
Operating Systems

Steven Hand

Michaelmas / Lent Term 2008/09

17 lectures for CST IA

Handout 4

Operating Systems — N/H/MWF@12

I/O Hardware

• Wide variety of ‘devices’ which interact with the computer via I/O:

– Human readable: graphical displays, keyboard, mouse, printers

– Machine readable: disks, tapes, CD, sensors

– Communications: modems, network interfaces

• They differ significantly from one another with regard to:

– Data rate

– Complexity of control

– Unit of transfer

– Direction of transfer

– Data representation

– Error handling

⇒ hard to present a uniform I/O system which masks all complexity

I/O subsystem is generally the ‘messiest’ part of OS.

Operating Systems — I/O Subsystem 1

I/O Subsystem

Device Driver Layer
Device
Driver

Device
Driver

Device
Driver

Common I/O Functions

Keyboard HardDisk Network Device Layer

Virtual Device Layer

H/W

Unpriv

Priv
I/O SchedulingI/O Buffering

Application-I/O Interface

• Programs access virtual devices:

– terminal streams not terminals

– windows not frame buffer

– event stream not raw mouse

– files not disk blocks

– printer spooler not parallel port

– transport protocols not raw ethernet

• OS deals with processor–device interface:

– I/O instructions versus memory mapped

– I/O hardware type (e.g. 10’s of serial chips)

– polled versus interrupt driven

– processor interrupt mechanism

Operating Systems — I/O Subsystem 2

Polled Mode I/O

status

command

data (r/w)

device-busy (R/O)

command-ready (W/O)

error (R/O)

read (W/O)

write (W/O)

*

• Consider a simple device with three registers: status, data and command.

• (Host can read and write these via bus)

• Then polled mode operation works as follows:

– Host repeatedly reads device busy until clear.

– Host sets e.g. write bit in command register, and puts data into data register.

– Host sets command ready bit in status register.

– Device sees command ready and sets device busy.

– Device performs write operation.

– Device clears command ready & then device busy.

• What’s the problem here?

Operating Systems — I/O Subsystem 3

Interrupts Revisited

Recall: to handle mismatch between CPU and device speeds, processors provide an
interrupt mechanism:

• at end of each instruction, processor checks interrupt line(s) for pending interrupt

• if line is asserted then processor:

– saves program counter,

– saves processor status,

– changes processor mode, and

– jump to a well known address (or its contents)

• after interrupt-handling routine is finished, can use e.g. the rti instruction to
resume where we left off.

Some more complex processors provide:

• multiple levels of interrupts

• hardware vectoring of interrupts

• mode dependent registers

Operating Systems — I/O Subsystem 4

Interrupt-Driven I/O

Can split implementation into low-level interrupt handler plus per-device interrupt

service routine:

• interrupt handler (processor-dependent) may:

– save more registers
– establish a language environment (e.g. a C run-time stack)
– demultiplex interrupt in software.
– invoke appropriate interrupt service routine (ISR)

• Then interrupt service routine (device-specific but not processor-specific) will:

1. for programmed I/O device:
– transfer data.
– clear interrupt (sometimes a side effect of tx).

1. for DMA device:
– acknowledge transfer.

2. request another transfer if there are any more I/O requests pending on device.
3. signal any waiting processes.
4. enter scheduler or return.

Question: who is scheduling who?

Operating Systems — I/O Subsystem 5

Device Classes

Homogenising device API completely not possible

⇒ OS generally splits devices into four classes:

1. Block devices (e.g. disk drives, CD):

• commands include read, write, seek

• raw I/O or file-system access

• memory-mapped file access possible

2. Character devices (e.g. keyboards, mice, serial ports):

• commands include get, put

• libraries layered on top to allow line editing

3. Network Devices

• varying enough from block and character to have own interface

• Unix and Windows/NT use socket interface

4. Miscellaneous (e.g. clocks and timers)

• provide current time, elapsed time, timer

• ioctl (on UNIX) covers odd aspects of I/O such as clocks and timers.

