is drunk in the middle house.

middleHouse(A,(, A, ,)).

10. The Norwegian lives in the first house.

firstHouse(A, (A, , , ,)).

33

Express the puzzle as one big query

2. The Englishman lives in the red house.

exists(house(british, , , ,red),Houses),

exists(house(spanish,dog, , ,),Houses),

exists(house(, , ,coffee,green),Houses),
exists(house(ukranian, , ,tea,),Houses),

rightOf(house(, , , ,green),house(, , , ,ivory),Houses),
exists(house(,snail,oldgold, ,),Houses),
exists(house(, ,kools, ,yellow),Houses),

middleHouse (house(, , ,milk,),Houses),
firstHouse(house(norwegian, , , ,),Houses),

nextTo(house(, ,chesterfields, ,),house(,fox, , ,),Houses),
nextTo(house(, ,kools, ,),house(,horse, , ,),Houses),
exists(house(, ,luckystrike,orangejuice,), Houses),
exists(house(japanese, ,parliaments, ,),Houses),
nextTo(house(norwegian, , , ,),house(, , , ,blue),Houses),
exists(house(WaterDrinker, , ,water,), Houses),
exists(house(ZebraOwner, zebra,i,i,i) ,Houses) .

35

More constraint-building facts

11. The man who smokes Chesterfields lives in the house next to the man

with the fox.
nextTo(A,B, (A,B, , ,)).
nextTo(A,B,(,A,B, ,)).
nextTo(A,B,(, ,A,B,)).
nextTo(A,B,(, , ,A,B)).
nextTo(A,B, (B,A, , ,)).
nextTo(A,B,(,B,A, ,)).
nextTo(A,B,(, ,B,A,)).
nextTo(A,B,(, , ,B,A)).

34

Express the puzzle as one big query

3. The Spaniard owns the dog.

exists(house(british, , , ,red),Houses),
exists(house(spanish,dog, , ,),Houses),

exists(house(, , ,coffee,green),Houses),
exists(house(ukranian, , ,tea,),Houses),

right0Of(house(, , , ,green),house(, , , ,ivory),Houses),
exists(house(,snall oldgold ,) ,Houses),

exists(house(, ,kools, ,yellow),Houses),
middleHouse(house(i,f,i milk,),Houses),
firstHouse(house(norwegian, , , ,),Houses),

nextTo(house(, ,chesterfields, ,),house(,fox, , ,),Houses),
nextTo(house(, ,kools, ,),house(,horse, , ,),Houses),
exists(house(, ,luckystrike,orangejuice,),Houses),
exists(house(japanese, ,parliaments, ,),Houses),
nextTo(house(norwegian, , , ,),house(, , , ,blue),Houses),
exists(house(WaterDrinker, , ,water,),Houses),
exists(house(ZebraOwner,zebra, , ,),Houses).

36

Express the puzzle as one big query

6. The green house is immediately to the right of the ivory house.

exists(house(british, , , ,red),Houses),
exists(house(spanish,dog, , ,),Houses),
exists(house(, , ,coffee,green),Houses),
exists(house(ukranian, , ,tea,),Houses),
rightOf(house(, , , ,green),house(, , , ,ivory),Houses),
exists(house(,snail,oldgold, ,),Houses),
exists(house(, ,kools, ,yellow),Houses),
middleHouse (house(, , ,milk,),Houses),
firstHouse(house(norwegian, , , ,),Houses),
nextTo(house(, ,chesterfields, ,),house(,fox, , ,),Houses),
nextTo(house(, ,kools, ,),house(,horse, , ,),Houses),
exists(house(, ,luckystrike,orangejuice,), Houses),
exists(house(japanese, ,parliaments, ,),Houses),
nextTo(house(norwegian, , , ,),house(, , , ,blue),Houses),
exists(house(WaterDrinker, , ,water,), Houses),
exists(house(ZebraOwner,zebra, , ,),Houses).

37

Zebra Puzzle

prolog We use
print(WaterDrinker),
[zebra]. print(ZebraOwner)
in our query to produce this output

halt.

39

Including queries in your source file

Normal lines in the source file define new clauses
- We've used this to defining fact clauses so far...

Lines beginning with : - are “immediate” queries
- (that's a colon followed directly by a hyphen)
- Prolog executes those queries when the file is loaded
- We'll have more to say on this later...

The query print(T) prints out term T (in SWI)
-e.g. print('Hello World').

38

End

* Next lecture:
— recursive reasoning,
- lists,
— arithmetic
- and more puzzles...

Rules have a head which is true if
the body is true

PrOlog LECtLI Fe 2 Our Prolog databases have contained only facts

- e.g. lecturer(prolog,dave).

« Rules Most programs require more complex rules
. Lists - Not just “this is true”, but “this is true if that is true”
. Ari . rule(X,Y) :- partl(X), part2(X,Y).
Arithmetic -
* Last-call optimisation head body
* Backtracking You can read this as: “rule(X,Y) is true if part1(X)
« Generate and Test is true and part2(X,Y) is true”
- Note: X and Y also need to be unified appropriately
Variables can be internal to a rule Prolog and first order logic
The variable Z is not present in the clause head: The :- symbol is an ASCII-art arrow pointing left

- The “neck” (it's between the clause head and body!)

rute2(X) :- thing(X,Z), thang(Z). The arrow represents logical implication

_ _ _ - Mathematically we'd usually write clause-head
Read this as “rule2(X) is true if there is a Z such - It's not as clean as a graphical arrow ...

that thing(X,Z) is true and thang(Z) is true” - In practice Prolog is not as clean as logic either!

Note that quantifiers (V and 3) are not explicitly
expressed in Prolog

Prolog identifies clauses by

Rules can be recursive :
name and arity

rule3(ground). We refer to a rule using its clause's head term
rule3(In) :- anotherRule(In,Out), g
rule3(0ut). The clause
- rule.
In a recursive reading rule3(ground) is a base is referred to as rule/0 and is different to:
case, and the other clause is the recursive case. - rule(A).
which is referred to as rule/1 (i.e. it has arity 1)

In a declarative reading both clauses simply represent - rule(_,Y).
a situation in which the rule is true. would be referred to as rule/2, etc.

We can write rules to find the first
and last element of a list

Items are put within square brackets, separated Like functional languages, Prolog uses linked lists
by commas, e.qg.[1,2,3,4] :
- The empty list is denoted [] al Sl .

A single list may contain terms of any kind:
- [1,2,an_atom,5,Variable,compound(a,b,c)]

Prolog has built-in support for lists

last([H],H).
last([|T],H) :- last(T,H).
Use a pipe symbol to refer to the tail of a list
- e.g. [Head|Tail] and [1|T] and [1,2,3|T] Make sure that you (eventually) understand what
- Try unifying [H|T] and [H1,H2|T] with [1,2,3,4] this shows you about Prolog's list representation:
“ie. - [HIT] = [1,2,34]. write_canonical([1,2,3]).

last([H],H).
last([_|T]1,H):-
last(T,H).

Question

What happens if we ask: last([],X). ?
a) pattern-match exception
b) Prolog says no
c) Prolog says yes, X =[]
d) Prolog says yes, X = ???

Prolog provides a way to trace
through the execution path

Query trace/0, evaluation then goes step by step
- Press enter to “creep” through the trace
- Pressing s will “skip” over a call

?7- [last].
% last compiled 0.01 sec, 604 bytes

Yes

?7- trace,last([1,2],A).
Call: (8) last([1, 2], _G187) ? creep
Call: (9) last([2], _G187) ? creep
Exit: (9) last([2], 2) ? creep
Exit: (8) last([1, 2], 2) ? creep

A=2

Yes
11

You should include tests for your
clauses in your source code

Example last.pl:

last([H],H).

last([|T],H) :- last(T,H).

% this is a test assertion
:- last([1,2,3],A), A=3.

What happens if the test assertion fails?

What happens if we ask:
last(List,3).

Arithmetic Expressions

(AKA “Why Prolog is a bit special/different/surprising”)
What happens if you ask Prolog:

A=1+2.

10

12

Arithmetic equality is
not the same as Unification

A= 1+2.

1+2 = 3.

This should raise anyone's procedural eyebrows...
Arithmetical operators get no special treatment!

13

Arithmetic equality is
not the same as Unification

A = money+power.

money+power = A,
A = +(money, power).

Plus (+) is just forming compound terms
We discussed this in lecture 1

15

Unification, unification, unification

In Prolog "="is not assignment!
“=" does not evaluate expressions!

“=""means “try to unify two terms”

Use the "is” operator to
evaluate arithmetic

The “is” operator tells Prolog:
(1) evaluate the right-hand expression numerically
(2) then unify the expression result with the left

A is 1+2.

A is money+power.

Ensure that you can explain what will happen here:
3is 1+2 1+2is 3

14

16

The right hand side must be a

ground term (no variables)
A is B+2.

3 is B+2.

It seems that “is” is some sort of magic predicate
— Our predicates do not force instantiation of variables

In fact it can be implemented in logic
- See the supervision worksheet

17

List length using O(N) stack space

* Evaluate len([1,2],A).

- Apply len([1] [2]],A)) :- len([2],M,), A, is M +1

- Evaluate len([2],M))

« Apply len([2 | []],MO) :- len([1,M), M, is M +1
- Evaluate len([],M))
« Apply len([],0) soM, =0
- Evaluate M isM +1soM =1

- Evaluate A isM +1s0 A =2

| awe.d »oelg

Z dweld »oelg

* Result len([1,2],2)

* This takes O(N) space because of the variables in each frame o

We can now write a rule
about the length of a list

List length:

len([],0).
len([|T],N) :- len(T,M), N is M+1.

This uses O(N) stack space for a list of length N

18

List length using O(1) stack space

List length using an accumulator:

len2([],Acc,Acc).

len2([|Tail],Acc,Result) :-
AccNext is Acc + 1,
len2(Tail,AccNext,Result).

len2(List,Result) :-
len2(List,0,Result).

We are passing variables to the recursive len2 call that
we do not need to use in future evaluations
- Make sure that you understand an example trace

20

List length using O(1) stack space

* Evaluate len2([1,2],0,R)

* | Apply len2([1] [2]],0,R) :- AccNext is 0+1,]

len2([2],AccNext,R).
* Evaluate AccNext is 0+1 so AccNext = 1
 Evaluate len2([2],1,R)

* Apply len2([2] []],1,R) :- AccNext is 1+1, —
len2([],AccNext,R).

