Programming Methods Handout 2: Design Patterns

As you've learnt in your Software Design course, coding haimg more com-
plicated than a toy program usually benefits from forethougtiter you've

coded a few medium-sized pieces of object-oriented soéwgsu’ll start to

notice the same general problems coming up over and over.yéumd start

to automatically use the same solution each time. We needke sure that
set of default solutions is a good one!

In his 1991 PhD thesis, Erich Gamma compared this to the fielarahi-
tecture, where recurrent problems are tackled by using kngaod solu-
tions. The follow-on bookPesign Patterns. Elements of Reusable Object-
Oriented Software, 1994) identified a series of commonly encountered prob-
lems in object-oriented software design and 23 solutioas wWere deemed
elegant or good in some way. Each solution is known Bssign Pattern:

A Design Pattern is a general reusable solution to a commonly occurring
problem in software design.

The modern list of design patterns is ever-expanding an@ tkeno shortage
of literature on them. In this course we will be looking at @ feey patterns.

So Design Patterns are like coding recipes?

No. Creating software by stitching together a series of freftatterns is
like painting by numbers — it's easy and it probably workst ibudoesn't
produce a Picasso! Design Patterns are about intelligduticats to a series
of generalised problems that yooay be able to identify in your software.
You might find they don't apply to your problem, or they needidtion.
You simply can't afford to disengage your brain.

Why Bother Studying Them?

Design patterns are useful for a number of things, not least:

1. They encourage us to identify the fundamental aims ofrgpieces of
code

They save us time and give us confidence that our solutisenisible
They demonstrate the power of object-oriented progrargmi

They demonstrate that naive solutions are bad

S LA

They give us a common vocabulary to describe our code

The last one is important: when you work in a team, you quickblise the
value of being able to succinctly describe what your codeyisg to do. If you
can replace twenty lines of commehtsith a single word, the code becomes
more readable and maintainable. Furthermore, you cantitteemvord into
the class name itself, making the class self-describing.

1You are commenting your code liberally, aren’t you?

Design Patterns By Example

We're going to develop a simple example to look at a serieesigh patterns.
Our example is a new online venture selling books. We willriderested in
the underlying (back-end) code — this isn't going to be a wekigh course!

We start with a very simple setup of classes. For brevity wa'tdme anno-
tating the classes with all their members and functions. 'lYoeed to use
common sense to figure out what each element supports.

Session

Book é*
A 1

I <<Creates>> Database

Session. This class holds everything about a current browser se¢siim-
inating IP, user, shopping basket, etc).

Database. This class wraps around our database, hiding away the query
syntax (i.e. the SQL statements or similar).

Book. This class holds all the information about a particularkoo

Supporting Multiple Products
Problem: Selling books is not enough. We need to sell CDs and DVDs too.
And maybe electronics. Oh, and sports equipment. And...

Solution 1: Create a new class for every type of item.

Book| |CD| |DVD Q
O It works.

[0 We end up duplicating a lot of code (all the products haveegtisizes,
stock levels, etc).

O This is difficult to maintain (imagine changing how the VAT gem-
puted...).

Solution 2: Derive from an abstract base class that holds all the common
code.

Product

A

| | |
Book| |CD| |DVD

0 Obvious object oriented solution
O If we are smart we would use polymorphi$io avoid constantly check-

There are two types of polymorphismd-hoc polymorphism (a.k.a. runtime or dynamic
polymorphism) is concerned with object inheritance. lamiliar to you from Java, when the
computer automatically figures out which version of an iitedrmethod to runParametric
polymorphism (a.k.a. static polymorphism) is where the piten figures out which version of
a type to usédoefore the program runs. You are familiar with this in ML, but you@find it in
C++ (templates) and Java (look up generics).

ing what type a givefProduct object is in order to get product-specific
behaviour.

Generalisation

This isn't really an ‘official’ pattern, because it's a ratfandamental thing
to do in object-oriented programming. However, it's impmittto understand
the power inheritance gives us under these circumstances.

The Decorator Pattern

Problem: You need to support gift wrapping of products.

Solution 1. Add variables to théroduct class that describe whether or not
the product is to be wrapped and how.

O It works. In fact, it's a good solution if all we need is a bipdlag for
wrapped/not wrapped.