Operating Systems — I/O Subsystem 6

I/O Buffering

• Buffering: OS stores (its own copy of) data in memory while transferring to or
from devices

– to cope with device speed mismatch

– to cope with device transfer size mismatch

– to maintain “copy semantics”

• OS can use various kinds of buffering:

1. single buffering — OS assigns a system buffer to the user request

2. double buffering — process consumes from one buffer while system fills the next

3. circular buffers — most useful for bursty I/O

• Many aspects of buffering dictated by device type:

– character devices ⇒ line probably sufficient.

– network devices ⇒ bursty (time & space).

– block devices ⇒ lots of fixed size transfers.

– (last usually major user of buffer memory)

Operating Systems — I/O Subsystem 7

Blocking v. Nonblocking I/O

From the programmer’s point of view, I/O system calls exhibit one of three kinds of
behaviour:

1. Blocking: process suspended until I/O completed

• easy to use and understand.

• insufficient for some needs.

2. Nonblocking: I/O call returns as much as available

• returns almost immediately with count of bytes read or written (possibly 0).

• can be used by e.g. user interface code.

• essentially application-level “polled I/O”.

3. Asynchronous: process continues to run while I/O executes

• I/O subsystem explicitly signals process when its I/O request has completed.

• most flexible (and potentially efficient).

• . . . but also most difficult to use.

Most systems provide both blocking and non-blocking I/O interfaces; modern
systems (e.g. NT, Linux) also support asynchronous I/O, but used infrequently.

Operating Systems — I/O Subsystem 8

Other I/O Issues

• Caching: fast memory holding copy of data

– can work with both reads and writes

– key to I/O performance

• Scheduling:

– e.g. ordering I/O requests via per-device queue

– some operating systems try fairness. . .

• Spooling: queue output for a device

– useful for “single user” devices which can serve only one request at a time (e.g.
printer)

• Device reservation:

– system calls for acquiring or releasing exclusive access to a device (careful!)

• Error handling:

– e.g. recover from disk read, device unavailable, transient write failures, etc.

– most I/O system calls return an error number or code when an I/O request fails

– system error logs hold problem reports.

Operating Systems — I/O Subsystem 9

I/O and Performance

• I/O is a major factor in overall system performance

– demands CPU to execute device driver, kernel I/O code, etc.

– context switches due to interrupts

– data copying, buffering, etc

– (network traffic especially stressful)

• Improving performance:

– reduce number of context switches

– reduce data copying

– reduce # interrupts by using large transfers, smart controllers,

adaptive polling (e.g. Linux NAPI)

– use DMA where possible

– balance CPU, memory, bus and I/O for best throughput.

Improving I/O performance is a major remaining OS challenge

Operating Systems — I/O Subsystem 10

File Management

Directory
Service

Storage Service

Disk Handler

text name user file-id information requested
from file

user space

I/O subsystem

filing system

Filing systems have two main components:

1. Directory Service

• maps from names to file identifiers.

• handles access & existence control

2. Storage Service

• provides mechanism to store data on disk

• includes means to implement directory service

Operating Systems — Filing Systems 11

File Concept

What is a file?

• Basic abstraction for non-volatile storage.

• Typically comprises a single contiguous logical address space.

• Internal structure:

1. None (e.g. sequence of words, bytes)

2. Simple record structures

– lines
– fixed length
– variable length

3. Complex structures

– formatted document
– relocatable object file

• Can simulate 2,3 with byte sequence by inserting appropriate control characters.

• All a question of who decides:

– operating system

– program(mer).

Operating Systems — Files and File Meta-data 12

Naming Files

Files usually have at least two kinds of ‘name’:

1. system file identifier (SFID):

• (typically) a unique integer value associated with a given file

• SFIDs are the names used within the filing system itself

2. human-readable name, e.g. hello.java

• what users like to use

• mapping from human name to SFID is held in a directory, e.g.

Name SFID

hello.java

23812Makefile

12353

README 9742

• directories also non-volatile ⇒ must be stored on disk along with files.

3. Frequently also get user file identifier (UFID)

• used to identify open files (see later)

Operating Systems — Files and File Meta-data 13

File Meta-data

Type (file or directory)

Location on Disk
Size in bytes

Time of creation

Access permissions

File Control Block

Metadata Table
(on disk)

f(SFID)

SFID

As well as their contents and their name(s), files can have other attributes, e.g.

