
Operating Systems

Steven Hand

Michaelmas / Lent Term 2008/09

17 lectures for CST IA

Handout 1

Operating Systems — N/H/MWF@12

Course Aims

• This course aims to:

– give you a general understanding of how a computer works,

– explain the structure and functions of an operating system,

– illustrate key operating system aspects by concrete example, and

– prepare you for future courses. . .

• At the end of the course you should be able to:

– describe the fetch-execute cycle of a computer

– understand the different types of information which may be stored

within a computer memory

– compare and contrast CPU scheduling algorithms

– explain the following: process, address space, file.

– distinguish paged and segmented virtual memory.

– discuss the relative merits of Unix and NT. . .

Operating Systems — Aims i

Course Outline

• Part I: Computer Organisation

– Computer Foundations

– Operation of a Simple Computer.

– Input/Output.

• Part II: Operating System Functions.

– Introduction to Operating Systems.

– Processes & Scheduling.

– Memory Management.

– I/O & Device Management.

– Protection.

– Filing Systems.

• Part III: Case Studies.

– Unix.

– Windows NT.

Operating Systems — Outline ii

Recommended Reading

• Structured Computer Organization (3rd Ed)
Tannenbaum A S, Prentice-Hall 1990.

• Computer Organization & Design (2rd Ed)
Patterson D and Hennessy J, Morgan Kaufmann 1998.

• Concurrent Systems or Operating Systems
Bacon J [and Harris T], Addison Wesley 1997 [2003]

• Operating Systems Concepts (5th Ed.)
Silberschatz A, Peterson J and Galvin P, Addison Wesley 1998.

• The Design and Implementation of the 4.3BSD UNIX Operating System
Leffler S J, Addison Wesley 1989

• Inside Windows 2000 (3rd Ed) or Windows Internals (4th Ed)
Solomon D and Russinovich M, Microsoft Press 2000 [2005]

Operating Systems — Books iii

A Chronology of Early Computing

• (several BC): abacus used for counting

• 1614: logarithms disovered (John Napier)

• 1622: invention of the slide rule (Robert Bissaker)

• 1642: First mechanical digital calculator (Pascal)

• Charles Babbage (U. Cambridge) invents:

– 1812: “Difference Engine”

– 1833: “Analytical Engine”

• 1890: First electro-mechanical punched card data-processing machine (Hollerith)

• 1905: Vacuum tube/triode invented (De Forest)

• 1935: the relay-based IBM 601 reaches 1 MPS.

• 1939: ABC : first electronic digital computer (Atanasoff & Berry)

• 1941: Z3 : first programmable computer (Zuse)

• Jan 1943: the Harvard Mark I (Aiken)

• Dec 1943: Colossus built at ‘Station X’, Bletchley Park

Computer Organisation — Foundations 1

The Von Neumann Architecture

Memory

Control
Unit

Arithmetic
Logical Unit

Accumulator

Output

Input

• 1945: ENIAC (Eckert & Mauchley, U. Penn):

– 30 tons, 1000 square feet, 140 kW,
– 18K vacuum tubes, 20×10-digit accumulators,
– 100KHz, circa 300 MPS.
– Used to calculate artillery firing tables.
– (1946) blinking lights for the media. . .

• But: “programming” is via plugboard ⇒ v. slow.

• 1945: von Neumann drafts “EDVAC” report

– design for a stored-program machine
– Eckert & Mauchley mistakenly unattributed

Computer Organisation — Foundations 2

Further Progress. . .

• 1947: “point contact” transistor invented (Shockley, Bardeen & Brattain)

• 1949: EDSAC, the world’s first stored-program computer (Wilkes & Wheeler)

– 3K vacuum tubes, 300 square feet, 12 kW,
– 500KHz, circa 650 IPS, 225 MPS.
– 1024 17-bit words of memory in mercury ultrasonic delay lines.
– 31 word “operating system” (!)

