
MODULE 3p - A Java Object

A PROGRAM WITH TWO CLASSES

Key the following source code into the file Box.java:

public class Box

{ public static void main(String[] args)

{ Square jack;

jack = new Square();

jack.side = 6;

System.out.printf("Area of jack is %d%n", jack.area());

}

}

class Square

{ public int side;

public int area()

{ return this.side*this.side;

}

}

This program contains TWO classes: Box contains the all important

method main() but no data fields and no other methods. The other

class Square contains a single data field side and a single method

area() (and notice that both are public but NEITHER is static).

In the method main(), a single local variable jack is declared but

it is not of type int or of type String but of type Square and this

introduces a whole new way of thinking...

DO-IT-YOURSELF TYPES

Square is a do-it-yourself type and in Java the names of such types

are always the names of classes. If you want to set up such a type

you must declare a class whose name is that of the desired type and

within the declaration you must specify your requirements. In the

present case we want to specify a Square...

A Square is completely specified just by saying what the length of a

side is and in class Square the data field side will hold the value

representing the length of the side in, say, inches. For reasons to

be explained later, side must be public but NOT static.

Additionally in class Square there is a method area() which can be

used to work out the area of the Square from the length of a side.

This too must be public but not static.

1



A NEW SQUARE - A HANDLE

The declaration Square jack sets up a variable jack but jack does

NOT have a value until it is assigned a new Square() and this

assignment is sometimes said to ‘give jack a handle on a Square’.

Having got a handle on a Square, jack can then refer to the side

of its Square by using the construction jack.side and jack can

refer to the method area() by using the construction jack.area()

In the method main(), the second assignment sets jack.side to 6 (which

is to say the data field side is assigned the value 6).

The System.out.printf statement then writes out the area of

the square by invoking the method area() via jack.area()

Notice that the brackets are needed because area() is a method but

it has no arguments so there is nothing inside the brackets. Of

course, area() needs to know the value of the data field side but,

WITHIN the method, one can’t use jack.side because jack is in

a different class and would be unknown in class Square. Accordingly

one writes this.side instead.

JAVA NAMING CONVENTIONS - A REMINDER

It is a standard convention in Java that class names begin with an

upper-case letter. There are four class names in the program: Box,

Square, String and System.

It is also a convention that data field names (e.g. side), method names

(e.g. main() and area()) and local variable names (e.g. jack) begin

with lower-case letters.

TRY IT OUT

Compile and run the program. The output should be:

Area of jack is 36

Give an ls command and notice that there are TWO .class files.

A FIRST VARIATION

In the initial version of the program the user took three steps to set

up a new Square for jack...

1. Declare the variable as Square jack;

2. Assign a new Square as jack = new Square();

3. Specify the size as jack.side = 6;

In the first variation of the program below, the first two steps are

combined into a single statement by arranging for the declaration and

2



the assignment to be merged.

Modify the original version of the Box program so that it is as shown

below. The declaration of jack is merged with the assignment of a new

Square to this variable. Also declare a second variable jill in the

same way but give Square jill a different size. Set up this version

now.

public class Box

{ public static void main(String[] args)

{ Square jack = new Square();

jack.side = 6;

System.out.printf("Area of jack is %d%n", jack.area());

Square jill = new Square();

jill.side = 5;

System.out.printf("Area of jill is %d%n", jill.area());

}

}

class Square

{ public int side;

public int area()

{ return this.side*this.side;

}

}

The method main() now declares two local variables, both of type

Square.

CLASSES AND OBJECTS - INSTANTIATION

In some ways a class is a kind of once-off DESIGN or outline. This is

true of class Square whose design appears in the second half of the

program.

The keyword new brings the design to life and results in what is

called an ‘instantiation’ of the class, usually referred to as an

object.

The current version of the program has one class Square (and there

can never be more than one) but two Square objects: jack and jill.

There can be any (reasonable) number of objects instantiated from a

single class and they must be thought of as each quite separate from

the other. This is important because jack.side must be a different

variable from jill.side or it would be impossible to have different

sizes of Square.