[0 As soon as we add different wrapping options and prices fiferdint
product types, we quickly clutter uproduct.

O Clutter makes it harder to maintain.

O Clutter wastes storage space.

Solution 2: Add WrappedBook (etc.) as subclasses Bfoduct as shown.

Product

[\ ‘
Book WrappedBool;/
rd

L

Implementing this solution is a shortcut to the Job centre.

O We are efficient in storage terms (we only allocate space fapping
information if it is a wrapped entity).

O We instantly double the number of classes in our code.

O If we changeBook we have to remember to mirror the changes in
WrappedBook.

O If we add a new type we must create a wrapped version. Thisds ba
because we can forget to do so.

0 We can't convert from 8ook to aWrappedBook without copying lots
of data.

Solution 3: Create a generdVrappedProduct class that is both a subclass
of Product and references an instance of one of its siblings. Any state o
functionality required of aNrappedProduct is ‘passed on’ to its internal
sibling, unless it relates to wrapping.

Product le

+get_price()9
Pl
return prce;
Book
DVD WrappedProduct)
“ I foe
+get_price() 9 i

1
1
" gc?ok
1
M
1
retiwgg__gi_i_cew_ontent .get_price();

O We can add new product types and they will be automaticallgpwr

pable.
0 We can dynamically convert an established product objeatimnvrapped

product and back again without copying overheads.

0 We can wrap a wrapped product!
O We could, in principle, end up with lots of chains of littlejebts in the

system
Generalisation

This is theDecorator pattern and it allows us to add functionality to a class
dynamically without changing the base class or having to derive a new sub-

class. Real world example: humans can be ‘decorated’ witkach lenses to
improve their vision.

Component <

+operation()

1

ConcreteComponent

Decorator |+¢optents

+operation()

+operation()oy==-=-=-4-

contents.operation() ;BI

rator

StateDecoratcy\\ FunctionDeco

#extraState

+operation()

+operation() O ===~
+extraBehaviour()

super.operation();
extraBehaviour();

Note that we can use the pattern to add state (variableshotidmality (meth-
ods), or both if we want. In the diagram above, | have expjictiowed for
both options by derivingstateDecorator and FunctionDecorator. This is
usually unnecessary — in our book seller example we only Wwadecorate
one thing so we might as well just put the code iDecorator.

State Pattern

Problem: We need to handle a lot of gift options that the customer matchw
between at will (different wrapping papers, bows, gift tagtt boxes, gift
bags, ...).

Solution 1: Take ourWrappedProduct class and add a lot of if/then state-
ments to the function that does the wrapping — let’s catlittate_wrapping().

void initiate_wapping() {
if (wap.equals("BOX")) {

else if (wap.equals("BOW)) {
else if (wap.equal s("BAG')) {

}

else ...

O It works.
O The code is far less readable.
O Adding a new wrapping option is ugly.

Solution 2: We basically have type-dependent behaviour, which is code f
“use a class hierarchy”.

WrappedProduct

GiftBox GiftPaper

O This is easy to extend.

0 The code is neater and more maintainable.

O What happens if we need to change the type of the wrapping(fsay,
a box to a bag)? We have to construct a n@ifiBag and copy across
all the information from &GiftBox. Then we have to make sure every
reference to the old object now points to the new one. Thigid!h

Solution 3: Let’s keep our idea of representing states with a classcteya

but use a new abstract class as the parent:
Ahshack
e

WrappedProduct

[

GiftBox GiftPaper

Now, everyWrappedProduct has-a GiftType. We have retained the advan-
tages of solution 2 but now we can easily change the wrappyiog in-situ
since we know that only thé/rappedObject object references th@iftType
object.

Generalistion

This is theState pattern and it is used to permit an object to change its be-
haviourat run-time. A real-world example is how your behaviour may change
according to your mood. e.g. if you're angry, you're moreelikto behave
aggressively.

> State

@

State1l

State2 é

Strategy Pattern

Problem: Part of the ordering process requires the customer to engesta
code which is then used to determine the address to posktine ib. At the
moment the computation of address from postcode is very. <love of your
employees proposes a different way of computing the addnesshould be
more efficient. How can you trial the new algorithm?

Solution 1: Let there be a clasAddressFinder with a methodgetAd-
dress(String pcode). We could add lots of if/then/else statements to the
getAddress() function.