• 1954: TRADIC, first electronic computer without vacuum tubes (Bell Labs)

• 1954: first silicon (junction) transistor (TI)

• 1959: first integrated circuit (Kilby & Noyce, TI)

• 1964: IBM System/360, based on ICs.

• 1971: Intel 4004, first micro-processor (Ted Hoff):

– 2300 transistors, 60 KIPS.

• 1978: Intel 8086/8088 (used in IBM PC).

• ∼ 1980: first VLSI chip (> 100,000 transistors)

Today: ∼ 800M transistors, ∼ 45nm, ∼ 3 GHz.

Computer Organisation — Foundations 3

Languages and Levels

C/C++ Source

ASM Source

Object File
Other Object

Files ("Libraries")

Executable File
("Machine Code")

compile

assemble

link

execute

ML/Java
Bytecode

Level 4

Level 3

Level 2

Level 1

Level 5

interpret

• Modern machines all programmable with a huge variety of different languages.

• e.g. ML, java, C++, C, python, perl, FORTRAN, Pascal, scheme, . . .

• We can describe the operation of a computer at a number of different levels;
however all of these levels are functionally equivalent
— i.e. can perform the same set of tasks

• Each level relates to the one below via either

a. translation, or
b. interpretation.

Computer Organisation — Abstraction 4

Layered Virtual Machines

Virtual Machine M5 (Language L5)

Virtual Machine M4 (Language L4)

Virtual Machine M3 (Language L3)

Meta-Language Level

Compiled Language Level

Assembly Language Level

Virtual Machine M2 (Language L2)

Virtual Machine M1 (Language L1)

Digital Logic Level

Operating System Level

Actual Machine M0 (Language L0)

Conventional Machine Level

• Conisder a set of machines M0, M1, . . . Mn, each built on top of one another

• Each machine Mi understands only machine language Li.

• Levels 0, -1 covered in Dig. Elec. and (potentially) Physics

• This course focuses on levels 1 and 2.

• NB: all levels useful; none “the truth”.

Computer Organisation — Abstraction 5

A (Simple) Modern Computer

Control
Unit

 e.g. 1 GByte
2^30 x 8 =

8,589,934,592bits

Address Data Control

Processor

Reset

Bus

Memory
Execution

Unit

Register File
(including PC)

Sound Card

Framebuffer

Hard Disk

Super I/O

Mouse Keyboard Serial

Processor (CPU): executes programs Devices: for input and output
Memory: stores both programs & data Bus: transfers information

Computer Organisation — Anatomy of a Computer 6

Registers and the Register File

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15

0x5A

0x102034

0x2030ADCB

0x0

0x0

0x2405

0x102038

0x20 0x20000000

0x1

0x37B1CD

0xFF0000

0x102FC8

0xFFFFFFFF

0x1001D

0xEA02D1F

Computers all about operating on information:

• information arrives into memory from input devices

• memory is a large “byte array” which can hold any information we want

• computer conceptually takes values from memory, performs whatever operations,
and then stores results back

• in practice, CPU operates on registers:

– a register is an extremely fast piece of on-chip memory

– modern CPUs have between 8 and 128 registers, each 32/64 bits

– data values are loaded from memory into registers before operation

– result goes into register; eventually stored back to memory again.

Computer Organisation — Anatomy of a Computer 7

Memory Hierarchy

64K ROM

R
eg

is
te

r
Fi

le Execution
Unit

Control
Unit

Address

Data

Control

CPU

Data
Cache

Instruction
 Cache

Cache (SRAM)
Main Memory

B
us

 I
nt

er
fa

ce
 U

ni
t

1GB
DRAM

Bus

• Use cache between main memory and registers to mask delay of “slow” DRAM

• Cache made from faster SRAM: more expensive, and hence smaller.

– holds copy of subset of main memory.

• Split of instruction and data at cache level ⇒ “Harvard” architecture.

• Cache ↔ CPU interface uses a custom bus.

• Today have ∼ 8MB cache, ∼ 4GB RAM.

