Programming Methods
Dr Robert Harle

IA NST CS and CST
Lent 2008/09
Handout 3

Where do we start?

§ The basic concept embodied by a photo organiser is the
organisation of photos i.e. Mapping photos to groups.
§ First leap: the graphics stuff (windows, buttons) is
independent of this underlying concept
§ It’s just a convenient way to provide input/output
§ We might want to change that way, or even have multiple
simultaneous ways (we’ll come back to that)

§ Solet’s separate out the concept from the interface

The “Model” The “View”

Embodies the core data The graphical aspects. i.e.

structures and algorithms The presentation of the
for a photo organiser model’s current data

Our Motivating Example

§ Asimple photo organiser
§ Add, remove photos from collections
§ Thumbnail selection

Where do we start?

§ This s sensible because:
§ The code is easier to navigate around

§ We can have software reuse so long as we loosely couple the model
and the view(s) [see later]

§ E.g. We can reuse the model with multiple views:

Graphical user interface
The “Model”
Embodies the core data View 2
structures and algorithms .
. Console user interface
for a photo organiser

W
Phone interface

3/1/2009

General Model

Data Requests

The View

The Model
(aka ‘frontend’) e Mode

(aka ‘backend’)

Windows
Scrolling panels

Buttons :

Lists of image collections
Lists of images

Lists of thumbnails
Images

Data changes

User

Model-View-Conftroller (MVC)

An architectural/design pattern that goes one step further

Model

* A domain-specific representation of the underlying information that the
application is presenting (i.e. the backend)

* E.g. The picture data and metadata, a database in a web application, or the data in
aspreadsheet

View

* Renders the model into something visible

® E.g. The GUI of our picture elements, a page of a web app, or the cells and graphs
of a spreadsheet

* Note that multiple simultaneous views of the model can exist — E.g. Multiple
spreadsheet graphs of the same data

Controller

* Handles all input from the user, potentially modifying the model and the view(s)

General Model

heVicy The Model
Windows

Scrolling panels
Buttons

Lists of image collections
Lists of images

Lists of thumbnails
Images

INTERFACE

User

Model -View-Controller (MVC)

Updates

Queries

Controller

3/1/2009

Aside: GUI Toolkits

§ A GUI toolkit is just a set of tools (classes,
algorithms, ‘glue’) that makes it easy to draw
graphical things like buttons and handle mouse clicks
etc.

§ Most languages don’t have a toolkit

§ Instead you have a choice and you can download from lots
(or make your own — usually a bad idea!)

§ Java has AWT and Swing as part of the language!
§ We will use Swing

The Photo Organiser

§ Back to our example
§ We want our model and view to link together

PhotoOrganiserModel PhotoOrganiserView

§ These are horribly coupled
§ One won’t compile without the other
§ But we want to swap out different views L

Model-View Controller

§ The MVC design is used in almost every GUI toolkit

§ Including Java
§ In most implementations, we find that it is not useful to
decouple the controller and the view
§ If the controller handles a “new photo button event”, it’s coupled
automatically since it assumes there IS a “new photo button”!
§ Infact, you will often find that the controller and the view are
combined in the same file.

The Photo Organiser

§ We get the required decoupling by specifying interfaces:

1 * <<interface>>
Viewlnterface

<<interface>>
ModelViewInterface

PhotoOrganiserView

PhotoOrganiserModel
0000000 1

§ Now the Model can be used with anything that implements
the Viewlnterface and vice-versa. It neither knows nor cares
which View it’s talking to.

§ How can we have multiple Views at once?

§ Observer pattern!

3/1/2009

ModelViewInterface

§ This is everything the photo organiser model must support for
the view to do its job
§ register(ViewlInterface vi) — register a new View (observer pattern)
§ deregister(ViewlInterface vi) — deregister a View (observer pattern)
§ Plus queries such as getPhoto() etc.

public interface ModelViewlInterface {
public void register(ViewInterface vi);

Observer
public void deregister(ViewInterface vi);

i

public Set<Photo> getAlbumPhotos(String album);

public Set<String> getAlbums();
|

The Conftroller

§ We accept the View and Controller need to be coupled

§ The controller needs to be able to tell the Model that
something has changed

§ BUT there is no need to use the observer pattern because the
controller doesn’t care if the model changes (only the View
does)

§ So we just specify an interface to the model

1
<<interface>>

PhotoOrganiserController
ModelControllerinterface

PhotoOrganiserModel

Viewlnterface

§ Everything that a View needs to support for a Model
§ This is just what the observer pattern needs

§ i.e. Some way for the model to tell the view that it should
change

§ We add an update() method

public interface ViewlInterface {
public void update();

}

ModelControllerinterface

§ The Controller just needs to be able to manipulate the Model:

public interface ModelControllerinterface {
public void createAlbum(String name);
public void deleteAlbum(String a);
public void addPhoto(String path, String album);
public void deletePhoto(Photo p, String album);
}

3/1/2009

The View

How Swing Works

§ Every GUI component extends (“is-a”) JComponent
§ Each component can potentially contain other components

JFrame

JPanel PhotoTile

JScrollPane

§ We use Java Swing for the GUI
§ There are plenty of graphical toolkits out there, but Swing
does what we need and is standard
§ The toolkit is a set of graphical components

(buttons, windows, etc)
§ Each component follows the MVC model! e o =

§ E.galJTree has an explicit TreeModel where it stores data R acanoe
§ The Controller and the View get lumped together again

[} Java String
[Java swing
) Java News
D) savalo

¢ = Colors
§ The components are put together using the R

Composite pattern and communicate via the — =
Observer pattern (using events)