* Evaluate AccNext is 1+1 so AccNext = 2

* Evaluate len2([],2,R).

* Apply len2([],2,2) soR = 2

» I didn't need to use any subscripts on variable instances!

| aweld 3oelg

Z swel oeis

We can demonstrate that Prolog is
applying last call optimisation

Trace will not help
- The debugger will likely interfere with LCO!

How about a “test to destruction”?

biglist(0,[]).

biglist(N, [N|T]) :-
M is N-1,
biglist(M,T),
M=M.

21

23

Last Call Optimisation turns
recursion into iteration

Any decent Prolog implementation will apply
“Last Call Optimisation” to tail recursion

- The last query in a clause body can re-use the stack
frame of its caller

- This “tail” recursion can be implemented as iteration,
drastically reducing the stack space required

Can only apply LCO to rules that are determinate

- The rule must have exhausted all of its options for
change: no further computation or backtracking

22

Prolog uses depth-first search
to find answers

Here is a (boring) program:
a(l).

OO T o
WNEREWN

a(2).
(3).
(1).
(2).
(3).
c(A,B) :- a(A), b(B).

What does Prolog do when given this query?
c(A,B).

24

Depth-first solution of query c(A,B)
c(A,B)

Expand using the rule
c(A,B):-a(A),b(B).

a(A),b(B)
Look up the first fact
of form a(_)

a(1),b(B)

Likewise first
fact E/
b(1)

We've found
a solution!

Variable bindings: A=1, B=1

Backtrack to find another solution
c(A,B)

a(A),b(B)

a(1),b(B)

b(1) b bi3)

Variable bindings: A=1, B=3

25

27

Backtrack to find the next solution

c(A,B)

|

a(A),b(B)

a(1),b(B)

Reject first /
factb(_)

b(1) b(2

)

We've found the
next solution

Backtrack to find another solution

We exhausted all possible

solution

Variable bindings: A=1, B=2

c(A,B)

a(A),b(B)

s from the first__— ... 50 look for solutions

a() fact... _— that use the second fact

a(1),b(B) a(2),b(B)

b(1) b(2

of form a(_).

) b(3) b(l)

Variable bindings: A=2, B=1

26

28

Take from a list

Here is a program that takes an element from a
list:

take([H|T],H,T).
take([H|T],R, [H[S]) :- take(T,R,S).

What does Prolog do when given the query:
take([1,2,3],E,Rest).

Backtrack for next solution

take([H|T],H,T).

| LI el g take([1, 2‘?] E,Rest)
wmQHD3H1D3D“”//’mmquzﬂE[usD

From the “rule” f take([2, 3] E,S)

take/3 clause

(arrow direction?) 4
take([2|[3]1,2,[3]).

Variable bindings: E=2, Rest=[1,3], S =[3]

31

All solutions for take([1,2,3],E,Rest)

take([H|T1,H,T).
take([H|T],R, [H|S]):-
take(T,R,S). take([1,2,3],E,Rest)

take([1][2,31],1,[2,3]).

From the “fact” /A
take/3 clause

Variable bindings: E=1, Rest=[2,3]

Backtrack for another solution

take([H|T],H,T).
take([H|TI1,R, [H|S]):-

take(T,R,S). take([1, 2?] ,E,Rest)

tdeBﬁHLMﬂf”f/twdnpﬂEnmp
take([2 3] E,S)

take([21[311,2,[3])." take([2|[3]] E[2]S,])
take([3],E,Sz)

take([3][11,3,[1)-

Variable bindings: E=3, Rest=[1,2], S =[2], S,=[]

30

32

Prolog says "no”

take([H|T],H,T).
take([H|T],R, [H|S]):-

take(T,R,S). take([1,2,3],E,Rest)
take([1/[2,311,1,(2,3])" take([1/2,3],E,[1S,])
take([2j3],E,Sl)
take([2|(311,2,(3])." take([2|[3]],E,[2]S,])
take([é],E,Sz)
- —
take([3[11,3,[).” take([3[[11,E/[31S,1)
take([} E.S)
Variable bindings: none — the predicate is false 3

Dutch national flag

The problem was used by Dijkstra as an exercise in
program design and proof.

Take a list and re-order such that red precedes white
precedes blue

[red,white,blue,white,red]

|

[red,red, white,white,blue]

35

“Find list permutation”
predicate is very elegant

perm([]1,[]).

perm(List,[H|T]) :- take(List,H,R), perm(R,T).

What is the declarative reading of this predicate?

34

“Generate and Test” is a technique
for solving problems like this

(1) Generate a solution
(1) Testifitis valid

(2) If not valid then backtrack to the next generated
solution

flag(In,Qut) :- perm(In,Out),
checkColours(Out).

How can we implement checkColours/1?

36

Place 8 queens so that
none can take any other

[1,5,8,6,3,7,2,4]

37

Anagrams

Load the dictionary into the Prolog database e.g.:
- word([a,a,r,d,v,a,r,K]).

Generate permutations of the input word and test if
they are words from the dictionary

or

Generate words from the dictionary and test if they
are a permutation!

http://www.cl.cam.ac.uk/~dme26/pl/anagram.pl 39

Generate and Test works for 8
Queens too

8queens(R) :- perm([1,2,3,4,5,6,7,8],R),
checkDiagonals(R).

Why do I only need to check the diagonals?

38

End

Next lecture:
controlling backtracking with cut, and negation

Symbolic Evaluation

PrOlog | ecture 3 Let's write some Prolog rules to evaluate symbolic

arithmetic expressions such as plus(1,mult(4,5))

eval(plus(A,B),C) :- eval(A,Al),

» Symbolic evaluation of arithmetic eval(B,B1),
_ _ C is Al + B1.
* Controlling backtracking: cut
e N ion eval(mult(A,B),C) :- eval(A,Al),
egatio eval(B,B1),
C is Al * B1.
eval(A,A).

Evaluation starts with the first Next it looks at the body of the rule
matching clause

Q: How does Prolog evaluate: The body of the clause with head
eval(plus(A,B),C) and variable bindings

L(pl 1,mult(4, A '
SUELNELUS LU ELC o2) TS) A =1, B = mult(4,5) and C = Ans is:

A: Step 1, see if the first matching clause is true

eval(1l,Al),
eval(plus(A,B),C) :- eval(A,Al), eval(mult(4,5),B1),
eval(B,Bl), Ans is Al + B1.

C is Al + Bl.

In this case the variable bindings are:

This is a conjunction: all parts must be true for
-A =1, B =mult(4,5) and C = Ans

the clause to be true

The body is checked term by term The body is checked term by term
from left to right from left to right

First part of the body: eval(1,Al) From previous slide, eval(1,Al) was provable,
with the effect of binding: A1=1.

Try: eval(plus(A,B),C) :- eval(A,Al), eval(B,B1), Cis Al + B1.

Fail because 1 does not unify with plus(A,B) So continuing through the body (note Al is now
Try: eval(mult(A,B),C) :- eval(A,Al), eval(B,B1), C is AL * B1. bound):
Fail because 1 does not unify with mult(A,B) eval(1l,1),
eval(mult(4,5),B1),
Try: eval(AA). Ans is 1+ Bl.

Succeed: eval(1,Al) is true if A1 =1

The body is checked term by term The body is checked term by term
from left to right from left to right
So eval(mult(4,5),B1) will bind B1=20: Ans will be bound to 21, after “is” does its job.
eval(1l,1), eval(1l,1),
eval(mult(4,5),20), eval(mult(4,5),20),

Ans is 1 + 20. 21 1is 1 + 20.

eval(plus(1,mult(4,5)),Ans)

’//

eval(plus(1,mult(4,5)),Al

eval(1,T1), eval(mdlt(4,5),T2), Angfis T1 + T2.

First eval/3
clause

Choice Point

eval(plus(A,B),C):-
eval(A,Al),
eval(B,B1),
C is Al + Bl.

eval (mult(A,B),C):-
eval(A,Al1),
eval (B,B1),
C is Al * Bl.

eval(A,A).

Third eval/3

Be sure that you understand why the second

eval/3 clause does not appear in this choice point

eval(plus(1,mult(4,5)),Ans)

’//

eval(plus(1,mult(4,5)),Ans) :-
eval(1,T1), eval(mult(4,5),T2), Ans is T1 + T2.
~—

eval(1,1).

eval(mult(4,5),T2) :-
eval(4,T3),eval(5,T4), T2 is T3 * T4.

eval(plus(A,B),C):-
eval(A,Al),
eval(B,B1),
C is Al + Bl.

eval (mult(A,B),C):-
eval (A,Al),
eval (B,B1),
C is Al * Bl.

eval(A,A).

11

eval(plus(1,mult(4,5)),Ans)

’//

eval(plus(1,mult(4,5)),Ans) :-
eval(1,T1), eval(mult(4,5),T2), Ans is T1 + T2.

eval(1,1).

eval(plus(1,mult(4,5)),Ans)

’//

eval(plus(1,mult(4,5)),Ans) :-
eval(1,T1), eval(mult(4,5),T2), Ans is T1 + T2.
~—

eval(1,1).

eval(mult(4,5),T2) :-
eval(4,T3),eval(5,T4), T2 is T3 * T4.
\ /,

_
»

eval(4,4).

eval(plus(A,B),C):-
eval (A,A1),
eval(B,B1),
C is Al + Bl.

eval (mult(A,B),C):-
eval(A,Al),
eval(B,Bl),
C is Al * Bl.

eval(A,A).

10

eval(plus(A,B),C):-
eval (A,A1),
eval(B,B1),
C is Al + Bl.

eval (mult(A,B),C):-
eval (A,A1),
eval(B,Bl),
C is Al * Bl1.

eval(A,A).

12

eval(plus(1,mult(4,5)),Ans)

’//

eval(plus(1,mult(4,5)),Ans)
eval(1,T1), eval(mult(4,5),T2), Ans is T1 + T2
~—

eval(1,1). Kl

eval(mult(4,5),T2) :-
eval(4,T3),eval(5,T4), T2 is T3 * T4
%(—/ %(_/

I /}
eval(4,4). (

eval(5,5).

eval(plus(1,mult(4,5)),Ans)

eval(plus(1,mult(4,5)),Ans) :-
eval(1,T1), eval(mult(4,5), T2), Ans is T1 + T2.