String get Address(String pcode) {
if (algorithm==0) {
/1 Use ol d approach

}
else if (algorithme=1) {
/1 use new approach

O ThegetAddress() function will be huge, making it difficult to read and
maintain.

[0 Because we must ediddressFinder to add a new algorithm, we have
violated the open/closed principle

Solution 22 Make AddressFinder abstract with a single abstract function
getAddress(String pcode). Derive a new class for each of our algorithms.

3This states that a class should be open to extension butidoseodification. So we allow
classes to be easily extended to incorporate new behavtbowti modifying existing code.
This makes our designs resilient to change but flexible emoaigake on new functionality to
meet changing requirements.

Session

AddressFinder

+getAddress(pcode:String): String

JaN

K Algorithm1>

+getAddress(pcode:String): String

_—
(Algorithm2_/

+getAddress(pcode:String): String

0 We encapsulate each algorithm in a class.
0 Code is clean and readable.
O More classes kicking around

Generalisation

This is theStrategy pattern. It is used when we want to support different
algorithms that achieve the same goal. Usually the alguorithfixed when
we run the program, and doesn’t change. A real life exampleldvbe two
consultancy companies given the same brief. They will hdpeproduce
the same result, but do so in different ways. i.e. they wibh@ddifferent
strategies. From the (external) customer’s point of vibe,result is the same
and he is unaware of how it was achieved. One company mayvactiie
result faster than the other and so would be considerecethett

Strategy

Context >

+algorithm()

A

ConcreteStrategyA ConcreteStrategyB

+algorithm() +algorithm()

Note that this is essentially the same UML as 8tate pattern! Thentent of
the two patterns are quite different however:

e Stateis about encapsulating behaviour that is linked to specifernal
state within a class.

o Different states produce different outputs (externally tkass behaves
differently).

e State assumes that the state will continually change at run-time.

e The usage of th8tate pattern is normally invisible to external classes.
i.e. there is n®etState(State s) function.

e Strategy is about encapsulating behaviour in a class. This behaviour
does not depend on internal variables.

o Different concreteéStrategys may produce exactly the same output, but
do so in a different way. For example, we might have a new dlgaor
to compute the standard deviation of some variables. Beatlolth al-
gorithm and the new one will produce the same output (holygfudut
one may be faster than the other. T3ieategy pattern lets us compare
them cleanly.

e Strategy in the strict definition usually assumes the class is saleate
compile time and not changed during runtime.

e The usage of th8trategy pattern is normally visible to external classes.
i.e. there will be asetStrategy(Strategy s) function or it will be set in
the constructor.

However, the similarities do cause much debate and you wilpieople who
do not differentiate between the two patterns as stronglytexsd to.

Composite Pattern

Problem: We want to support entirgroups of products. e.g. The Lord of the
Rings gift set might contain all the DVDs (plus a free cyanidpsule).

Solution 1. Give everyProduct a group ID (just annt). If someone wants
to buy the entire group, we search through allBmeducts to find those with

the same group ID.

O Does the basic job.

O What if a product belongs to no groups (which will be the migjor
case)? Then we are wasting memory and cluttering up the code.

O What if a product belongs to multiple groups? How many grausuild
we allow for?

Solution 2: Introduce a new class that encapsulates the notion of g@fups
products:

*
Product
+get _price()
Book
DVD ProductGroup
+producte
+get_price()

1
oo 1
int price=0;
for (Product p : products)

price += p.get_price();
return price;

If you're still awake, you may be thinking this is a bit likeeBDecor ator pat-
tern, except that the new class supports associations wittipte Products

(note the * by the arrowhead). Plus the intent is differente-are not adding
new functionality but rather supporting the same functibypdor groups of
Products.

O Very powerful pattern.
O Could make it difficult to get a list of all the individual olgjis in the
group, should we want to.

Generalisation

This is theComposite pattern and it is used to allow objects and collections
of objects to be treated uniformly. Almost any hierarchysugeComposite
pattern. e.g. The CEO asks for a progress report from a manalge collects
progress reports from all those she manages and reports back

Component

+operation()

A

Leaf Composite
+operation() #children
+operation()9

1
for (Component ¢ : children)
c.operation();

Notice the terminology in the general case: we spedleaffs because we can
use the Composite pattern to buildrae structure. EaclComposite object
will represent a node in the tree, with children that areegi@®omposites or
Leafs.