§ Let’s look in more detail

How Swing Works

§ Every GUI component extends (“is-a”) JComponent
§ Each component can potentially contain other components

JFrame

JPanel PhotoTile JScrollPane

JButton JButton

PhotoTile PhotoTile

JButton JButton PhotoTile

§ End up with a tree of JComponents

3/1/2009

How Swing Works

§ Any node has a set of child nodes that obey the
JComponent interface

§ This is the composite model!
§ leftpanel.add(mAlbumList, BorderLayout.CENTER);
§ Code like this adds a child JComponent to a parent, and
optionally tells it where to display it

§ Once the tree is set up, Java knows how to draw it to the
screen

The Controller

PhotoTile: A Custom Component

§ There isn’t a handy component that displays images
§ So we must make our own: PhotoTile.java
§ The closest thing to what we want is a simple JPanel

§ Inheritance saves us rewriting the JPanel stuff

public class PhotoTile extends JPanel {

§ And we override the paintComponent() method

@Override
public void paintComponent(Graphics g) {
super.paintComponent(g);
if (mPhoto!=null) mPhoto.drawlmage(g, 0, 0, this.getWidth(), this.getHeight())
g.setColor(Color.black);
g.drawRect(0, 0, getWidth()-1, getHeight()-1);
}

§ Events:
§ The composite pattern is all very nice for display, but what
about interaction? How does the GUI do stuff?

§ Components generate ‘events’ to indicate something is
happening to them (e.g. Button being pressed)
§ They send these events off to anyone who has registered
an interest in receiving them
§ Receivers must implement a predetermined interface
so that we know how to talk to them to tell them that
an event occurred

§ Ah - this is the Observer pattern yet again

3/1/2009

The Conftroller

§ So the view registers all the components that have to do
something (buttons etc) with a handler — our Controller

§ PhotoOrganiserController.java

The IList uses this
Buttons use this interface to tell us

interface to tell us when a new selection
about presses has been made

§ First, we need our controller to implement the interfaces that
JButtons and components use to tell us events have happened

public class PhotoOrganiserController implements ActionListener, ListSelectionListener, MouseListener {

actionPer ed(ActionkEvent

§ Now we write the event handler in
PhotoOrganiserController.java

public void actionPerformed(ActionEvent e) {

String cmd = e.getActionCommand();

if (cmd.equals("ADDPHOTO")) {
// Use a standard dialog to select the file
final JFileChooser fc = new JFileChooser();
int returnval = fc.showDialog(mView,"Select");
if (returnval==JFileChooser. APPROVE_OPTION) {
model.addPhoto(
fc.getSelectedFile().getAbsolutePath(),
mView.getCurrentAlbum()
%
}
}

// Deleting a photo
else if (cmd.equals("DELPHOTO")) {

actionPerformed(ActionkEvent e)

§ This s the ‘callback’ function for a button

§ First we register the controller with a button — the observer pattern’s

register() method is addActionListener() in Swing
§ See PhotoOrganiserView.java

mAddPicButton = new JButton("Add a Photo"); /m

mAddPicButton.addActionListener(mController); .
Register

mAddPicButton.setActionCommand("ADDPHOTO");

\ Add a string that makes
it easy to identify which

button has been
pressed

ModelControllerinterface model = mView.getModel();

The Model

3/1/2009

The Model Data Structure 1

§ The Observer part needs us to keep track of every
registered View

§ Java offers us Lists and Sets

Pliaainintel =\
1
C / !
—> ‘ ’
K : .
C N -
Sa__”
* Sequence of elements « Like sets in Discrete Maths |
* Order important « Order usually unimportant
* Duplicates allowed

* No duplicates allowed

§ We update each View once -> Use a HashSet

The Model

§ If you look in PhotoOrganiserModel you will see:

§ We keep track of the registered views using variable
mViews

§ We keep track of the Album-Photo mapping in mPhotos

§ Then the model implements all the functions required
from ModelViewlnterface and ModelControllerinterface

§ These functions are really just manipulating mViews and
mPhotos in sensible ways

§ We need to map albums to their photos

§ Java offers us Maps that link keys to values

" Cat.jpg |
“Animals”

§ Like relations in Discrete Maths |

§ We use a TreeMap< String, Set<Photo> >

The Tree bit guarantees the The keys

are Strings

The values are Sets of Photo
keys will be stored in order

objects

The Model Data Structure 2

§ To (de)register Views we simply (remove) add to our HashSet

public void public void

register(ViewlInterface vi) { deregister(Viewlnterface vi) {
mViews.add(vi); mViews.remove(vi);

}

}

§ Then to tell the Views an update has occurred we cycle over
all of them and update() them in turn

private void alertViews() {

for (Viewlnterface vi : mViews)
vi.update();

§ [Why is this method private?]

3/1/2009

Done!

§ We do something similar for the JList (ListSelectionListener
interface) and the PhotoTile (MouseListener interface)
§ Allthe code is in PhotoOrganiserController.java
§ Now we just write a start point for the program
§ See PhotoOrganiser.java
§ The result is a working (but rather simple) photo organiser!

§ Beware! I've deliberately tried to keep the code short and
simple
§ |didn’t put in any error checking
§ I didn’t use any unit testing etc
§ The performance of this program is hardly stellar

§ Just to emphasise the flexibility of our design
§ We can throw together a different view
§ See ThumbnailWindow.java
§ Just register that with the model and away we go!

§ We can run multiple views simultaneously
§ They update automatically!!

3/1/2009