SN
eval(1,1). # I
eval(mult(4,5),T2) :-
eval(4,73),eval(5,T4), T2 is T3 * T4.
eval(4,4). 4/// ////
eval(5,5).

20|55’*4

21is 1 + 20.

eval(plus(A,B),C):-

eval(A,Al),
eval(B,B1),
C is Al + Bl.

eval(mult(A,B),C):
eval(A,Al1),
eval (B,B1),
C is Al * Bl.

eval(A,A).

13

eval(plus(A,B),C):
eval(A,Al),
eval(B,B1),
C is Al + Bl.

eval(mult(A,B),C):
eval (A,Al),
eval (B,B1),
C is Al * Bl.

eval(A,A).

15

eval(plus(1,mult(4,5)),Ans)

’//

eval(plus(1,mult(4,5)),Ans)
eval(1,T1), eval(mult(4,5),T2), Ansis T1 + T2
: b

eval(1,1). \

v

eval(mult(4,5),T2) :-
eval(4,T3),eval(5,T4), T2 is T3 * T4.
ﬂ_/

/

|
)
eval(4,4). 4//// ////
/

eval(5,5).

20|55 * 4,

eval(plus(A,B),C):-
eval (A,A1),
eval(B,B1),
C is Al + Bl.

eval (mult(A,B),C):
eval(A,Al),
eval(B,Bl),
C is Al * Bl.

eval(A,A).

14

What happens if we use backtracking and ask Prolog

for the next solution?

16

eval(plus(1,mult(4,5)),Ans)

eval(plus(1,mult(4,5)),Ans) :-
eval(1,T1), eval(mult(4,5),T2), Ans is T1 + T2.

eval(1,1). |

eval(mult(4,5),T2) :-
eval(4,T3),eval(5,T4), T2 is T3 * T4.
~— ,

IS /})
eval(4,4). 4/// ////
l

eval(5,5).
20is 5 * 4.

eval(plus(1,mult(4,5)),Ans)

eval(plus(1,mult(4,5)),Ans) :-
eval(1,T1), eval(mult(4,5),T2), Ans is T1 + T2.
~—

eval(1,1).

eval(mult(4,5),T2) :-
eval(4,T3),eval(5,T4), T2 is T3 * T4.

_

—
eval(4,4).

eval(5,5).

eval(plus(A,B),C):-
eval(A,Al),
eval(B,B1),
C is Al + Bl.

eval (mult(A,B),C):-
eval(A,Al1),
eval (B,B1),
C is Al * Bl.

eval(A,A).

21><20. 17

eval(plus(A,B),C):-
eval(A,Al),
eval(B,B1),
C is Al + Bl.

eval (mult(A,B),C):-
eval (A,Al),
eval (B,B1),
C is Al * Bl.

eval(A,A).

19

eval(plus(1,mult(4,5)),Ans)

eval(plus(1,mult(4,5)),Ans) :-
eval(1,T1), eval(mult(4,5),T2), Ans is T1 + T2.
~—

eval(1,1).

eval(mult(4,5),T2) :-
eval(4,T3),eval(5,T4), T2 is T3 * T4.
AN

I /‘ 4
eval(4,4). 4////

eval(5,5).
20is 5 * 4.

eval(plus(1,mult(4,5)),Ans)

eval(plus(1,mult(4,5)),Ans) :-
eval(1,T1), eval(mult(4,5),T2), Ans is T1 + T2.
~—

eval(1,1).

eval(mult(4,5),T2) :-
eval(4,T3),eval(5,T4), T2 is T3 * T4.

eval(4,4).

eval(plus(A,B),C):-
eval (A,A1),
eval(B,B1),
C is Al + Bl.

eval (mult(A,B),C):-
eval(A,Al),
eval(B,Bl),
C is Al * Bl.

eval(A,A).

18

eval(plus(A,B),C):-
eval (A,A1),
eval(B,B1),
C is Al + Bl.

eval (mult(A,B),C):-
eval (A,A1),
eval(B,Bl),
C is Al * Bl1.

eval(A,A).

20

eval(plus(1,mult(4,5)),Ans)
-

-

eval(plus(1,mult(4,5)),Ans) :-

eval(1,T1), eval(mult(4,5),T2), Ans is T1 + T2.
;Yy

K

eval(1,1). X

eval(mult(4,5),T2) :-
eval(4,T3),eval(5,T4), T2 is T3 * T4.

eval(plus(1,mult(4,5)),Ans)

-

eval(plus(1,mult(4,5)),Ans) :-
eval(1,T1), eval(mult(4,5),T2), Ans is T1 + T2.
;Yy J

he
¥ N

eval(1,1). ><* .

eval(mult(4,5),T2) :-
eval(4,73),eval(5,T4), T2 is T3 * T4.

5),mult(4,5)).

eval(plus(A,B),C):-

eval(A,Al),
eval(B,B1),
C is Al + Bl.

eval (mult(A,B),C):-

eval(A,Al1),
eval (B,B1),
C is Al * Bl.

eval(A,A).

21

eval(plus(A,B),C):-
eval(A,Al),
eval(B,B1),
C is Al + Bl.

eval (mult(A,B),C):-
eval (A,Al),
eval (B,B1),
C is Al * Bl.

eval(A,A).

—/——> Ans is 1 + mult(4,5)
ouchlll

23

eval(plus(1,mult(4,5)),Ans)

,//

-

eval(plus(1,mult(4,5)),Ans) :-

eval(1,T1), eval(mult(4,5),T2), Ans is T1 + T2.
- JN P

T X

4 N

eval(1,1). ><

eval(mult(4,5),T2) :-
eval(4,T3),eval(5,T4), T2 is T3 * T4.

eval(plus(A,B),C):-
eval (A,A1),
eval(B,B1),
C is Al + Bl.

eval (mult(A,B),C):-
eval(A,Al),
eval(B,Bl),
C is Al * Bl.

eval(A,A).

N

eval(mult(4,5),mult(4,5)).

22

(a) Eliminate spurious solutions by
making your clauses orthogonal
Need to eliminate the (unwanted) choice point

A way to do this: make sure only one clause
matches: eval(A,A) becomes eval(gnd(A),A).

eval(plus(A,B),C)

eval(mult(A,B),C)

eval(gnd(A),A).

:- eval(A,Al),

eval(B,B1),
C is Al + B1.

:- eval(A,Al),

eval(B,B1),
C is Al * B1l.

24

(b) Eliminate spurious solutions by
explicitly discarding choice points

Alternatively we can tell Prolog to commit to its
first choice and discard the choice point

We do this with the cut operator. Written: !
eval(plus(A,B),C) :- !,eval(A,Al),

eval(B,B1),

C is Al + B1.

I,eval(A,Al),

eval(B,B1),

C is Al * Bl.

eval (mult(A,B),C) :-

eval(A,A).

25

Cutting out choice

Whenever Prolog evaluates a cut it discards all
choice points back to the parent clause

An example:
a(l). c(A,B,C) :- a(A),d(B,C).
a(2). c(A,B,C) :- b(A),d(B,C).
a(3). d(B,C) :- a(B),!,a(C).
b(apple). d(B,_) :- b(B).
b(orange) .

27

eval(plus(1,mult(4,5)),Ans)

eval(plus(A,B),C):-

!, eval(A,Al1),
eval(B,B1),
C is Al + Bl.

I,eval(A,Al),
eval(B,Bl),
C is Al * Bl.

eval(A,A).

These choices
are eliminated

eval(44). / /

eval(5,5). ¢
20is 5 * 4.

c(A,B,C)
-
S

c(A,B,C):-a(A),d(B,C).

21is 1 + 20.

a(l).
a(2).
a(3).
b(apple).
b(orange).

eval (mult(A,B),C):-

26

c(A,B,C):-a(A),d(B,C).
c(A,B,C):-b(A),d(B,C).

d(B,C):-a(B),!,a(C).
d(B,):-b(B).

28

c(A,B,C)

-

c(AB,C):-a(A)d(B,C).

/

a(1).

c(A,B,C)

-

C(AB,C):-a(A)d(B,C).

/

a(l).

d(B,C):-a(B),!,a(C).

a(l).

a(l).

a(2).

a(3).

b(apple).

b(orange).
c(A,B,C):-a(A),d(B,C).
c(A,B,C):-b(A),d(B,C).
d(B,C):-a(B),!,a(C).

d(B,):-b(B).

29
a(l).
a(2).
a(3).
b(apple).
b(orange).
c(A,B,C):-a(A),d(B,C).
c(A,B,C):-b(A),d(B,C).
d(B,C):-a(B),!,a(C).
d(B,):-b(B).

31

c(A,B,C)

P

c(AB,C):-a(A),d(B,C).

/

a(1).

d(B,C):-a(B),!,a(C).

c(A,B,C)

c(AB,C):-a(A),d(B,C).

a(l).

d(B,C):-a(B),,a(C).

/

a(l). X. =X

a(l).

a(2).

a(3).

b(apple).

b(orange).
c(A,B,C):-a(A),d(B,C).
c(A,B,C):-b(A),d(B,C).
d(B,C):-a(B),!,a(C).
d(B,):-b(B).

30

a(l).

a(2).

a(3).

b(apple).

b(orange).
c(A,B,C):-a(A),d(B,C).
c(A,B,C):-b(A),d(B,C).
d(B,C):-a(B),!,a(C).
d(B,):-b(B).

32

c(A,B,C)

-

c(A,B,C):-a(V@‘:I(B,C).

d(B,C):-a(B),!,a(C);

“\

apt). a(2).

Backtrack once

>

a(l).

a(2).

a(3).

b(apple).

b(orange).
c(A,B,C):-a(A),d(B,C).
c(A,B,C):-b(A),d(B,C).
d(B,C):-a(B),!,a(C).
d(B,):-b(B).

33

a(l).

a(2).

a(3).

b(apple).

b(orange).
c(A,B,C):-a(A),d(B,C).
c(A,B,C):-b(A),d(B,C).
d(B,C):-a(B),!,a(C).
d(B,):-b(B).

35

c(A,B,C)

I

c(AB,C):-a(A),d(B,C),

A
2 v

Backtrack twice

al). . . /3

v
apx). apg).

a(l).
a(2).
a(3).
b(apple).
b(orange).

c(A,B,C):-a(A),d(B,C).
c(A,B,C):-b(A),d(B,C).

d(B,C):-a(B),!,a(C).

d(B,):-b(B).

a(l).
a(2).
a(3).
b(apple).
b(orange).

