Operating Systems

Steven Hand

Michaelmas / Lent Term 2008/09

17 lectures for CST IA

Handout 4

Operating Systems — N/H/MWF@12

1/O Hardware

e Wide variety of ‘devices’ which interact with the computer via | /O:

— Human readable: graphical displays, keyboard, mouse, printers
— Machine readable: disks, tapes, CD, sensors
— Communications: modems, network interfaces

e They differ significantly from one another with regard to:

— Data rate

— Complexity of control
— Unit of transfer

— Direction of transfer
— Data representation
— Error handling

= hard to present a uniform 1/O system which masks all complexity

/0 subsystem is generally the ‘messiest’ part of OS.

Operating Systems — /O Subsystem

1/O Subsystem

Unpriv ; — P)
4| Application-l/O Interface |- Virtual Device Layer
Priv | | 1/0 Buffering | | /10 Scheduling| Common I/O Functions
riv . H
I—_._~ I—_._~ I—_._~
Device ‘' [Device ' , , ., . [Device \ H .)

'\ Driver ! '\ Driver ! '\ Driver ! + Device Driver Layer

H/W |Keyboard| |HardDisk| oo | Network | Device Layer

e Programs access virtual devices:

— terminal streams not terminals — files not disk blocks
— windows not frame buffer — printer spooler not parallel port
— event stream not raw mouse — transport protocols not raw ethernet

e OS deals with processor—device interface:

— 1/0 instructions versus memory mapped

— 1/0 hardware type (e.g. 10's of serial chips)
— polled versus interrupt driven

— processor interrupt mechanism

Operating Systems — /O Subsystem 2

Polled Mode 1/0O

error (RO
[T e e
[~ devi ce-busy (R O

st at us

[LTTITTTI

data (r/w

|~ read (WO

[T i e (wo

command

e Consider a simple device with three registers: status, data and command.
e (Host can read and write these via bus)

e Then polled mode operation works as follows:

— Host repeatedly reads device_busy until clear.

— Host sets e.g. write bit in command register, and puts data into data register.
— Host sets command_ready bit in status register.

— Device sees command_ready and sets device_busy.

— Device performs write operation.

— Device clears command_ready & then device_busy.

e What's the problem here?

Operating Systems — /O Subsystem 3

Interrupts Revisited

Recall: to handle mismatch between CPU and device speeds, processors provide an
interrupt mechanism:

e at end of each instruction, processor checks interrupt line(s) for pending interrupt
e if line is asserted then processor:

— saves program counter,

— saves processor status,

— changes processor mode, and

— jump to a well known address (or its contents)

e after interrupt-handling routine is finished, can use e.g. the rti instruction to
resume where we left off.

Some more complex processors provide:
e multiple levels of interrupts
e hardware vectoring of interrupts

e mode dependent registers

Operating Systems — /O Subsystem

Interrupt-Driven |/O

Can split implementation into low-level interrupt handler plus per-device interrupt
service routine:

e interrupt handler (processor-dependent) may:

— save more registers

— establish a language environment (e.g. a C run-time stack)
— demultiplex interrupt in software.

— invoke appropriate interrupt service routine (ISR)

e Then interrupt service routine (device-specific but not processor-specific) will:

1. for programmed |/O device:
— transfer data.
— clear interrupt (sometimes a side effect of tx).
1. for DMA device:
— acknowledge transfer.
2. request another transfer if there are any more |/O requests pending on device.

3. signal any waiting processes.
4. enter scheduler or return.

Question: who is scheduling who?

Operating Systems — /O Subsystem

Device Classes

Homogenising device APl completely not possible
= OS generally splits devices into four classes:
1. Block devices (e.g. disk drives, CD):

e commands include read, write, seek
e raw /O or file-system access
e memory-mapped file access possible

2. Character devices (e.g. keyboards, mice, serial ports):

e commands include get, put
e libraries layered on top to allow line editing

3. Network Devices

e varying enough from block and character to have own interface
e Unix and Windows/NT use socket interface

4. Miscellaneous (e.g. clocks and timers)

e provide current time, elapsed time, timer
e ioctl (on UNIX) covers odd aspects of 1/O such as clocks and timers.