This pattern crops up a lot, and we will see it in other corgtdater in this
course.

Singleton Pattern

Problem: Somewhere in our system we will need a database and theyabilit
to talk to it. Let us assume there ibmtabase class that abstracts the dif-
ficult stuff away. We end up with lots of simultaneous uSesssions, each
wanting to access the database. Each one creates itDatatase object
and connects to the database over the network. The problénatise end up
with a lot of Database objects (wasting memory) and a lot of open network
connections (bogging down the database).

What we want to do here is to ensure that there is onlyldaabase object
ever instantiated and eveBgssion object uses it. Then tHeatabase object
can decide how many open connections to have and can queugstedo
reduce instantaneous loading on our database (until we balf decent one).

Solution 1: Use a global variable of typPatabase that everything can
access from everywhere.

[0 Global variables are less desirable than David Hassethgféatest hits.
O Can't do it in Java anyway...

Solution 2: Use a public static variable which everything uses (thissis a
close to global as we can get in Java).

public class System {
public static Database dat abase;
}

public static void main(String[]) {
/1 Al ways gets the same object
Dat abase d = Syst em dat abase;

}

O This is really just global variables by the back door.

00 Nothing fundamentally prevents us from making multiplatabase
objects!

Solution 3: Create an instance @atabase at startup, and pass it as a
constructor parameter to eveBession we create, storing a reference in a
member variable for later use.

public class System{
public Systen{(Database d) {...}

}

public class Session {
publ i c Session(Database d) {...}

}

public static void main(String[]) {
Dat abase d = new Dat abase();
System sys = new Systen(d);
Session sesh = new Session(d);

O This solution could work, but it doesrénforce that only oneDatabase
be instatiated — someone could quite easily create aDatabase
object and pass it around.

O We start to clutter up our constructors.

O It's not especially intuitive. We can do better.

Solution 4: (Singleton) Let's adapt Solution 2 as follows. Will have
a single static instance. However we will access it througtiaic member
function. This function,getinstance() will either create a neviDatabase

object (if it's the first call) or return a reference to thepoaisly instantiated
object.

Of course, nothing stops a programmer from ignoringgibnstance() func-
tion and just creating a nel@atabase object. So we use a neat trick: we make

the constructoprivate or protected. This means code likeew Database()
isn't possible from an arbitrary class. |
Veulo-betel)

Da\'“]’“% AR

Database

-instance: static
+getInstance(): static
#Database() Q@

if (instance==null) instance=new Database();
return instance;

O Guarantees that there will be only one instance.

[0 Code to get a Database object is neat and tidy and intuitivseo e.g.
(Database d=Database.getinstance();)

O Avoids clutter in any of our classes.

0 Must take care in Java. Either use a dedicated package owatepri
constructor (see below).

0 Must remember to disabldone()-ing!

Generalisation

This is theSingleton pattern. It is used to provide a global point of access to
a class that should be instantiated only once.

Singleton

-instance: static
+getInstance(): static
#Singleton() Q@

return instance;

if (instance==null) instance=new Singleton();B‘

There is a caveat with Java. If you choose to make the comstrpmtected
(this would be useful if you wanted a singleton base classdtiple applica-
tions of the singleton pattern, and is actually the ‘officilution) you have
to be careful.

Protected members are accessible to the class, any swschsball classes

in the same package. Therefore, any class in the same package as your base
class will be able to instantiatingleton objects at will, using th@ew key-
word!

Additionally, we don’t want a crafty user to subclass oumgtéton and im-
plementCloneable on their version. The examples sheet asks you to address
this issue.

Proxy Pattern(s)

The Proxy pattern is a very usefiget of three patternsVirtual Proxy, Re-
mote Proxy, andProtection Proxy.

All three are based on the same general idea: we can haveeahplder class
that has the same interface as another class, but actutdlgsia pass through
for some reason.

Subject
+operation()
ActualSubject 1% ProxySubject
+operation() +subject: ActualSubject
+operation() Q

return subject.operation() ;BI

Virtual Proxy

Problem: Our Product subclasses will contain a lot of information, much of
which won'’t be needed since 90% of the products won't be sedefor more
detall, just listed as search results.