34

c(A,B,C):-a(A),d(B,C).
c(A,B,C):-b(A),d(B,C).

d(B,C):-a(B),!,a(C).

d(B,):-b(B).

36

c(A,B,C)

-

C(AB,C):-a(A)d(B,C).

/ﬂ

\ -
a(1). \\

v

d(B,C): h(B),',a(C)
fﬁ
- \/
><

v
apy). X

Backtrack three tlmes

c(A,B,C)

-

¢(AB,C):-a(R),d(B,C).

—

apx). a(2).

d(B,C):-a(B),!,a(C).

Can try to derive d/2 afresh...

a(l).

a(2).

a(3).

b(apple).

b(orange).
c(A,B,C):-a(A),d(B,C).
c(A,B,C):-b(A),d(B,C).
d(B,C):-a(B),!,a(C).
d(B,):-b(B).

a(l).

a(2).

a(3).

b(apple).

b(orange).
c(A,B,C):-a(A),d(B,C).
c(A,B,C):-b(A),d(B,C).
d(B,C):-a(B),!,a(C).
d(B,):-b(B).

39

(1).
c(A,B,C) 2(2)

a(3).
b(apple).
b(orange).
c(A,B,C):-a(A),d(B,C). c(A,B,C):-a(A),d(B,C).
H_)

c(A,B,C):-b(A),d(B,C).

PR d(B,C):-a(B),!,a(C).
y / d(B,_):-b(B).
apt). a(2).
First a/1 has other solutions 3

Cut can change the logical meaning
of your program

Ef:i’b' pe(@aab)ve
B.:g'!'b' pe(a@aAb)Vv(-aAc)

This is a red cut — DANGER!

40

Cut can be used for efficiency

Feasons
split([1,[1,[1).
split([H|T],[H|L],R) :- H < 5, split(T,L,R).
split([H|T1,L, [H|R]) :- H >= 5, split(T,L,R).

If the second clause succeeds the third cannot
- we don't need to keep a choice point
- yet the interpreter cannot infer this on its own

41

We could go one step further at the
expense of readability

split([1,[]1,[1).
split([H|T],[H|L],R) :- H < 5,!, split(T,L,R).
split([H|T1,L, [H|R]) :- split(T,L,R).

The comparison in the third clause is no longer
necessary
- but each clause no longer stands on its own
- stylistic preference — I avoid doing this

43

Cut can be used for efficiency

Feasons
split([],[1,[1).
split([H|T1,[H|LI,R) :- H < 5,!, split(T,L,R).
split([H|T],L, [H|R]) :- H >= 5, split(T,L,R).

Add a cut to make the orthogonality explicit
- This is a green cut — it just helps program
execution go faster

42

Cut gives us more expressive power

isDifferent(A,A) :- !,fail.
isDifferent(,).

isDifferent(A,B) is true iff A and B do not unify

Questions that you should be able to answer:
— Is this a red or a green cut?
- How can you define the fail/0 predicate?

44

Using cut, we can implement “not”
(Negation by failure)

not(A) :- A,!,fail.
not().

not(A) is true if A cannot be shown to be true
— This is negation by failure

Negation by failure is based on the closed world
assumption:

Everything that is true in the “world” is stated (or
can be derived from) the clauses in the program

Negation Gotcha!

good food(theWrestlers).
good food(theCambridgelodge) .
expensive(theCambridgelLodge).

bargain(R) :- not(expensive(R)),
good food(R).

we can ask the same query:

- bargain(R) Clause body terms
and Prolog replies: have been
- no swapped around!

47

Negation Example

good food(theWrestlers).
good food(theCambridgelLodge).
expensive(theCambridgelLodge).

bargain(R) :- good food(R),
not (expensive(R)).

we can ask:
- bargain(R)

and Prolog replies:
- R = theWrestlers

46

Why?

good food(theWrestlers).
good food(theCambridgelLodge).
expensive(theCambridgelLodge).

bargain(R) :- not(expensive(R)),
good food(R).

Prolog first tries to find an R such that
expensive(R) is true.

- therefore not(expensive(R)) will fail if there are any
expensive restaurants

48

We sometimes identify the way to
use parameters of a rule

Prolog's non-logical properties can make it important
whether or not an argument to a predicate is bound
% indicates a comment to the end of that line
% this comment in some hypothetical code is
% describing how to query myrule(+A,+B,-C,-D)
The convention for comments about rule parameters:
+X is a ground term
-X is a variable term
?X means it does not matter

Query “myrule” with two ground (input) terms A and B
and two variable (output) terms C and D “9

Databases

Information can be stored as tuples in Prolog's
internal database

tName (dme26, 'David Eyers').
tName (awm22, 'Andrew Moore').

tGrade(dme26, 'IA',2.1).
tGrade(dme26, 'IB',1).
tGrade(dme26, 'II',1).
tGrade(awm22, 'IA',2.1).
tGrade(awm22, 'IB',1).
tGrade(awm22, 'II',1).

51

Prolog variables and quantifiers

When R is not bound, quantifiers need attention

expensive(R)
- “There exists an R that is expensive”.

not (expensive(R))
- “There does not exist an R that is expensive”.
- In other words, “for all R, not expensive(R)".

50

Databases

We can now write a program to find all names:

gName(N) :- tName(,N).

Or a program to find the full name and all grades for
dme26.

gGrades(F,G) :- tName(C,F), tGrade(C,G).

Further exercises are in the problem sheet...

52

Prolog lecture 4

* Playing Countdown
« Iterative deepening
* Search

Countdown Numbers

Strategy — generate and test

Maintain a list of symbolic arithmetic terms

— initially this list consists of ground terms e.g.:
[gnd(25),gnd(6),gnd(3),gnd(3),gnd(7),gnd(50)]1]

- if the head of the list evaluates to the total then
succeed

- otherwise pick two of the elements, combine them
using one of the available arithmetic operations, put
the result on the head of the list, and repeat

Countdown Numbers

Select 6 of 24 numbers tiles
- large numbers: 25,50,75,100
- small numbers: 1,2,3...10 (two of each)

Contestant chooses how many large and small
Randomly chosen 3-digit target number

Get as close as possible using each of the 6 humbers at most
once and the operations of addition, subtraction,
multiplication and division

- No floats or fractions allowed

Countdown Numbers

Prerequisite predicates:

eval(A,B)
- true if the symbolic expression A evaluates to B
choose(N,L,R,S)
- true if R is the result of choosing N items from L and
S is the remaining items left in L
arithop(A,B,C)

- true if C is a valid combination of A and B in the
context of the game

* e.g. arithop(A,B,plus(A,B)).

Countdown Numbers Countdown Numbers

arith op(+A, +B, -(C)] .
unify C with a valid binary operation The code almost explains itself!
of expressions A and B
arithop(A,B,plus(A,B)).
SISl B PLIB A B % Soln evaluates to the target number
arithop(A,B,minus(A,B)) :- eval(A,D), eval(B,E), D>E. countdown([Soln|],Target,Soln) :-
arithop(B,A,minus(A,B)) :- eval(A,D), eval(B,E), D>E. eval(Soln,Target) .

% don't allow mult by 1

arithop(A,B,mult(A,B)) :- eval(A,D), D \==1,

o P o°
o o° o°

)
6
%
%

eval(B,E), E \== 1. % Combine from L to form new experiment
% div is not commutative and don't allow div by 0 or 1 countdown(L,Target,Soln) :-
arithop(A,B,div(A,B)) :- eval(B,E), E \== 1, E\==0, choose(2,L, [A,B],R),
eval(A,D), 0 is D rem E. .
arithop(B,A,div(A,B)) :- eval(B,E), E \== 1, E \== 0, arithop(A,B,C),
eval(A,D), 0 is D renm E. countdown([C|R],Target,Soln).
5
Closest Solution Searching
No exact solutions? Find the closest solution instead. -
- This is iterative deepening and will be covered in your T T \\
Artificial Intelligence course A TSN\
% our result value R is D different from the Target a /\) nit“
solve([Soln|],Target,Soln,D) :- eval(Soln,R), N / S
diff(Target,R,D). T
% recursive case is akin to the equivalent countdown/3 [N A
solve(L,Target,Soln,D) :- choose(2,L,[A,B],R), N N S 4
arithop(A,B,C), NN N A
solve([C|R],Target,Soln,D). NN T Y

% search for a solution decreasingly close to the target
solve(L,Target,Soln) :- range(0,100,D),
solve(L,Target,Soln,D).

Searching: maze solution

Searching: represent the problem

11

Searching: solution and failed paths

Searching: possible paths

10

12

Game search space as a tree

A

.'/'I
>

=

—

H I S |

W

|1

o

1

ELS

B

u,—

LI[F][C|[H

O

We need to remember the route

).

travellog(A,A,[]
[A-B|St

A,A
travellog(A,C
route(A,B

)
solve(L) :- start(A),
travellog(A,B,L).

’

eps]) :

finish(

travellog(B,C,Steps).

B),

13

15

Finding a route through the maze

start(a).
finish(u).

route(a,qg).
route(g,l).
route(l,s).

£}ave1(A,A).
travel (A,C) :- route(A,B),travel(B,C).

solve :- start(A),finish(B), travel(A,B).

What if we have a cyclic graph?
B ,_N 0 . r
) - ;
G S - R]J
T K" . ’
F - —E

Cyclic Graphs

route(q,v).

route(v,d. [V] [P | R

17

3 Missionaries 1 boat

— The boat carries two people
- If the Cannibals outnumber the Missionaries they will eat them
- Get them all from one side of the river to the other?
19

Searching

Solution: maintain a set of places we've already
been — the closed set
- In SWI Prolog you can write \+ to mean not()

travelsafe(A,A,).
travelsafe(A,C,Closed) :-

route(A,B), \+ member(B,Closed),
travelsafe(B,C, [B|Closed]).

18

Towers of Hanoi

20

Umbrella problem

A group of 4 people, Andy, Brenda, Carl, & Dana, arrive in a car near a friend's
house, who is having a large party. It is raining heavily, & the group was forced to
park around the block from the house because of the lack of available parking
spaces due to the large number of people at the party. The group has only 1
umbrella, & agrees to share it by having Andy, the fastest, walk with each person
into the house, & then return each time. It takes Andy 1 minute to walk each way,
2 minutes for Brenda, 5 minutes for Carl, & 10 minutes for Dana. It thus appears
that it will take a total of 19 minutes to get everyone into the house. However, Dana
indicates that everyone can get into the house in 17 minutes by a different method.