Computer Organisation — Anatomy of a Computer 8

Static RAM (SRAM)

D Q

G

D Q

G

D Q

G

D Q

G

D Q

G

D Q

G

D Q

G

D Q

G

A1
A0

/wr

D0 D1

/oe

D0

D1
/cs

/cs

• Relatively fast (currently 5− 20ns).

• Logically an array of (transparent) D-latches

– In reality, only cost ∼ 6 transistors per bit.

Computer Organisation — Memory Technology 9

SRAM Reality

bit bit

word

SRAM Cell (6T)

• Data held in cross-coupled inverters.

• One word line and two bit lines.

• To read:

– precharge both bit and bit, and then strobe word

– bit discharged if there was a 1 in the cell; bit discharged if there was a 0.

• To write:

– precharge either bit (for “1”) or bit (for “0”),

– strobe word.

Computer Organisation — Memory Technology 10

Dynamic RAM (DRAM)
Bit 0 Bit 1 Bit N-1

Word 0

Word 1

Bit N-2

Word 2

Sense Amplifiers & Latches

• Use a single transistor to store a bit.

• Write: put value on bit lines, strobe word line.

• Read: pre-charge, strobe word line, amplify, latch.

• “Dynamic”: refresh periodically to restore charge.

• Slower than SRAM: typically 50ns− 100ns.

Computer Organisation — Memory Technology 11

DRAM Decoding

R
O
W

D
E
C
O
D
E
R

COLUMN LATCHES

COLUMN MUX

Addr

Data

• Two stage: row, then column.

• Usually share address pins: RAS & CAS select decoder or mux.

• FPM, EDO, SDRAM faster for same row reads.

Computer Organisation — Memory Technology 12

The Fetch-Execute Cycle

Control Unit

IBDecode

Execution Unit

R
e
g
i
s
t
e
r

F
i
l
e

PC

+

• A special register called PC holds a memory address; on reset, initialised to 0.

• Then:

1. Instruction fetched from memory address held in PC into instruction buffer (IB).

2. Control Unit determines what to do: decodes instruction.

3. Execution Unit executes instruction.

4. PC updated, and back to Step 1.

• Continues pretty much forever. . .

Computer Organisation — Central Processing Unit 13

Execution Unit

Execution
Unit PC

#Ra
A

#Rb
A

Fn
K

#Rd
A

Register File

• The “calculator” part of the processor.

• Broken into parts (functional units), e.g.

– Arithmetic Logic Unit (ALU).

– Shifter/Rotator.

– Multiplier.

– Divider.

– Memory Access Unit (MAU).

– Branch Unit.

• Choice of functional unit determined by signals from control unit.

Computer Organisation — Central Processing Unit 14

Arithmetic Logic Unit

k

N

Carry In

Carry Out

ALU

Function
Code

input a

input b

output (d)

An N-bit ALU

N

N

• Part of the execution unit.

• Inputs from register file; output to register file.

• Performs simple two-operand functions:

– a + b;

– a - b

– a AND b

– a OR b

– etc.

• Typically perform all possible functions; use function code to select (mux) output.

Computer Organisation — Arithmetic and Logical Operations 15

Number Representation

00002 016 01102 616 11002 C16

00012 116 01112 716 11012 D16

00102 216 10002 816 11102 E16

00112 316 10012 916 11112 F16

01002 416 10102 A16 100002 1016

01012 516 10112 B16 100012 1116

• a n-bit register bn−1bn−2 . . . b1b0 can represent 2n different values.

• Call bn−1 the most significant bit (msb), b0 the least significant bit (lsb).

• Unsigned numbers: val = bn−12
n−1 + bn−22

n−2 + · · ·+ b12
1 + b02

0,
e.g. 11012 = 23 + 22 + 20 = 8 + 4 + 1 = 13.

• Represents values from 0 to 2n − 1 inclusive.

• For large numbers, binary is unwieldy: use hexadecimal (base 16).

• To convert, group bits into groups of 4, e.g.
11111010102 = 0011|1110|10102 = 3EA16.