Operating Systems — /O Subsystem 6

1/O Buffering

e Buffering: OS stores (its own copy of) data in memory while transferring to or
from devices

— to cope with device speed mismatch
— to cope with device transfer size mismatch
— to maintain “copy semantics”

e OS can use various kinds of buffering:

1. single buffering — OS assigns a system buffer to the user request
2. double buffering — process consumes from one buffer while system fills the next
3. circular buffers — most useful for bursty 1/0

e Many aspects of buffering dictated by device type:

— character devices = line probably sufficient.
— network devices = bursty (time & space).
— block devices = lots of fixed size transfers.
— (last usually major user of buffer memory)

Operating Systems — /O Subsystem 7

Blocking v. Nonblocking 1/0

From the programmer’s point of view, |/O system calls exhibit one of three kinds of
behaviour:

1.

2.

3.

Blocking: process suspended until 1/O completed

e easy to use and understand.
e insufficient for some needs.

Nonblocking: /O call returns as much as available

e returns almost immediately with count of bytes read or written (possibly 0).
e can be used by e.g. user interface code.
e essentially application-level “polled 1/0”.

Asynchronous: process continues to run while I/O executes

e 1/0 subsystem explicitly signals process when its 1/O request has completed.
e most flexible (and potentially efficient).
e ... but also most difficult to use.

Most systems provide both blocking and non-blocking /O interfaces; modern
systems (e.g. NT, Linux) also support asynchronous |/O, but used infrequently.

Operating Systems — /O Subsystem 8

Other 1/0 Issues

Caching: fast memory holding copy of data

— can work with both reads and writes
— key to 1/O performance

Scheduling:

— e.g. ordering /O requests via per-device queue
— some operating systems try fairness. . .

Spooling: queue output for a device

— useful for “single user” devices which can serve only one request at a time (e.g.
printer)

Device reservation:
— system calls for acquiring or releasing exclusive access to a device (careful!)
Error handling:

— e.g. recover from disk read, device unavailable, transient write failures, etc.
— most |/O system calls return an error number or code when an 1/0 request fails
— system error logs hold problem reports.

Operating Systems — /O Subsystem 9

1/O and Performance

e |/O is a major factor in overall system performance

— demands CPU to execute device driver, kernel I/O code, etc.
— context switches due to interrupts

— data copying, buffering, etc

— (network traffic especially stressful)

e Improving performance:

— reduce number of context switches

— reduce data copying

— reduce # interrupts by using large transfers, smart controllers,
adaptive polling (e.g. Linux NAPI)

— use DMA where possible

— balance CPU, memory, bus and 1/O for best throughput.

Improving 1/O performance is a major remaining OS challenge

Operating Systems — /O Subsystem

File Management

text name user file-id information requested
A from file
user space L I
filing system
Directory
Service
! ,
Storage Service
o subgysiam ~~" T Yoo
| Disk Handler |

Filing systems have two main components:
1. Directory Service

e maps from names to file identifiers.
e handles access & existence control

2. Storage Service

e provides mechanism to store data on disk
e includes means to implement directory service

Operating Systems — Filing Systems

File Concept

What is a file?

e Basic abstraction for non-volatile storage.

e Typically comprises a single contiguous logical address space.
e Internal structure:

1. None (e.g. sequence of words, bytes)
2. Simple record structures

— lines

— fixed length

— variable length
3. Complex structures

— formatted document

— relocatable object file

e Can simulate 2,3 with byte sequence by inserting appropriate control characters.
e All a question of who decides:

— operating system
— program(mer).

Operating Systems — Files and File Meta-data

Naming Files

12

Files usually have at least two kinds of ‘name’:
1. system file identifier (SFID):

e (typically) a unique integer value associated with a given file
e SFIDs are the names used within the filing system itself

2. human-readable name, e.g. hello. java

e what users like to use
e mapping from human name to SFID is held in a directory, e.g.

Nane SFI D
hel |l o. j ava 12353
Makefil e 23812
READVE 9742

e directories also non-volatile = must be stored on disk along with files.
3. Frequently also get user file identifier (UFID)

e used to identify open files (see later)

Operating Systems — Files and File Meta-data

13

File Meta-data

Metadata Table
SFI D (on disk)

f (SFI D) File Control Block
/| Type (file or directory)

/
/
/ Location on Disk
Size in bytes

\ Time of creation

\| Access permissions

As well as their contents and their name(s), files can have other attributes, e.g.

e Location: pointer to file location on device

e Size: current file size

e Type: needed if system supports different types
e Protection: controls who can read, write, etc.

e Time, date, and user identification: for protection, security and usage monitoring.