How? The individuals must use the umbrella to get to & from the house, & only 2
people can go at a time (& no funny stuff like riding on someone's back, throwing
the umbrella, etc.).

Appending two Lists

Predicate definition is elegantly simple:

append([],L,L).
append ([X|T],L, [X|R]) :- append(T,L,R).

Run-time performance is not good though
- Procedural languages would not scan a list to append

Want to modify the end of the list directly
- Prolog can achieve this

21

Prolog lecture 5

* Data structures
* Difference lists
 Appendless append

append (L,L).

[1,
append ([X|TI1,L,[X|R]) :- append(T,L,R).

append([1,2],[3,4],A).

v

append([1|[2]1,[3,4],[1|V,]):-append([2],[3,4],V)).

v

append([2][111,(3,4],[2|V,]):-append([],[3,4],V,).

v

append([],[3,4],[3,4]).

A=[1]V,]

V=[2]V,]

V=[3,4]

3

Difference Lists

Instead of storing one list, store two
- Represent our original list as the difference between
these other two lists

We might represent the “normal” list [1,2,3] as
- [1,2,3,4,5]-[4,5] or
- [1,2,3,acr]-[acr] or
- [1,2,3|X]-X

It is the last form here that is key!

Difference List Append
... in a single list-linking step

1:(2:(3::[))

/

4:(5:(6::01))

Difference List Append

Append one list to another...

1:(2:(3::101))

4:(5:(6::01))

Difference List Append

Prolog syntax for the first list is [1,2,3]|A]

Difference List Append

dapp(L1,V1,L2,V2,L3,V3).

T

First list The variable at the
end of the first list

e.g. [1,2,3|V1]

Difference List Append
(implementation)

L1 110::111:: ::lln::Vl
L2 120::121:: ::12n::V2
L3 110:: ::lln::120::

dapp(L1-V1,L2-V2,L3-V3)

I WA

n

:- V1=L2,

L3=L1,
V3=V2.

V2

10

Difference List Append

By convention we write our difference list pair as

A-B

But we could also write:
differenceList(A,B)

A+B
A*B, etc

dapp(L1-V1,L2-V2,L3-V3)
- Append difference list L2-V2 to L1-V1 and unify the
result with L3-V3.

Difference List Append

(implementation)

. This is the value of the list we want to represent|

and so our difference list has to be
[110,111,112. ..|Vv1l]-v1

V3=V/Z.

11

Difference List Append
(implementation)

L1 110::111:: ::lln::Vl
L2 120::121:: ::12n::V2
L3 110:: ::lln::120:: ::12n::V2
dapp(L1-V1,L2-V2,L3-V3) :- V1=L2,
L3=L1,
V3=V2.

12

Difference List Append
(implementation)

So we have:

dapp(L1-B,B-V2,L3-V3) :- L3=L1,
V3=V2.

But we know that L3 and L1 must be the same
— Replace them with a new variable A:

dapp (A-B,B-V2,A-V3) :- A=A,
V3=V2.

14

Difference List Append
(implementation)

dapp(L1-V1,L2-V2,L3-V3) :- V1=L2,
L3=L1,
V3=V2.

We know that V1 and L2 must be the same:
- replace all instances of V1 and L2 with new variable B
- (we can remove the B=B of course)

dapp(L1-B,B-V2,L3-V3) :- B=B,
L3=L1,
V3=V2.

13

Difference List Append
(final implementation)

Now we have:
dapp(A-B,B-V2,A-V3) :- V3=V2.

But we know that V3 and V2 must be the same
- Substituting a new variable C:

dapp(A-B,B-C,A-C) :- C=C.

But that simplifies to the following final answer
- Gradual substitution like this is a useful technique

dapp(A-B,B-C,A-C).

15

Representing empty Difference Lists

An empty difference list is an empty list with a
variable at its end ready for later binding.

- Let us call this variable A

- We've seen lists like [1,2]A]

If you understand the [---|L] syntax you will

appreciate that removing 1, 2 leaves (simply):
A

We write this in the conventional notation as:
A-A

16

Determine an answer first that does
not use Difference Lists

Take the first element off the first list (H) and append
it after the tail (i.e. at the end) in the solution (R)

rotate([H|T],R) :- append(T, [H],R).

18

Another Difference List Example

Define a procedure rotate(X,Y) where both X and
Y are represented by difference lists, and Y is formed
by rotating X to the left by one element.

[14 marks]
1996-6-7

(This is the second example in your handout)

17

Rewrite with Difference Lists

Allocate “tail variables” to our original lists
- Give list [H|T] tail variable T1
- Give list R tail variable S

rotate([H|T],R)

becomes:

rotate([H|T]-T1,R-S) :-
dapp(T-T1,[H|L]-L,R-S).

:- append(T, [H],R).

Why is this term not [H|T1]-T1?

19

Rename variables to incorporate Rename variables to incorporate

difference list append difference list append
Recall: difference list append just shuffles vars From the previous slide:
rotate([H|T]-T1,R-S) :- rotate([H|T]-[H|L],R-S) :
dapp(T-T1, [H|L]-L,R-S). dapp(T-[H|L], [H|L]-L,R-S).
Rename T1 to be [H|L]: unify with B in dapp/3 Rename R to be T: thus unifying with A in dapp/3
rotate([H|T]-[H|L],R-S) :- rotate([H|T]-[H|L],T-S) :
dapp(T-[H|L], [H|L]-L,R-S). dapp(T-[H[L], [H|L]-L,T-S).
dapp(A-B,B-C,A-C). 20 dapp(A-B,B-C,A-C). 2t

Rename variables to incorporate
difference list append

From the previous slide: rotate([H|T]-[H|A],T-A).

rotate([H|T]-[H[L],T-S) :
dapp(T-[H|L],[H|L]-L,T-S).

Final Answer

Beautifully concise... but also somewhat opaque!
Rename S to be L: thus unifying with C in dapp/3

rotate([H|T]-[H|L],T-L) :- It is recommended that you comment any line of
dapp(T-[H|L], [H|L]-L,T-L). Prolog like this really, really thoroughly!

dapp call is now redundant and can be removed!

dapp(A-B,B-C,A-C). 2 23

Converting to difference lists

double([],[1]).

double([H|T], [R]|S]) :-
R is H*2,
double(T,S).

... add in the tail variables ...

double(A-A,B-B).

double([H|T]-T1, [R|S]-S1)
R is H*2,
double(T-T1,S-S1).

Towers of Hanoi Revisited

Move n rings from Src to Dest
- move n-1 rings from Src to Aux
- move the nth ring from Src to Dest
- move n-1 rings from Aux to Dest

Base case: move 0 rings from Src to Dest

24

26

Question

What does double([1,2,3]|T]-T,R) produce?

a) yes, R =[2,4,6|X]-X
b) no

c) yes, R = X-X

d) an exception

End

* Next lecture: solving Sudoku,
* constraint logic programming
» and where to go next...

25

Prolog lecture 6

* Solving Sudoku puzzles
 Constraint Logic Programming
* Natural Language Processing

Make the problem easier

Playing Sudoku

We can model this problem in
Prolog using list permutations

Each row must be a permutation of [1,2,3,4]
Each column must be a permutation of [1,2,3,4]
Each 2x2 box must be a permutation of [1,2,3,4]

Represent the board as a list of lists

A B|C D
E F|G|H
|]| K L
M N|O P

Scale up in the obvious way to 3x3

=Hm>
=G Mmoo

~-

~

~

~

~-

oOXonNO

~-

BL" 2 i

[

X11

X21

X31

X12

X22

X32

X13

X23

X33

X14 | X15| X16

X24

X34

X25

X35

X26

X36

X17

X27

X37

X18

xX28

Xx38

X19

X29

X39

The sudoku predicate is built from
simultaneous perm constraints

sudoku([[X11,X12,X13,X141]1,[X21,X22,X23,X24],
[X31,X32,X33,X34]1, [X41,X42,X43,X44]1]1) :-
%Irows
perm([X11,6X12,X13,X14],[1,2
perm([X21,X22,X23,X24],[1,2
perm([X31,X32,X33,X341]1,[1,2
perm([X41,X42,X43,X44],[1,2
%cols
perm([X11,6X21,X31,X41],[1,2
perm([X12,X22,X32,X42],[1,2
1,2
1,2

perm([X13,X23,X33,X43],[1,
perm([X14,X24,X34,X441,[1,
%boxes

perm([X11,X12,X21,X221,[1,2
perm([X13,X14,X23,X241,[1,2
perm([X31,X32,X41,X42],[1,2
perm([X33,X34,X43,X441,[1,2

Brute-force is impractically slow

There are very many valid grids:

X4l

X51

X61

X42

X52

X62

X43

X53

X63

Xa4

X54

X64

X45

X55

X65

X46

X56

X66

Xa47

X357

Xe7

X48

X58

X68

X49

X59

X69

X71

X8l

X91

X72

X82

X92

X73

X83

X93

X74

X84

X94

X75

X85

X95

X76

X86

X96

X77

X87

X97

X78

X88

X98

X79

X89

X99

6670903752021072936960 ~ 6.671 x 10°!