• Often use “0x” prefix to denote hex, e.g. 0x107.

• Can use dot to separate large numbers into 16-bit chunks, e.g. 0x3FF.FFFF .

Computer Organisation — Arithmetic and Logical Operations 16

Number Representation (2)

• What about signed numbers? Two main options:

• Sign & magnitude:

– top (leftmost) bit flags if negative; remaining bits make value.

– e.g. byte 100110112 → −00110112 = −27.

– represents range −(2n−1 − 1) to +(2n−1 − 1), and the bonus value −0 (!).

• 2’s complement:

– to get −x from x, invert every bit and add 1.

– e.g. +27 = 000110112 ⇒ −27 = (111001002 + 1) = 111001012.

– treat 1000 . . . 0002 as −2n−1.

– represents range −2n−1 to +(2n−1 − 1)

• Note:

– in both cases, top-bit means “negative”.

– both representations depend on n;

• In practice, all modern computers use 2’s complement. . .

Computer Organisation — Arithmetic and Logical Operations 17

Unsigned Arithmetic

0 0 1 1 1

0 0 1 1 0

1C2C3C4C

10110 0)(1)(1)(0)(

0)(
= =

0)(0)(1)(1)(

0)(

0C inC
outC 5C

0)(

• (we use 5-bit registers for simplicity)

• Unsigned addition: Cn means “carry”; usually refer to this as C, the “carry flag”:

00101 5 11110 30

+ 00111 7 + 00111 7

------------- --------------

0 01100 12 1 00101 5

• Unsigned subtraction: Cn means “borrow”:

11110 30 00111 7

+ 00101 -27 + 10110 -10

------------- --------------

1 00011 3 0 11101 29

Computer Organisation — Arithmetic and Logical Operations 18

Signed Arithmetic

• In signed arithmetic, carry flag useless. . .

– Instead we use the overflow flag, V = (Cn⊕ Cn−1).

– Also have negative flag, N = bn−1 (i.e. the msb).

• Signed addition:

00101 5 01010 10

+ 00111 7 + 00111 7

------------- --------------

0 01100 12 0 10001 -15

------------- --------------

0 1

• Signed subtraction:

01010 10 10110 -10

+ 11001 -7 + 10110 -10

------------- --------------

1 00011 3 1 01100 12

------------- --------------

1 0

• In overflow cases the sign of the result is always wrong (i.e. the N bit is inverted).

Computer Organisation — Arithmetic and Logical Operations 19

Arithmetic & Logical Instructions

• Some common ALU instructions are:

Mnemonic C/Java Equivalent Mnemonic C/Java Equivalent
and d← a, b d = a & b; add d← a, b d = a + b;

xor d← a, b d = a ^ b; sub d← a, b d = a - b;

orr d← a, b d = a | b; rsb d← a, b d = b - a;

bis d← a, b d = a | b; shl d← a, b d = a << b;

bic d← a, b d = a & (~b); shr d← a, b d = a >> b;

Both d and a must be registers; b can be a register or a (small) constant.

• Typically also have addc and subc, which handle carry or borrow (for
multi-precision arithmetic), e.g.

add d0, a0, b0 // compute "low" part.

addc d1, a1, b1 // compute "high" part.

• May also get:

– Arithmetic shifts: asr and asl(?)

– Rotates: ror and rol.

Computer Organisation — Arithmetic and Logical Operations 20

A 1-bit ALU Implementation

MUX

MUX

ADD

Sub Fn

a

b
res

Cout

Cin

MUX

1-Bit ALU

• Eight possible functions (4 types):

1. a AND b, a AND b.

2. a OR b, a OR b.

3. a + b, a + b with carry.

4. a− b, a− b with borrow.

• To make n-bit ALU bit, connect together (use carry-lookahead on adders).

Computer Organisation — Arithmetic and Logical Operations 21

Conditional Execution

• Seen C,N,V flags; now add Z (zero), logical NOR of all bits in output.