Solution : Here we apply théroxy pattern by only loading part of the full
class into the proxy class (e.g. name and price). If someegeests more
details, we go and retrieve them from the database.

Remote Proxy

Problem: Our server is getting overloaded.

Solution : We want to run a farm of servers and distribute the load across
them. Here a particular object resides on server A, saysibdrvers B and

C have proxy objects. Whenever the proxy objects get callexy, know to
contact server A to do the work. i.e. they act as a pass-throug

Note that once server B has bothered going to get somethintpeiproxy;, it
might as well keep the result locally in case it's used agsawifig us another
network trip to A). This iscaching and we’ll return to it shortly.

Protection Proxy

Problem: We want to keep everything as secure as possible.

Solution : Create dJser class that encapsulates all the information about
a person. Use theroxy pattern to fill a proxy class with public information.
Whenever private information is requested of the proxy,iit @nly return a
result if the user has been authenticated.

In this way we avoid having private details in memory unldss/thave been
authorised.

Observer Pattern

Problem: We use theRemote Proxy pattern to distribute our load. For effi-
ciency, proxy objects are set to cache information that thfieve from other
servers. However, the originals could easily change (mert@aprice is up-
dated or the exchange rate moves). We will end up with differesults on
different servers, dependent on how old the cache is!!

Solution 1: Once a proxy has some data, it keeps polling the authostativ
source to see whether there has been a change (c.f. polled I/O

O How frequently should we poll? Too quickly and we might aslwet
have cached at all. Too slow and changes will be slow to praieag

Solution 2: Modify the real object so that the proxy can ‘register’ with i
(i.e. tell it of its existence and the data it is interestefd ihe proxy then
provides acallback function that the real object can call when there are any
changes.

1
Data %
-cachelist: List %* Cache

+register(Cache=cQ

+deregister(Cache) ‘\‘ +update_data()
+notify()p .
cachelist.add(c) ;Bl
’ AN

for (cache c : cachelist)
c.update_data();

Generalisation

This is theObserver pattern, also referred to d@ublish-Subscribe when
multiple machines are involved. It is useful when changexine be propa-
gated between objects and we don't want the objects to biytigbupled. A
real life example is a magazine subscription — you registeeteive updates
(magazine issues) and don't have to keep checking whethewdassue has
come out yet. You unsubscribe as soon as you realise that 46HP pages
of content and 60 pages of advertising isn't good value.

Subject G%l

*
#state ————>| Observer
#observers C
+attach(Observer) | *. #state
+detach(Observer) N #subject
+getState() ‘~~ +update()o
+notify() P ’~~ .
I' ‘5 :
! state=subject.getState() ;BI
4 3

4 .
.
’ .
4 re

‘ observers.add(observer)BI
: observers)

for (Observer o :
o.update();

Abstract Factory

Assume that the front-end part of our system (i.e. the wedrfente) is rep-
resented internally by a set of classes that representugeintities on a web

page:

*
WebPage j InterfaceElement

+render()

7

WebTextBox

WebButton Q

Weblmage WebLoginBox

Let's assume that there isrander() method that generates some HTML
which can then be sent on to web browsers.

Problem: Web technology moves fast. We want to use the latest browsers
and plugins to get the best effects, but still have older bey&/work. e.g. we
might have a Flash site, a SilverLight site, a DHTML site, w-oandwidth
HTML site, etc. How do we handle this?

Solution 1: Store a variable ID in thénterfaceElement class, or use the
State pattern on each of the subclasses.

O Works.

O The State pattern is designed for a single object that regularly cbhang
state. Here we have a family of objects in the same statel(REEEML,
etc.) that we choose between at compile time.

O Doesn't stop us from mixinglashButton with HTMLButton, etc.

Solution 2: Create specialisations tifterfaceElement;

InterfaceElement
+render()
HTMLElement FlashElement

[ﬁ JaN

HTMLTextBox | | HTMLButton

| |
FlashTextBox FlashButton

O Lots of code duplication.

O Nothing keeps the differerifextBoxes in sync as far as the interface
goes.

O A lot of work to add a new interface component type.

O Doesn't stop us from mixinglashButton with HTMLButton, etc.