TRY IT OUT

Compile and run this program. It ought to give the result:

3



Area of jack is 36

Area of jill is 25

A SECOND VARIATION

The initial version of the program took three steps to set up a new

Square for jack...

1. Declare the variable as Square jack;

2. Assign a new Square as jack = new Square();

3. Specify the size as jack.side = 6;

In the first variation, steps 1 and 2 were merged and in the second

variation below the third step is merged in too by arranging for the

size of the Square to be specified inside the brackets as new Square(6)

and for this to work there has to be a special extra method called a

‘constructor’ incorporated into the class definition.

Modify the first variation to the following form and try it out:

public class Box

{ public static void main(String[] args)

{ Square jack = new Square(6);

System.out.printf("Area of jack is %d%n", jack.area());

Square jill = new Square(5);

System.out.printf("Area of jill is %d%n", jill.area());

}

}

class Square

{ private int side; // note private instead of public

public Square(int s) // this new special method is

{ this.side = s; // called a constructor. It has

} // the same name as the class itself.

public int area()

{ return this.side*this.side;

}

}

CONSTRUCTORS

Most classes are intended to be instantiated as objects by some other

class. Thus, here, class Square is instantiated as two objects jack

and jill by declarations in the method main() in class Box.

Most classes incorporate data fields which need to be initialised and it

is convenient to specify the initial values at the time of instantiation.

This goal is achieved by including a constructor in the class and

arranging for the arguments of the constructor to be handed the initial

values and for the body of the constructor to assign these values to

the appropriate data fields.

4



A constructor is written just like a method except that there is no

return type. You should never write public int Square(int s) or

public void Square(int s) but just plain public Square(int s)

as in the program.

VISIBILITY MODIFIERS - public AND private - ENCAPSULATION

The two keywords public and private are called visibility modifiers

and control the accessibility of data fields and methods...

Data fields (and methods) with a private modifier cannot be accessed

from outside the class in which they are declared. Roughly speaking

the goal is to have all data fields (and any methods not accessed from

outside the class) private. This is known as ‘encapsulation’.

The idea is that a user should be able to set or read a typical data

field only under the control of public methods declared elsewhere in

the class. In the present case the constructor is used for setting

the value of side (it therefore has to be declared public since it has

to be accessed from outside the class). Likewise method area() has to

be declared public since it too is accessed from outside the class.

MOST CLASSES CONTAIN CONSTRUCTORS

The reason for the absence of constructors in most examples so far is

that most programs have consisted of a single class, the one which

incorporates the method main(). Data fields and methods in this class

are not accessed from outside the class (except that the method main()

itself is the entry point of the Java Virtual Machine).

Accordingly, the class which incorporates the method main() will

usually have all its data fields and methods declared private except

the method main() itself which must be declared public.

A THIRD VARIATION

In the third variation below, an extra method called toString() is

added to class Square and this method provides details of the Square

as a String which can be used in a System.out.printf statement.

Modify the Box program so that the two System.out.printf statements

are as in the following version and add the toString() method to the

declaration of class Square:

public class Box

{ public static void main(String[] args)

{ Square jack = new Square(6);

System.out.printf("Details of jack...%n%s%n", jack.toString());

Square jill = new Square(5);

System.out.printf("Details of jill...%n%s%n", jill);

}

}

5



class Square

{ private int side;

public Square(int s)

{ this.side = s;

}

public int area()

{ return this.side*this.side;

}

public String toString()

{ return String.format("Square: Side = %d%n" +

" Area = %d%n", this.side, this.area());

}

}

THE toString() METHOD

The method name toString() is special in Java and it is policy that

most class declarations should incorporate a method with this name

with the express purpose of giving details in the form of a String.

Any instantiation of the class, such as jack or jill in the present

case, can gain access to the details just by invoking jack.toString()

or jill.toString() respectively.

To make matters even more convenient, Java arranges that if an object

identifier is used in a String context WITHOUT explicitly invoking the

toString() method then that method will be invoked implicitly.

Thus it is unnecessary to write jill.toString() and one can write

just plain jill as in the second System.out.printf statement.

Try the program out. The results should be:

Details of jack...