• Can predicate execution based on (some combination) of flags, e.g.

subs d, a, b // compute d = a - b

beq proc1 // if equal, goto proc1

br proc2 // otherwise goto proc2

Java equivalent approximately:

if (a==b) proc1() else proc2();

• On most computers, mainly limited to branches.

• On ARM (and IA64), everything conditional, e.g.

sub d, a, b // compute d = a - b

moveq d, #5 // if equal, d = 5;

movne d, #7 // otherwise d = 7;

Java equiv: d = (a==b) ? 5 : 7;

• “Silent” versions useful when don’t really want result, e.g. tst, teq, cmp.

Computer Organisation — Conditional Execution 22

Condition Codes

Suffix Meaning Flags
EQ, Z Equal, zero Z == 1
NE, NZ Not equal, non-zero Z == 0
MI Negative N == 1
PL Positive (incl. zero) N == 0
CS, HS Carry, higher or same C == 1
CC, LO No carry, lower C == 0
VS Overflow V == 1
VC No overflow V == 0
HI Higher C == 1 && Z == 0
LS Lower or same C == 0 || Z == 1
GE Greater than or equal N == V

GT Greater than N == V && Z == 0
LT Less than N != V

LE Less than or equal N != V || Z == 1

• HS, LO, etc. used for unsigned comparisons (recall that C means “borrow”).

• GE, LT, etc. used for signed comparisons: check both N and V so always works.

Computer Organisation — Conditional Execution 23

Loads & Stores

• Have variable sized values, e.g. bytes (8-bits), words (16-bits), longwords
(32-bits) and quadwords (64-bits).

• Load or store instructions usually have a suffix to determine the size, e.g. ‘b’ for
byte, ‘w’ for word, ‘l’ for longword.

• When storing > 1 byte, have two main options: big endian and little endian; e.g.
storing longword 0xDEADBEEF into memory at address 0x4.

Ox0000.0000

Ox0000.0004

00 01 02 03 03 02 01 00

Little EndianBig Endian

DE AD BE EFEF BE AD DE

Little Endian

00 01 02 03

Big Endian

04 05 06 07 08

EF BE AD DE

DE AD BE EF

If read back a byte from address 0x4, get 0xDE if big-endian, or 0xEF if
little-endian. If you always load and store things of the same size, things are fine.

• Today have x86 little-endian; Sparc big-endian; Mips & ARM either.

• Annoying. . . and burns a considerable number of CPU cycles on a daily basis. . .

Computer Organisation — Memory (CPU point of view) 24

Accessing Memory

• To load/store values need the address in memory.

• Most modern machines are byte addressed : consider memory a big array of 2A

bytes, where A is the number of address lines in the bus.

• Lots of things considered “memory” via address decoder, e.g.

ROM /CS

RAM /CS

UART /CS

A14

A15

A[0:13]
14

• Typically each device decodes only a subset of low address lines, e.g.

Device Size Data Decodes
ROM 1024 bytes 32-bit A[2:9]

RAM 16384 bytes 32-bit A[2:13]

UART 256 bytes 8-bit A[0:7]

Computer Organisation — Address Decoding 25

Addressing Modes

• An addressing mode tells the computer where the data for an instruction is to
come from.

• Get a wide variety, e.g.
Register: add r1, r2, r3

Immediate: add r1, r2, #25

PC Relative: beq 0x20

Register Indirect: ldr r1, [r2]

” + Displacement: str r1, [r2, #8]

Indexed: movl r1, (r2, r3)

Absolute/Direct: movl r1, $0xF1EA0130

Memory Indirect: addl r1, ($0xF1EA0130)

• Most modern machines are load/store ⇒ only support first five:

– allow at most one memory ref per instruction

– (there are very good reasons for this)

• Note that CPU generally doesn’t care what is being held within the memory.

• i.e. up to programmer to interpret whether data is an integer, a pixel or a few
characters in a novel.