• Location: pointer to file location on device

• Size: current file size

• Type: needed if system supports different types

• Protection: controls who can read, write, etc.

• Time, date, and user identification: for protection, security and usage monitoring.

Together this information is called meta-data. It is contained in a file control block.

Operating Systems — Files and File Meta-data 14

Directory Name Space (I)

What are the requirements for our name space?

• Efficiency: locating a file quickly.

• Naming: user convenience

– allow two (or more generally N) users to have the same name for different files

– allow one file have several different names

• Grouping: logical grouping of files by properties (e.g. all Java programs, all games)

First attempts:

• Single-level: one directory shared between all users

⇒ naming problem

⇒ grouping problem

• Two-level directory: one directory per user

– access via pathname (e.g. bob:hello.java)

– can have same filename for different user

– but still no grouping capability.

Operating Systems — Directories 15

Directory Name Space (II)

Ann Bob Yao

javamail A

B C G H

I J

sent

FED

• Get more flexibility with a general hierarchy.

– directories hold files or [further] directories

– create/delete files relative to a given directory

• Human name is full path name, but can get long:
e.g. /usr/groups/X11R5/src/mit/server/os/4.2bsd/utils.c

– offer relative naming

– login directory

– current working directory

• What does it mean to delete a [sub]-directory?

Operating Systems — Directories 16

Directory Name Space (III)

Ann Bob Yao

javamail A

B C

D E F

G H

I J

sent

• Hierarchy good, but still only one name per file.

⇒ extend to directed acyclic graph (DAG) structure:

– allow shared subdirectories and files.

– can have multiple aliases for the same thing

• Problem: dangling references

• Solutions:

– back-references (but require variable size records); or

– reference counts.

• Problem: cycles. . .

Operating Systems — Directories 17

Directory Implementation

/Ann/mail/B

Ann

Bob

Yao

Name SFID

1034

179

7182

mail

A

Name SFID

2165

5797 sent

B

C

Name SFID

434

2459

25

D

D

D

Y

Y

Y

Y

Y

N

N

N

• Directories are non-volatile ⇒ store as “files” on disk, each with own SFID.

• Must be different types of file (for traversal)

• Explicit directory operations include:

– create directory

– delete directory

– list contents

– select current working directory

– insert an entry for a file (a “link”)

Operating Systems — Directories 18

File Operations (I)

UFID SFID File Control Block (Copy)

1
2
3
4

23421
3250
10532
7122

location on disk, size,...
" "
" "
" "

• Opening a file: UFID = open(<pathname>)

1. directory service recursively searches for components of <pathname>

2. if all goes well, eventually get SFID of file.
3. copy file control block into memory.
4. create new UFID and return to caller.

• Create a new file: UFID = create(<pathname>)

• Once have UFID can read, write, etc.

– various modes (see next slide)

• Closing a file: status = close(UFID)

1. copy [new] file control block back to disk.
2. invalidate UFID

Operating Systems — Filesystem Interface 19

File Operations (II)

current
file position

end of filestart of file
already accessed to be read

• Associate a cursor or file position with each open file (viz. UFID)

– initialised at open time to refer to start of file.

• Basic operations: read next or write next, e.g.

– read(UFID, buf, nbytes), or read(UFID, buf, nrecords)

• Sequential Access: above, plus rewind(UFID).

• Direct Access: read N or write N

– allow “random” access to any part of file.

– can implement with seek(UFID, pos)

• Other forms of data access possible, e.g.

– append-only (may be faster)

– indexed sequential access mode (ISAM)

Operating Systems — Filesystem Interface 20

Other Filing System Issues

• Access Control: file owner/creator should be able to control what can be done,
and by whom.

– normally a function of directory service ⇒ checks done at file open time

– various types of access, e.g.

∗ read, write, execute, (append?),
∗ delete, list, rename

– more advanced schemes possible (see later)

• Existence Control: what if a user deletes a file?

– probably want to keep file in existence while there is a valid pathname
referencing it

– plus check entire FS periodically for garbage

– existence control can also be a factor when a file is renamed/moved.

• Concurrency Control: need some form of locking to handle simultaneous access

– may be mandatory or advisory

– locks may be shared or exclusive

– granularity may be file or subset

Operating Systems — Filesystem Interface 21