Our current approach does not encode the
interrelationships between the constraints

For more information on Sudoku enumeration:
http://www.afjarvis.staff.shef.ac.uk/sudoku/

Prolog programs can be viewed as
constraint satisfaction problems

Prolog is limited to the single equality constraint:
- two terms must unify

We can generalise this to include other types of
constraint

Doing so leads to Constraint Logic Programming
- and a means to solve Sudoku problems

Sudoku can be expressed as
constraints

First, we express the variables and domains

Ae {1,2,3,4} Be {1,234

Ce{1,2,3,4 D € {1,2,3,4} A B|C D
Ee {1,234 Fe {1,234} G | H
Ge {1,234 He {1,2,3,4}

Ie{1,23,4} Je{1,2,3,4} K L
K e {1,2,3,4} L e {1,2,3,4

M e {1,2,3,4> N e {1,2,3,4) O P
0 e {1,2,3,4} Pe {1,2,3,4}

11

Given:

Consider variables taking values
from domains with constraints

- the set of variables
- the domains of each variable
- constraints on these variables

We want to find:
- an assignment of values to variables satisfying the

constraints

10

Express Sudoku as a Constraint

ZE —-|m B

Z2 =|7T W

o "l 0

T | I ©

Graph
{1,2,3,4 {1,2,3,4)

{1234 4 P A g {(1.2.3.4}
{1,2,34} c {1,234}
{1234} m D {1.2.3.4}
1,2,34} L E {1,2,3,4)
{1,2,3,4} K F {1,2,3,4)
{1,2,3,4) J G {1,2,3,4)
{1,2,3,4} {1,2,3,4)

12

Constraints: All variables in rows Constraints: All variables in columns

are different are different
Edges represent inequalities between variables
{1,2,3,4} {1,2,3,4} {1,2,3,4} {1,2,3,4}
123415 P A {1234 12345 P A {1234
(1234 n / o {1234 {1234} c (1234

{1234} My ~p {1,234} {1,2,3,4} m D {1.2.3,4}

{1,234} L = —E {1,2,3,4} {1,2,3,4} L E {1,2,3,4}

(1234 K TF{1234) {12,341 K F {1,2.3,4)
A B|C D {1,2,3,4} : H G {1,2,3,4} A B|C D (1234) : G {1,2,3,4}
E F|c H {1,2,3,4} {1,2,3,4} E_F|G H {1,2,3,4} {1,2,3,4}
I J K L 1]| K L
M N|O P 13 M N|O P

Constraints: All variables in boxes

are different All constraints shown together

{1,2,3,4} {1,2,3,4} {1,2,3,4} {1,2,3,4}

{1,2,3,4} - P A B {1,2,3,4} {1,2,3,4} &5 P B {1,2,3,4}
{1234} N c {1234 1234y N\ l\ | 7 (1234
(1234 p (1234 (1234) M SNHH s p (1234

SRS %
1,2,3,4 1,2,3,4 1,2,3,4} | < SN 1,2,3,4
{ bL E { } { b L ----'-/”'?"\\ }
{1.23,4} K F {1,2,3,4} {1,2,3,4} K F {1,2,3,4}

(1,2,3,4}) o G {1,2,3,4} 1,2,3,4)) - G {1,2,3,4)

=2 —-|m >

o ~A| O 0O

H {1,2,3,4} {1,2,3,4} {1,2,3,4} & {1,2,3,4}

15

Reduce domains according to

initial values

{1,2,3,4)
P A
{1,234} .

{1,2,3,4}
B {1,2,3,4}

L c {4y

A q'f.;-‘iﬁ_--
TN > E {1,.2,3.4}
/ f‘\’\ \Y

Ky F 2y
1,2,3,4}] I H. G {1,2,3,4}
{1,2,3,4} {1,2,3,4}

17

Update constraints connected to C

We will remove 4 from the

A B|C D
S domain of A, Band D
I)| K L {1,2,3,4}
MINjO P| {1234} 4 P A .
BF N C
{1234} m ~D
{1,2,3,4} L E {1.2,3,4}
{1y K F {2}
1,2,3,4}) G {1,2,3,4}
{1,2,3,4} {1,2,3,4}

19

When a domain changes we update

1 {1,2,3,4}

3 {1234 o P A

&
LA

{1,234} L =
11K

B

IR

its constraints

{1,2,3,4}

{1,2,3,4}
c @y

) ’/‘f__ D {1.2.3.4}

Ay
\‘\j'&é’!&u‘!&.‘

> £ {1,2,3,4}
F {2y

The asterisk (*) notatic;n reminds
us that all constraints which connect
to this variable need updating

5 {1,2,3,4}
2,3,4}

18

Update constraints connected to C

We add asterisks to A, B and D

A B|C D
] ...but will defer looking at them
Ik oL {1,2,3,4}
MINjO P {1234} P A .
BN Yo
{1,234} m D
{1,2,3,4} L E {1,2,3,4}
{1y K F {2}*
1,2,3,4)) G {1,2,3,4)
{1,2,3,4} {1,2,3,4}

20

Update constraints connected to C

Now examine column

A B- Cc D .
5 F‘ el constraints
] I {1,2,3,4} {1,2,3}*
M oNofr] {1234 4 P A g {123V
B Y c
{1,2,3,4} m D {1.2.3)
{1,2,3,4} L E {1,2,3,4}
{1 K F {2}
{1,2,3,4}] I G {1,2,3,4}
{1,2,3,4} {1,2,3,4}

21

Update constraints connected to C

A B- C D
E F| G J|H
I JTRIC {1,2,3,4}
M NI.O Pl {123} o P
T B N
{1,234} m
{1,2,3,4} L
{13 K
(12,34}
{1,2,3,4}

Note that D and G have
already had their domains

1.2.3)" updated
& o {1,2,3}1
c
D {123}
E {1,2,3,4)
F {2}*
G {1,2,3y
{1,2,3,4}

23

Update constraints connected to C

Al gl c o
ETFI[G [H
] I S {1,2,3,4} {1,2,3}
M NI O P {1,2,3}* o) P A B{112’3}*
T @y o
{1,234} m p {123}
{1,2,3,4} L E {1,2,3,4}
(ay K F {2y
234 G {123y
{1,2,3,4} {1,2,3,4}

22

Update constraints connected to C

We have exhausted C's

A Bi c |D)
e I constraints for now
LT {1,2,3,4} {1,2,3)*
moM[ofP] {123 P A g (123
- @Y N L
{1234} m D {1.2.3}"
{1234} L E {1,2,3,4}
{1k F {2y
1,2,3,4)) G {1,2,3)*
{1,2,3,4} {1,2,3)*

24

Update constraints connected to F Update constraints connected to F
| | | |

A B|C D A B|C D
E F|G H E F|G H
I J K L {1,2,3,4} {1,2,3}* T J K C {1,2,3,4} {1,2,3}
MON[O P {123 o P A B{1,2,3}* MoN[O P {123 P A B{1,2,3}*
BN c B N c {4
{1234} m p {1.2,3}" {1,2,3,4} m D {1.2.3)"
{1234} L ~E {1234} L 7~ E
{1y K F {1y K F
{1,234} G (12,34} G
(234 M (234 H
Update constraints connected to F Update constraints connected to F
Al B \ C D \ ‘ Al B ‘ c D ‘
E FIIG H E FING H
T Ik T {1,2,3,4} {1,2,3}* 7T IK C {1,2,3,4} {1,2,3}*
M N fJo Pl {123 o P A B{1,2,3}* M NfJo P 123 o P A B{1,3}*
BN c BN c {4
{1234} m p {1.2,3}" {1,2,3,4} m D {1.2.3)"
{1,2,3,4} L _E {134y {1,2,3,4} L E {1,34¢
{13K F {2y 1K F {2
{1,2,3,4y Loy Sy 134 |G Gy
{1,2,3,4) {1,3}* {1,2,3,4} 1,3}

27 28

Update constraints connected to F

\ Al B \ C D \
E F G H
Tt {1,2,3,4) {1,2,3)*
M Njo Pl {1.23F 4 P A B{1’3}*
By N c @
{1234} m o {123y
(1,2,3,4} L E {1,3.4)
{17K F {2}
(1,34 [G {1,3¢
{1,2,3,4) {1,3}*

29

Update constraints connected to K

A B|C|D
E F|G H
| J K L {17213’4} {1!3}*
MON[OTPT {123 P A B{1’3}*
{3Y N c 4
{1,2,3,4} m p {1.2.3}"
i E {1,34}
K F {2}
J | G {1,3)
{13}

31

Update constraints connected to F

| We have exhausted F's

|

Al B |JC D .
el elle w constraints for now
Tk T {1,2,3,4} {1,3p*
M Nlo Pl {123) 4 P A B{1’3}*
BY N c @
{1234} m D {1.2.3)"
{1234} L E {1.34)
{1k F {2}
ey 1oL Gy
{1,2,3,4} {1,3)*

30

Update constraints connected to K

A B|C D
E F|[G H
I)| K L {1,2,3,4} {1,3}
[MIN[O TP {123 4 A B{1’3}*
I c @
{1,234} m D {1,2,3}*
L E {1.3.4})
K F {2}
J G {1,3p

'oH gy

32

Update constraints connected to K

A Bf| C D
E Fi| G JH
Y [I {1,2,3,4} {1,3}*
(MNP] {1.23) 4 A g (1:3Y
{3 N c 4
{1,2,3,4} m D {1.2.3)
{2,347 L E {1,344}
{1y K F {2}
3,4y J P g G {1,3*
{2,3,4y {1,3*

33

Update constraints connected to K

l

B
F
J

N

A
E
|

Oﬂlmﬁ

IBI—IU

{1,2,3,4} {1,3}*
M 237 o P A g {131
BY N c @
{1,234} m p {1.2,3}"
{2,3,4}" L E {1,3.4})
{1y K F {2)
a1 G {3y

{2,3,4}* o {1,3}*

35

Update constraints connected to K

A | BJ| C D
E Fil G jH
(A | IS {1,2,3,4} {1,3}
KR IEEA 231 o P A 5 {1,3}*
B N c @
{1,234} m D {1,2,3}*
{2,3,4}* L E {1,344}
(y K F {2
pal G {3y
{2,3,4}* {1,3}*

34

Update constraints connected to K

Jus]
-n—l

oxlmn

—||jm =

D
H
L
P

J {2,3,4}* {1,3}
M N 7] {231 o P A 5 {1,3}*
BY N c @
{1,234} m p {1.2.3}"
{2,34}) L E {134}
{1y K F {2}
a1 G {3y

{2,3,4}* o {1,3}*

36

Update constraints connected to K

A
E
|

l

Oﬂlmﬁ

B
F
J

M N

We have exhausted K's

: constraints for now
L {2,3 .4y {131
P 23y o R A SO
R Y c
{1,234} m p {1,231
{2,347 L E {1.34)

{11 K F {2}

gar) G {3y

{2,3 .4y {1,3)*

37

Update constraints connected to D

No values can be eliminated directly

A B|C D
T (we should see the answer though!)
I)KL {2,3,4}*
M N|O P 23 5 ® & g (1.3
{8} N c 4
{1234} m D
2,34y L E {134}
{11 K F {2}
@ay) G {3y
{2,3,4)* {1,3)*