Square: Side = 6

Area = 36

Details of jill...

Square: Side = 5

Area = 25

JAVA NAMING CONVENTIONS - MORE

It is another Java convention that if a data field name, a method

name, or a local variable name consists of two or more words these

words are run together but it is arranged that the second and

subsequent words begin with an upper-case letter. The name

toString follows this convention.

The same convention applies to class names except that the very

6



first letter is also upper-case, as in ComeIn and ComeAgain.

FINAL VARIATIONS - static or no static

The final experiments on the Box program are intended to illustrate

the effect of the static modifier.

First, simply add an extra System.out.printf statement to the end of

method main() to check that jack is not changed by the instantiation

of jill:

public class Box

{ public static void main(String[] args)

{ Square jack = new Square(6);

System.out.printf("Details of jack...%n%s%n", jack.toString());

Square jill = new Square(5);

System.out.printf("Details of jill...%n%s%n", jill);

System.out.printf("Details of jack...%n%s%n", jack); // new statement

}

}

class Square

{ private int side;

public Square(int s)

{ this.side = s;

}

public int area()

{ return this.side*this.side;

}

public String toString()

{ return String.format("Square: Side = %d%n" +

" Area = %d%n", this.side, this.area());

}

}

Try the program out. Unsurprisingly, when jack’s details are

written out for the second time they are unchanged.

Next modify the declaration of the data field side so that it

is static:

public class Box

{ public static void main(String[] args)

{ Square jack = new Square(6);

System.out.printf("Details of jack...%n%s%n", jack.toString());

Square jill = new Square(5);

System.out.printf("Details of jill...%n%s%n", jill);

System.out.printf("Details of jack...%n%s%n", jack);

}

}

7



class Square

{ private static int side; // static modifier added

public Square(int s)

{ this.side = s;

}

public int area()

{ return this.side*this.side;

}

public String toString()

{ return String.format("Square: Side = %d%n" +

" Area = %d%n", this.side, this.area());

}

}

Try the program out and notice that when jack’s details are written

out for the second time they are the SAME as jill’s.

When a data field is declared static it belongs firmly to the class

in which it is declared. A fresh version is NOT set up each time a

new object is created from the class so there is only one side in

the above program. This is set to 6 when jack is created and is set

to 5 when jill is created and is not changed again.

INSTANCE VARIABLES AND CLASS VARIABLES

In the first two versions of the current program, the data field side

was declared:

public int side;

A data field which is declared WITHOUT a static modifier is called an

‘instance variable’. It (usefully) exists only after instantiation of

the containing class. The variable is then accessible from outside the

class via jack.side or jill.side (provided the visibility modifier

is public) and from inside the class via this.side (whether the

visibility modifier is public or private).

Suppose, instead, the declaration had been:

public static int side;

A data field which is declared WITH a static modifier is called a

‘class variable’. It exists whether or not the containing class is

instantiated and exists only once no matter how many times the class

is instantiated.

Had the visibility modifier of side in the latest program been public,

the variable would have been accessible from outside the class via

jack.side or jill.side OR (using the class name) by Square.side

(but in each case the visibility modifier has to be public).

8



From inside the class, the variable would be accessible via this.side

OR (again using the class name) Square.side.

INSTANCE METHODS AND CLASS METHODS

In a similar way, there are instance methods and class methods,

methods declared without and with the static modifier respectively.

An instance method (usefully) exists only after instantiation of the

containing class. The methods area() and toString() (and also the

constructor) are all instance methods. They are accessed via

jack.area() or jack.toString() (though the toString() is usually

implicit). These methods could not be accessed via Square.area() or

Square.toString()

A class method exists whether or not the containing class is

instantiated and exists only once no matter how many times the class

is instantiated. The method main() is always a class method. In some

sense it is accessed (by the Java Virtual Machine) via Box.main()

(note the use of the class name Box).

OTHER TASKS

By this stage of the course you should be able to attempt the following

problems in the Problems sheet:

5. The Date of Easter Problem

6. The Friday 13th Problem

7. The Forward and Backward Count Problem

8. The Accumulating Rounding Errors Problem

9