Computer Organisation — Address Decoding 26

Representing Text

• Two main standards:

1. ASCII: 7-bit code holding (English) letters, numbers, punctuation and a few
other characters.

2. Unicode: 16-bit code supporting practically all international alphabets and
symbols.

• ASCII default on many operating systems, and on the early Internet (e.g. e-mail).

• Unicode becoming more popular (esp UTF-8!).

• In both cases, represent in memory as either strings or arrays: e.g. “Pub Time!”

Ox351A.25E4

Ox351A.25E8

20 62 75 50

ArrayString

65 6D 69 54

Ox351A.25EC2100xxxx

20 62

75 50

69 54

65 6D21xx

00 09

• 0x49207769736820697420776173203a2d28

Computer Organisation — Memory (Programmer’s Point of View) 27

Floating Point (1)

• In many cases want to deal with very large or very small numbers.

• Use idea of “scientific notation”, e.g. n = m× 10e

– m is called the mantissa

– e is called the exponent.

e.g. C = 3.01× 108 m/s.

• For computers, use binary i.e. n = m× 2e, where m includes a “binary point”.

• Both m and e can be positive or negative; typically

– sign of mantissa given by an additional sign bit.

– exponent is stored in a biased (excess) format.

⇒ use n = (−1)sm× 2e−b, where 0 ≤ m < 2 and b is the bias.

• e.g. 4-bit mantissa & 3-bit bias-3 exponent allows positive range
[0.0012 × 2−3, 1.1112 × 24]

= [(1

8
)(1

8
), (15

8
)16], or [1

64
, 30]

Computer Organisation — Memory (Programmer’s Point of View) 28

Floating Point (2)

• In practice use IEEE floating point with normalised mantissa m = 1.xx . . . x2

⇒ use n = (−1)s((1 + m)× 2e−b),

• Both single (float) and double (double) precision:

S Exponent(11) Mantissa (52)

06263 5152

S Exponent(8) Mantissa (23)

022233031

Bias-127Bias-1023

• IEEE fp reserves e = 0 and e = max:

– ±0 (!): both e and m zero.

– ±∞ : e = max, m zero.

– NaNs : e = max, m non-zero.

– denorms : e = 0, m non-zero

• Normal positive range [2−126,∼ 2128] for single, or [2−1022,∼ 21024] for double.

• NB: still only 232/264 values — just spread out.

Computer Organisation — Memory (Programmer’s Point of View) 29

Data Structures

• Records / structures: each field stored as an offset from a base address.

• Variable size structures: explicitly store addresses (pointers) inside structure, e.g.

datatype rec = node of int * int * rec

| leaf of int;

val example = node(4, 5, node(6, 7, leaf(8)));

• Imagine example is stored at address 0x1000:

Address Value Comment

0x0F30 0xFFFF Constructor tag for a leaf

0x0F34 8 Integer 8
...

0x0F3C 0xFFFE Constructor tag for a node

0x0F40 6 Integer 6

0x0F44 7 Integer 7

0x0F48 0x0F30 Address of inner node
...

0x1000 0xFFFE Constructor tag for a node

0x1004 4 Integer 4

0x1008 5 Integer 5

0x100C 0x0F3C Address of inner node

Computer Organisation — Memory (Programmer’s Point of View) 30

Instruction Encoding

• An instruction comprises:

a. an opcode: specify what to do.
b. zero or more operands: where to get values

e.g. add r1, r2, r3 ≡ 1010111 001 010 011

• Old machines (and x86) use variable length encoding for low code density.