39

Update constraints connected to D

A B|C D
E|F|G H
I)| K L {2,3,4}"
M N|O P {231 o P4 5 {1,3}*
8¥ N c 4
{1,234} m p {1.2.3}"
{2,3,4}* L E {1,3,4}"
{1} K F {2}
Bar G {3y
{2,3,4}" {1,3}*

38

Update constraints connected to D

A | BJ| C§ D
E Fl| Gl A
I JTR¢C {2,3,4}* {1,3}
M N|oO| P {231 o P4 B{1’3}*
{38 N c 4
{1,234} m D {1,2,3}*
{2,3,4} L E {1,344}
{1} K F {2}
B4y) L Gy
{2,3,4}* {1,3}*

40

Change can occur in source domain

{ Single 3 at G eliminates D's 3
A B C D
E F G H
L RTT {2,3,4)* (1,3
M| N|Of P {2,3)* o P A B{1’3}*
BN c @
{1’2’3’4} M =D {1,2}*
{234y L E {1,3,4)

{11 K F {2}

a)G
{2,3,4} {1,3}

41

Iterate the algorithm to convergence
(no further changes occur)

Why will the algorithm eventually converge?
{4} {3}

43

Change can occur in source domain

If the source domain changes we mark all its
constraints for update again

{2,3,4}" {1,3}
237 5 £ 4 g (131
BN c @
{1,234} m ~D {1,2}*

{2,3,4}* L E {1,3,4}"

(1) K F (2)
a1 G@y
{2,3,4}) {1,3}*

42

Outcome 1: Single valued domains

We have found a unique solution to the problem

N AW

W | &~ N
N =W B
A WL N

=

44

Outcome 2: Some empty domains

Our constraints are shown to be inconsistent
- therefore there is no solution to this problem

Variables
A e {1}
Be {12}
CcCe{1,2}

Constraints
A #B, A #C, B #C

Outcome 2: Some empty domains

C

{1}

N\

{1.2}

B
{1,2}

Our constraints are shown to be inconsistent
- therefore there is no solution to this problem

Variables
A e {1}
Be {12}
CcCe{1,2}

Constraints
A #B, A #C, B #C

C
{}

{1}

N\

B
{2}

45

47

Outcome 2: Some empty domains

Our constraints are shown to be inconsistent
- therefore there is no solution to this problem

{1}

Variables
A e {1}

A
B e {1,2) \
Ce{1,2 /

Constraints

A #B, A #C, B #C C B
{2} {2}

Outcome 3: Some multivalued

domains
4 {1,234} {3}
{12y p a {1}
5 83y N\ N @
{12y 2 {2}
{1’2’3} L ; E{4}
3 {1,2,3} k° F {2}
{4} G {1,2,3}

1.2 123

Not all combinations of these variable assignment
possibilities are global solutions though...

46

48

Outcome 3: Hypothesise labellings

To find global solutions from the narrowed
domains we hypothesise a solution in a domain
and propagate the changes

Backtrack if something goes wrong

Prolog can be used for parsing
context-free grammars

Here is a simple grammar:
s » 'a''b
s > 'a''c
s ¥ss

Terminal symbols:
a, b

Non-terminal symbols:
S

49

51

Using CLP in Prolog

- use module(library(bounds)).
valid4(L) :- L in 1..4, all different(L).

sudoku2 ([[X11,X12,X13,X14], [X21,X22,X23,X24],
[X31,X32,X33,X34],[X41,X42,X43,X44]11]1) :

validd([X11,X12,X13,X14]),valid4([X21,X22,X23,X241), pows
valid4([X31,X32,X33,X34]),valid4([X41,X42,X43,X44]),
valid4([X11,X21,X31,X41]),valid4([X12,X22,X32,X42]), s
valid4([X13,X23,X33,X43]),valid4([X14,X24,X34,X44]),
valid4([X11,X12,X21,X22]),valid4([X13,X14,X23,X24]), Boxes
valid4([X31,X32,X41,X42]),valid4([X33,X34,X43,X44]),

labeling([1, [X11,X12,X13,X14,X21,X22,X23,X24,
X31,X32,X33,X34,X41,X42,X43,X441]) .

Chapter 14 of the textbook has more information

Parsing by consumption

Write a predicate for each non-terminal that:

- consumes as much of the first list as is necessary to
match the non-terminal, and
- returns the remaining elements in the second list

These predicate evaluations will thus be true:

- s([a,b],[])
- s([alblcld]l[cld])

52

A Prolog program that accepts
sentences from our grammar

s->'a' |b|
s> |a| |C|

% match a single character s3ss
c([X|T],X,T).

% grammar predicates
S(In,Out) :- c(In,a,In2),
c(In2,b,0ut).
s(In,Out) :- c(In,a,In2),
c(In2,c,Out).
S(In,Out) :- s(In,In2),
s(In2,0ut).

Building a parse tree

% match a single character
c([X|T],X,T).

% grammar predicates
s(ab,In,Out) :- c(In,a,In2),
c(In2,b,0ut).
s(ac,In,Out) :- c(In,a,In2),
c(In2,c,Out).
s(t(A,B),In,0Out) :- s(A,In,In2),
s(B,In2,0ut).

:- s(Result,[a,c,a,b,a,b]l,[]).

53

55

Prolog DCG syntax

Prolog provides us with a shortcut for
encoding Definite Clause Grammar
(DCG) syntax.

s --> [a],[b].
s --> [a],[c].
S --> 5,5,

This will both test and generate:
- S([alclalb]l[])'
- s(A[D).

s>'a' |b|
s> |a| |C|
S=2SSs

Prolog's DCG syntax helps us again

Unfortunately the DCG syntax is not part of the

ISO Prolog standard

- Almost all modern compilers will include it though

s(ab) --> [a],[b].
s(ac) --> [al],[c].
s(t(A,B)) --> s(A),s(

B) .

54

56

Parsing Natural Language
(back to Prolog's roots)

This is a very limited English

s -->np,vp.
np --> det,n. grammar subset.
vp --> V.
vp --> v,np.
Things get complicated very
n --> [cat]. quickly!
n --> [dog]. - see the Natural Language
v --> [eats]. Processing course next year

det --> [the]. (Prolog is not a pre-requisite)

57

We can also handle agreement

S(N) --> np(N),vp(N).
np(N) --> det,n(N).
vp(N) --> v(N).

Vp(N) --> v(N),np(_).

n(s) > [cat].

n(s) > [dog]. We consider only
n(p) --> [cats]. third-person

v(s) --> [eats]. constructions herel!
v(p) > [eat].

det -> [the].

59

S
N
np /VP .
/ \ verb np
AN
det noun W det noun
} } } }
the dog eats the cat
S
AN
np(p) ;D(Q “
verb nps
(p) a4
det n(p) W det n(s)
} } } }
the <cats eat the dog

58

60

Real Natural Language Processing

Things get much more complicated very quickly

Ambiguities, special cases and noise all make the
approach we have demonstrated hard to scale
— Although people have definitely tried!

Closing Remarks

Foundations of Functional Programming (Part IB)
- Building computation from first principles

Databases (Part 1B)
- Find out more about representing data and SQL

Artificial Intelligence (Part 1B)
- Search, constraint programming and more

C & C++ (Part 1B)
- Doing useful stuff in the real world

Natural Language Processing (Part II)
- Parsing natural language

61

63

Closing Remarks

Declarative programming is different to Functional or
Procedural programming
- Foundations of Computer Science & Programming in Java

Prolog is built on logical deduction
- formal explanation in Logic & Proof

It can provide concise implementations of algorithms such as
sorting or graph search
- Algorithms I & Algorithms II

62

End

C

You shoot yourself in the foot.

C++
You accidentally create a dozen instances of yourself and shoot
them all in the foot. Providing emergency medical care is
impossible since you can't tell which are bitwise copies and which
are just pointing at others and saying, "That's me over there."

Prolog
You explain in your program that you want to be shot in the foot.
The interpreter figures out all the possible ways to do it, but then
backtracks completely, instead destroying the gun.

Prolog supervision work

Michaelmas 2008
David Eyers <David.Eyers@cl.cam.ac.uk>
Original author Dr Andrew Rice

1 Introduction

These questions form the suggested supervision work for the Prolog course. All students should attempt
the basic questions. Ideally, students should ensure that they have access to a Prolog enviornment, and
test their work within it. Those questions marked with an asterisk are more difficult although all students
should be able to answer them with the help of their supervisor. Questions marked with a double asterisk
are particularly challenging and are beyond the level required for producing a good answer in the exam.

Prolog contains a number of features and facilities not covered in the lectures such as: assert, findall and
retract. Students should limit themselves to using only the features covered in the lecture course and are
not expected to know about anything further. All questions can be successfully answered using only the
lectured features.

Students are encouraged to contact me by email with bug-reports and solutions to double-asterisk questions.

2 Lecture 1

2.1 Unification

1. Unify these two terms by hand:

o tree(tree(tree(1,2),A,B),tree(C,tree(E,F,G)))
¢ tree(C,tree(Z,0))

2. Explain Prolog’s behaviour when you unify a(A) with A.

3. Relate unification with ML type inference

2.2 The Zebra Puzzle

1. Implement and test the Zebra Puzzle solution

2. Explain how Clue 1 has been expressed in the Zebra Puzzle query

3 Lecture2

3.1 Encoding arithmetic in Prolog

The is operator in Prolog evaluates arithmetic expressions. This builtin functionality can also be modelled
within Prolog’s logical framework.

Let the atom i represent the identity (1) and the compound term s(A) represent the successor of A. For
example 4 = s(s(s(1)))

Implement and test the following rules:

1. prim(A,B) which is true if A is a number and B is its primitive representation

2. plus(A,B,C) which is true if C is A+B (all with primitive representations, A and B are both ground
terms)

3. mult(A,B,C) which is true if C is A*B (all with primitive representations, A and B are both ground
terms)

The development of arithmetic (and general computation) from first principles is considered more formally
in the Foundations of Functional Programming course.

3.2 List Operations
1. Explain the operation of the append/3 clause

append ([1,A,A

1/A,R).
append ([H|T],A, [HIR]) :- append(T,A,R).

2. Draw the Prolog search tree for perm([1,2,3],A).

3. Implement a clause choose(N,L,R,S) that chooses N items from L and puts them in R with the
remaining elements in L left in S

4. * What it the purpose of the following clauses:
a([HIT]) := a([HIT],H).
a(ll,o).
a([H|T],Prev) :— H >= Prev, a(T,H).