Solution 3: Create specialisations of eakttterfaceElement subclass:

InterfaceElement

+render()

7

WebTextBox

A

I I
HTMLTextBox FlashTextBox

0 Standardised interface to each element type.
O Still possible to inadvertently mix element types.

Solution 4: Apply the Abstract Factory pattern. Here we associate every
WebPage with its own ‘factory’ — an object that is there just to makd&et
objects. The factory is specialised to one output type aifdashFactory out-
puts aFlashButton whencreate_button() is called, whilst aHTMLFactory
will return anHTMLButton() from the same method.

*

WebPage

InterfaceElement

+render()

WebButton

A

| |
HTMLButton | | FlashButton

1
]
] <<creates>>

1

ElementFactory

+create_button()
+create_text _box()
+...()

HTMLFactory

+create_button()

FlashFactory Q

return new HTMLButton() ;BI

0 Standardised interface to each element type.
O A givenWebPage can only generate elements from a single family.
O Page is completely decoupled from the family so adding a raeaily

of elements is simple.

O Adding a new element (e.@earchBox) is difficult.
0O Still have to create a lot of classes.

Generalisation

This is theAbstract Factory pattern. It is used when a system must be con-
figured with a specific family of products that must be usectoer.

Client Hl AbstractFactory

+create_product_A()
AbstractProductA % +create_product_B()
ProductA1 ProductA2
A A
: ' ConcreteFactory1
L] N L L L L L
<<creates>> +create_product_A()
+create_product_B()

AbstractProductB |&——

ProductB1 ProductB2
A é ConcreteFactory2
. . +create_product A()
Tttt Semsmmmmmmmmmmmemmees Ffcreate_product_B()
<<Creates>>

Note that usually there is no need to make more than one Yaftipa given
family, so we can use th@ingleton pattern to save memory and time.

Summary
From the original Design Patterns book:

Decorator Attach additional responsibilities to an object dynamiicaDec-
orators provide flexible alternatives to subclassing faeesaing func-
tionality.

State Allow and object to alter its behaviour when its internakstehanges.

Strategy Define a family of algorithms, encapsulate each on, and nfeda t
interchangeable. Strategy lets the algorithm vary inddeetty from
clients that use it.

Composite Compose objects into tree structures to represent parewiio
erarchies. Composite lets clients treat individual olsjestd composi-
tions of objecta uniformly.

Singleton Ensure a class only has one instance, and provide a gloldlgdoi
access to it.

Proxy Provide a surrogate or placeholder for another object ttrabaccess
to it.

Observer Define a one-to-many dependency between objects so that when
one object changes state, all its dependents are notifiediaated
accordingly.

Abstract Factory Provide an interface for creating families of related or de-
pendent objects without specifying their concrete classes

Classifying Patterns

Often patterns are classified according to what their interdr what they
achieve. The original book defined three classes:

Creational Patterns . Patterns concerned with the creation of objects (e.g.
Singleton, Abstract Factory).

Structural Patterns . Patterns concerned with the composition of classes or
objects (e.gComposite, Decorator, Proxy).

Behavioural Patterns . Patterns concerned with how classes or objects in-
teract and distribute responsibility (e @bserver, State, Strategy).

Other Patterns

You've now met eight Design Patterns. There are plenty nizer(the orig-
inal book), but this course will not cover them. What has bepesented here
should be sufficient to:

Demonstrate that object-oriented programming is powerful
Provide you with (the beginnings of) a vocabulary to descsibur so-
lutions.

Make you look critically at your code and your software atetiures.
Entice you to read further to improve your programming.

Of course, you probably won't get it right first time (if thezgen is a ‘right’).
You'll probably end uprefactoring your code as new situations arise. How-
ever, if a Design Patteriis appropriate, you should probably use it.

Performance

Note that all of the examples here have concentrated ontwtiug code to
be more readable and maintainable, and to incorporateragntststructurally

where possible. At no point have we discussed whether thdi@as per-
form better. Many of the solutions exploit runtime polymorphiehlviour,
for example, and that carries with it certain overheads.

This is another reason why you can't apply Design Patteiinglgl [This is a
good thing since, if it wasn't true, programming wouldn't inéeresting, and
you wouldn't get jobs!].