• Other modern machines (e.g. ARM) use fixed length encoding for simplicity

00 I Opcode S Ra Rd Operand 2

31 25 24 21 20 19 16 15 1211 026

Cond

2728

and r13, r13, #31 = 0xe20dd01f =

1110 00 1 0000 0 1101 1101 000000011111

bic r3, r3, r2 = 0xe1c33002 =

1110 00 0 1110 0 0011 0011 000000000010

cmp r1, r2 = 0xe1510002 =

1110 00 0 1010 1 0001 0000 000000000010

Computer Organisation — Memory (Programmer’s Point of View) 31

Fetch-Execute Cycle Revisited

Control Unit

IBDecode

Execution Unit

R
e
g
i
s
t
e
r

F
i
l
e

PC

+

MAU

BU

ALU

1. CU fetches & decodes instruction and generates (a) control signals and (b)
operand information.

2. In EU, control signals select functional unit (“instruction class”) and operation.

3. If ALU, then read 1–2 registers, perform op, and (probably) write back result.

4. If BU, test condition and (maybe) add value to PC.

5. If MAU, generate address (“addressing mode”) and use bus to read/write value.

6. Repeat ad infinitum.

Computer Organisation — Fetch-Execute Cycle Revisited 32

Input/Output Devices

• Devices connected to processor via a bus (e.g. ISA, PCI, AGP).

• Includes a wide range:

– Mouse,

– Keyboard,

– Graphics Card,

– Sound card,

– Floppy drive,

– Hard-Disk,

– CD-Rom,

– Network card,

– Printer,

– Modem

– etc.

• Often two or more stages involved (e.g. IDE, SCSI, RS-232, Centronics, etc.)

Computer Organisation — I/O Devices 33

UARTs

A[0:x]

D[0:7]

chip select/cs

Serial Input

Serial Output

Baud
Rate

Generator

read/writer/w

• Universal Asynchronous Receiver/Transmitter:

– stores 1 or more bytes internally.

– converts parallel to serial.

– outputs according to RS-232.

• Various baud rates (e.g. 1,200 – 115,200)

• Slow and simple. . . and very useful.

• Make up “serial ports” on PC.

• Max throughput ∼ 14.4KBytes; variants up to 56K (for modems).

Computer Organisation — I/O Devices 34

Hard Disks

spindle

actuator

read-write
head

arm

rotation

platter

sector

track

cylinder

• Whirling bits of (magnetized) metal. . .

• Rotate 3,600 – 12,000 times a minute.

• Capacity ∼ 250 GBytes (≈ 250× 230bytes).

Computer Organisation — I/O Devices 35

Graphics Cards

hsync

from CPU

RAMDAC

Dot
Clock

vsync

Blue
Green
Red

to Monitor

Graphics
Processor

Framebuffer

VRAM/
SDRAM/
SGRAM

PCI/
AGP

• Essentially some RAM (framebuffer) and some digital-to-analogue circuitry
(RAMDAC).

• RAM holds array of pixels: picture elements.

• Resolutions e.g. 640x480, 800x600, 1024x768, 1280x1024, 1600x1200.

• Depths: 8-bit (LUT), 16-bit (RGB=555, 24-bit (RGB=888), 32-bit (RGBA=888).

• Memory requirement = x× y× depth, e.g. 1280x1024 @ 16bpp needs 2560KB.

⇒ full-screen 50Hz video requires 125 MBytes/s (or ∼ 1Gbit/s).

Computer Organisation — I/O Devices 36

Buses

Processor Memory

Other Devices

ADDRESS

 DATA

CONTROL

• Bus = collection of shared communication wires:

✔ low cost.

✔ versatile / extensible.

✘ potential bottle-neck.

• Typically comprises address lines, data lines and control lines (+ power/ground).

• Operates in a master-slave manner, e.g.

1. master decides to e.g. read some data.

2. master puts addr onto bus and asserts ’read’

3. slave reads addr from bus and retrieves data.

4. slave puts data onto bus.

5. master reads data from bus.

Computer Organisation — Buses, Interrupts and DMA 37

Bus Hierarchy

Sound
Card

Bridge

512MByte
DIMM

Processor

C
a
c
h
e
s

512MByte
DIMM

Framebuffer

B
r
i
d
g
e

SCSI
Controller

PCI Bus (33/66Mhz)

Memory Bus (400Mhz)Processor
Bus

ISA Bus (8Mhz)

• In practice, have lots of different buses with different characteristics e.g. data
width, max #devices, max length.

• Most buses are synchronous (share clock signal).