Together this information is called meta-data. It is contained in a file control block.

Operating Systems — Files and File Meta-data 14

Directory Name Space (I)

What are the requirements for our name space?
e Efficiency: locating a file quickly.
e Naming: user convenience

— allow two (or more generally V) users to have the same name for different files
— allow one file have several different names

e Grouping: logical grouping of files by properties (e.g. all Java programs, all games)
First attempts:
e Single-level: one directory shared between all users

= naming problem
= grouping problem

e Two-level directory: one directory per user

— access via pathname (e.g. bob:hello. java)
— can have same filename for different user
— but still no grouping capability.

Operating Systems — Directories 15

Directory Name Space (1)

e Get more flexibility with a general hierarchy.

— directories hold files or [further| directories
— create/delete files relative to a given directory

e Human name is full path name, but can get long:
e.g. /usr/groups/X11R5/src/mit/server/os/4.2bsd/utils.c

— offer relative naming
— login directory
— current working directory

e What does it mean to delete a [sub]-directory?

Operating Systems — Directories

Directory Name Space (l1l)

16

e Hierarchy good, but still only one name per file.
= extend to directed acyclic graph (DAG) structure:

— allow shared subdirectories and files.
— can have multiple aliases for the same thing

e Problem: dangling references
e Solutions:

— back-references (but require variable size records); or
— reference counts.

e Problem: cycles. . .

Operating Systems — Directories

17

Directory Implementation

/Ann/mai | / B
——

Nane [D[SFI D \

Ann [Y[1034 Nane |D| SFI D

Bob [Y[179 mai | [Y[2165 Nane [D| SFI D
I A [N[5797 sent |Y| 434
. B [N[2459

Yao [Y[7182 c |N[25

e Directories are non-volatile = store as “files” on disk, each with own SFID.
e Must be different types of file (for traversal)
e Explicit directory operations include:

— create directory

— delete directory

— list contents

— select current working directory

— insert an entry for a file (a “link”)

Operating Systems — Directories 18

File Operations (1)

UFID| SFID |File Control Bl ock (Copy)

1| 23421 | location on disk, size,...
2 3250 " "
3 | 10532
4 7122 " " .

e Opening a file: UFID = open(<pathname>)

1. directory service recursively searches for components of <pathname>
2. if all goes well, eventually get SFID of file.

3. copy file control block into memory.

4. create new UFID and return to caller.

e Create a new file: UFID = create(<pathname>)
e Once have UFID can read, write, etc.

— various modes (see next slide)
e Closing a file: status = close(UFID)

1. copy [new] file control block back to disk.
2. invalidate UFID

Operating Systems — Filesystem Interface 19

File Operations (I1)

start of file end of file
l already accessed | to be read
current _t

file position

Associate a cursor or file position with each open file (viz. UFID)

— initialised at open time to refer to start of file.

Basic operations: read next or write next, e.g.

— read (UFID, buf, nbytes), or read (UFID, buf, nrecords)

Sequential Access: above, plus rewind (UFID).

Direct Access: read N or write N

— allow “random” access to any part of file.
— can implement with seek (UFID, pos)

Other forms of data access possible, e.g.

— append-only (may be faster)
— indexed sequential access mode (ISAM)

Operating Systems — Filesystem Interface 20

Other Filing System lIssues

e Access Control: file owner/creator should be able to control what can be done,
and by whom.

— normally a function of directory service = checks done at file open time
— various types of access, e.g.

« read, write, execute, (append?),

x delete, list, rename
— more advanced schemes possible (see later)

e Existence Control: what if a user deletes a file?

— probably want to keep file in existence while there is a valid pathname
referencing it

— plus check entire FS periodically for garbage

— existence control can also be a factor when a file is renamed/moved.

e Concurrency Control: need some form of locking to handle simultaneous access

— may be mandatory or advisory
— locks may be shared or exclusive
— granularity may be file or subset

Operating Systems — Filesystem Interface 21