5. * What does the following do and how does it work?:

b(X,X) :— a(X).
b(X,Y) :- append(A, [H1,H2|B],X), H1 > H2, append(A, [H2,H1|B],X1),
b(X1,Y).

3.3 Generate and Test

The description of these problems will be given in the lecture.

1. Complete the Dutch National Flag solution
2. * Complete the 8-Queens solution
3. * Generalise 8-Queens to n-Queens

4. Complete the Anagram generator. In what situations is it more efficient to Test-and-Generate rather
than Generate-and-Test?

4 Lecture 3

4.1 Symbolic Evaluation

1. Explain what happens when you put the clauses of the symbolic evaluator in a different order

2. Add additional clauses to the symbolic evaluator for subtraction and integer division (this is the //
operator in Prolog i.e. 2 is 6//3)

4.2 Negation

State and explain Prolog’s response to the following queries:

1. X=1.

2. not(X=1).

3. not(not(X=1)).

4. not(not(not(X=1))).

In those cases where Prolog says ‘yes’ your answer should include the unified result for X.

4.3 Databases

We can use facts entered into Prolog as a general database for storing and querying information. This
question considers the construction of a database containing information about students, their colleges and
their grades in the various parts of the CS Tripos.

Each fact in our Prolog database corresponds to a row in a table of data. A table is constructed from rows
produced by facts with the same name. The initial database of facts is as follows:

tName (dme26, 'David Eyers’).
tName (awm22, " Andrew Moore’) .

tCollege (dme26, ’'King’’s’).
tCollege (awm22, ’'Corpus Christi’).

tGrade (dme26, " IA’ ,2.1) .
tGrade (dme26, " IB’,1) .
tGrade (dme26,’I1’,1).
tGrade (awm22,"IA’,2.1) .
tGrade (awm22,"IB’,1).
tGrade (awm22,’I1’,1).

As an example, this database contains a table called ‘tName’ which contains two rows of two columns.
The first column is the CRSID of the individual and the second column is their full name.

4.3.1 Partl

1. Add your own details to the database.
2. Add a new table tDOB that contains CRSID and DOB.

3. Alter the database such that for some users their college is not present (this final step is necessary for
testing your answers to the questions in Part 2)

4.3.2 Part2

The next task is to provide rules and show queries that implement various queries of the database. You
should answer each question with the Prolog facts and rules required to implement the query and also an
example invocation of those rules.

For example:

[)

% The full name of each person in the database
gFullName (A) :— tName(_,A).

% Example invocation
% gFullName (A) .

Each query should return one row of the answer at a time, subsequent rows should be returned by back-
tracking.

For the example above:

?— gFullName (A7) .
A = ’'David Eyers’ ;

A = ’'Andrew Moore’

 The descriptions that follow provide a plain English description of the query that you should imple-
ment, followed by the same query in SQL.

* SQL (Structured Query Language) is the industry standard language currently used to query rela-
tional databases—you will see more on this in the Databases course.

e The ‘? notation in the SQL statements derives from the use of prepared statements in relational
databases where (for efficiency) a single statement is sent to the database server and repeatedly
evaluated with different values replacing the ‘?’. Interested students can consult the Java Prepared-
Statement documentation.

1. Full name and College attended.
SELECT name,college FROM tName, tCollege WHERE tName.crsid = tCollege.crsid

2. Full name and College attended only including entries where the user can choose a single CRSID to
include in the results.
SELECT name,college FROM tName, tCollege WHERE tName.crsid = tCollege.crsid AND
tName.crsid = ?

3. Full name and College attended or blank if the college is unknown.
SELECT name,college FROM tName LEFT OUTER JOIN tCollege ON tName.crsid = tCollege.crsid

4. Full name and College attended. The full name or the college should be blank if either is unknown.
SELECT name,college FROM tName FULL OUTER JOIN tDOB ON
tName.crsid = tCollege.crsid

5. * Find the lowest grade where the CRSID is specified by the user. Note that this predicate should
only return one result even when backtracking.
SELECT min(grade) FROM tGrade WHERE crsid = ?

6.

** Find the number of people with a First class mark
SELECT count(grade) FROM tGrade WHERE grade = 1

** Find the number of First class marks awarded to each person. Your output should consist of a
tuple (CRSID,NumFirsts) that iterates through all CRSIDs which have at least one First class mark
upon backtracking

SELECT crsid,count(grade) FROM tGrade WHERE grade=1 GROUP BY crsid

Hint: This is not the number of rows with First class marks in the tGrade table. You will need build a
list of First class CRSIDs by repeatedly querying tGrade and checking if the result is already in your
list. Every time you find a new unique CRSID, increment an accumulator which will form the result.

5 Lecture 4

5.1

1.
2.

5.2

Countdown Numbers Game

Type in the example code which finds exact solutions from the lectures and test it;

Implement the predicate range(Min,Max,Val) which unifies Val with Min on the first evaluation, and
then all values up to Max-1 when backtracking;

Get the iterative deepening version of the numbers game working.

Graph searching

Implement search-based solutions for:

1.

Missionaries and Cannibals: there are three missionaries, three cannibals and who need to cross
a river. They have one boat which can hold at most two people. If, at any point, the cannibals
outnumber the missionaries then they will eat them. Discover the procedure for a safe crossing.

* Towers of Hanoi: you have N rings of increasing size and three pegs. Initially the three rings are
stacked in order of decreasing size on the first peg. You can move them between pegs but you must
never stack a big ring onto a smaller one. What is the sequence of moves to move from all the rings
from the first to the the third peg.

* Umbrella: A group of 4 people, Andy, Brenda, Carl, & Dana, arrive in a car near a friend’s house,
who is having a large party. It is raining heavily, & the group was forced to park around the block
from the house because of the lack of available parking spaces due to the large number of people
at the party. The group has only 1 umbrella, & agrees to share it by having Andy, the fastest, walk
with each person into the house, & then return each time. It takes Andy 1 minute to walk each
way, 2 minutes for Brenda, 5 minutes for Carl, & 10 minutes for Dana. It thus appears that it will
take a total of 19 minutes to get everyone into the house. However, Dana indicates that everyone
can get into the house in 17 minutes by a different method. How? The individuals must use the
umbrella to get to & from the house, & only 2 people can go at a time (& no funny stuff like riding
on someone’s back, throwing the umbrella, etc.). (This puzzle included with kind permission from
http://www.puzz.com/)

6 Lecture5

6.1 Sorting

Implement the following sorting algorithms in Prolog:

1. Finding the minimum element from the list and recursively sorting the remainder.
2. Quicksort.

3. * Quicksort where the partitioning step divides the list into three groups: those items less than the
pivot, those items equal to the pivot and those items greater than the pivot. Explain in what situations
this additional complexity might be desirable.

4. * Quicksort with the append removed using difference lists. Note: you do not need to alter the
partitioning clauses.

5. * Mergesort

6.2 Towers of Hanoi

The Towers of Hanoi problem can be solved without requiring an inefficient graph search. Discover the
algorithm required to do this from the lecture notes or the web and implement it. Once you have a simple
list-based implementation rewrite it to use difference lists.

6.3 Dutch Flag

Earlier in the course we solved the dutch flag problem using generate and test. A more efficient approach
is to make one pass through the initial list collecting three separate lists (one for each colour). When you
reach the end of the initial list you append the three separate collection lists together and you are done.
Implement this algorithm using normal lists and then rewrite it to use difference lists.

7 Lecture 6

7.1 Sudoku Solver

Extend the CLP-based 2x2 Sudoku solver given in the lecture to a 3x3 grid and test it.

7.2 Cryptarithmetic

Here is a classic example of a cryptarithmetic puzzle:

S E N D
+ M O R E
M O N E Y

The problem is to find an assignment of the numbers 0-9 (inclusive) to the letters S,E,N,D,M,O,R,E,Y such
that the arithmetic expression holds and the numeric value assigned to each letter is unique.

We can formulate this problem in CLP as follows:

solvel([S,E,N,D], [M,O,R,E], [M,0O,N,E,Y]) :—
Var = [S,E,N,D,M,0,R, Y],
Var in 0..9, all_different (Var),
1000«S + 100*«E + 10%N + D +
1000«M + 1000 + 10xR + E #=
10000«M + 1000%O0 + 100N + 10+E + Y,
labeling ([],Var).

1. Get the example above working in your Prolog interpreter. How many unique solutions are there?

2. A further requirement of these types of puzzle is that the leading digit of each number in the equation
is not zero. Extend your program to incorporate this. The CLP operator for arithmetic not-equals is
#\=. How many unique solutions remain now?

3. * Extend your program to work in an arbitrary base (rather than base 10), the domain of your vari-
ables should change to reflect this. How many solutions of the puzzle above are there in base 16?

4. * Consult the Prolog documentation regarding the findall predicate. Use findall within a predicate
count(Base,N) that unifies N with the number of solutions in base Base.

5. * Use the range/3 predicate from Lecture 4 to extend your count predicate to try all values from 1 to
50 as the base.

6. * Plot a graph of the number of solutions against the chosen base.

7.3 **Findall

The findall predicate is an extra-logical predicate for backtracking and collecting the results into a list. The
implementation within Prolog is something along the lines of:

findall (Template, Goal, Solutions) :- call(Goal),
assertz(findallsol (Template)),
fail.

findall (Template, Goal, Solutions) :- collect (Solutions).

collect ([Template|RestSols]) :— retract (findallsol (Template)),

|
-7

collect (RestSols) .
collect ([]).

1. ** Consult the Prolog documentation and work out what the above is doing. The predicate assertz
adds a new clause to the end of the running Prolog program (i.e. the Prolog database) and the predi-
cate retract removes a clause that unifies with its argument.

2. **¥ Develop an alternative to findall that does not use extra-logical predicates such as assertz and
retract. This alternative will necessarily take the form of a pattern which you can apply to your
clause to find all the possible results. The algorithm for the alternative findall proceeds as follows:
maintain a list of solutions found so far, evaluate the target clause and repeatedly backtrack through
it until it returns a value not in your list of results, add the result to the list and repeat.

3. ** Comment on the runtime complexity of the alternate findall compared to the builtin version.

	Binder2.pdf
	questions