Computer Organisation — Buses, Interrupts and DMA 38

Synchronous Buses

Memory Address To Read

Data

CLOCK

A[0:31]

D[0:31]

/MREQ

/READ

cycle 1 cycle 2 cycle 3

• Figure shows a read transaction which requires three bus cycles.

1. CPU puts address onto address lines and, after settle, asserts control lines.

2. Memory fetches data from address.

3. Memory puts data on data lines, CPU latches value and then deasserts control
lines.

• If device not fast enough, can insert wait states.

• Faster clock/longer bus can give bus skew.

Computer Organisation — Buses, Interrupts and DMA 39

Asynchronous Buses

Memory Address To Read

Data

A[0:31]

D[0:31]

/MREQ

/READ

/SYN

/ACK

• Asynchronous buses have no shared clock; instead work by handshaking, e.g.

– CPU puts address onto address lines and, after settle, asserts control lines.

– next, CPU asserts /SYN to say everything ready.

– once memory notices /SYN, it fetches data from address and puts it onto bus.

– memory then asserts /ACK to say data is ready.

– CPU latches data, then deasserts /SYN.

– finally, Memory deasserts /ACK.

• More handshaking if multiplex address & data. . .

Computer Organisation — Buses, Interrupts and DMA 40

Interrupts

• Bus reads and writes are transaction based: CPU requests something and waits
until it happens.

• But e.g. reading a block of data from a hard-disk takes ∼ 2ms, which is
∼ 5, 000, 000 clock cycles!

• Interrupts provide a way to decouple CPU requests from device responses.

1. CPU uses bus to make a request (e.g. writes some special values to a device).

2. Device goes off to get info.

3. Meanwhile CPU continues doing other stuff.

4. When device finally has information, raises an interrupt.

5. CPU uses bus to read info from device.

• When interrupt occurs, CPU vectors to handler, then resumes using special
instruction, e.g.

0x184c: add r0, r0, #8

0x1850: sub r1, r5, r6

0x1854: ldr r0, [r0]

0x1858: and r1, r1, r0

0x0020: ...

0x0024: <do stuff>

...... ...

0x0038: rti

Computer Organisation — Buses, Interrupts and DMA 41

Interrupts (2)

• Interrupt lines (∼ 4− 8) are part of the bus.

• Often only 1 or 2 pins on chip ⇒ need to encode.

• e.g. ISA & x86:

IR0
IR1
IR2
IR3
IR4
IR5
IR6
IR78

2
5
9
A

P
I
C

Processor

Intel
Clone

 INT

 INTA

 D[0:7]

1. Device asserts IRx.

2. PIC asserts INT.

3. When CPU can interrupt, strobes INTA.

4. PIC sends interrupt number on D[0:7].

5. CPU uses number to index into a table in memory which holds the addresses of
handlers for each interrupt.

6. CPU saves registers and jumps to handler.

Computer Organisation — Buses, Interrupts and DMA 42

Direct Memory Access (DMA)

• Interrupts good, but even better is a device which can read and write processor
memory directly.

• A generic DMA “command” might include

– source address

– source increment / decrement / do nothing

– sink address

– sink increment / decrement / do nothing

– transfer size

• Get one interrupt at end of data transfer

• DMA channels may be provided by devices themselves:

– e.g. a disk controller

– pass disk address, memory address and size

– give instruction to read or write

• Also get “stand-alone” programmable DMA controllers.

Computer Organisation — Buses, Interrupts and DMA 43

Summary

• Computers made up of four main parts:

1. Processor (including register file, control unit and execution unit),

2. Memory (caches, RAM, ROM),

3. Devices (disks, graphics cards, etc.), and

4. Buses (interrupts, DMA).

• Information represented in all sorts of formats:

– signed & unsigned integers,

– strings,

– floating point,

– data structures,

– instructions.

• Can (hopefully) understand all of these at some level, but gets pretty complex.

⇒ to be able to actually use a computer, need an operating system.

Computer Organisation — Summary 44

