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Information Theory and Coding

J G Daugman
Prerequisite courses: Prolability; Mathematical Methads for CS; Discrete Mathematics

Aims

The aimsof this courseare to introducethe principles and applications of information theory.
The coursewill study how information is measuredin terms of probability and ertropy, and the
relationshipsamongconditional and joint entropies; how theseare usedto calculatethe capacity
of a communication channel, with and without noise;coding schemes,including error correcting
codes; how discrete channelsand measuresof information generaliseto their cortinuous forms;
the Fourier perspective; and extensionsto wavelets,complexity, compressionand e cien t coding
of audio-visualinformation.

Lectures

Foundations: probabilit y, uncertain ty, information. How conceptsof randomness,
redundancy compressibili, noise,bandwidth, and uncertainty are related to information.

Ensenbles, random variables, marginal and conditional probabilities. How the metrics of

information are groundedin the rules of probability.

Entropies de ned, and why they are measures of information. Marginal ertropy,
joint erntropy, conditional entropy, and the Chain Rule for ertropy. Mutual information
betweenensenblesof random variables. Why ertropy is the fundamertal measureof infor-
mation cortent.

Source coding theorem; prex, variable-, and xed-length codes. Symbol codes.
The binary symmetric channel. Capacity of a noiselesdliscrete channel. Error correcting
codes.

Channel types, prop erties, noise, and channel capacity. Perfect commnunication
through a noisy channel. Capacity of a discrete channel as the maximum of its mutual
information over all possibleinput distributions.

Contin uous information; density; noisy channel coding theorem. Extensionsofthe
discreteertropies and measurego the cortinuouscase. Signal-to-noiseratio; power spectral
density. Gaussianchannels. Relative signi cance of bandwidth and noiselimitations. The
Shannonrate limit and e ciency for noisy cortinuous channels.

Fourier series, convergence, orthogonal representation. Generalisedsignal expan-
sionsin vector spaces. Independence. Represetation of cortinuous or discrete data by
complexexponertials. The Fourier basis. Fourier seriesfor periodic functions. Examples.

Useful Fourier theorems; transform pairs. Sampling; aliasing. The Fourier trans-
form for non-periodic functions. Properties of the transform, and examples. Nyquist's
Sampling Theoremderived, and the cause(and removal) of aliasing.

Discrete Fourier transform. Fast Fourier Transform Algorithms. Ecient al-
gorithms for computing Fourier transforms of discrete data. Computational complexity.
Filters, correlation, modulation, demadulation, coherence.



The quantised degrees-of-freedom in a contin uous signal. Why a cortinuous sig-
nal of nite bandwidth and duration hasa xed number of degrees-of-freedomDiverse
illustrations of the principle that information, even in sud a signal, comesin quartised,
courtable, padets.

Gab or-Heisen berg-W eyl uncertain ty relation. Optimal \Logons". Unication of
the time-domain and the frequency-domainas endpoints of a cortinuousdeformation. The
Uncertainty Principle and its optimal solution by Gabor's expansionbasis of \logons".
Multi-resolution wavelet codes. Extensionto images,for analysisand compression.

Kolmogoro v complexit y. Minimal description length. De nition of the algorithmic
complexity of a data sequenceand its relation to the ertropy of the distribution from
which the data wasdrawn. Fractals. Minimal description length, and why this measureof
complexity is not computable.

Ob jectiv es
At the end of the coursestuderts should be able to

calculate the information cortent of a random variable from its probability distribution

relate the joint, conditional, and marginal entropies of variablesin terms of their coupled
probabilities

de ne channel capacitiesand properties using Shannon'sTheorems

construct e cien t codesfor data on imperfect comnunication channels
generalisethe discreteconceptsto cortinuous signalson cortinuous channels
understand Fourier Transformsand the main ideasof e cien t algorithms for them

descrilke the information resolution and compressionproperties of wavelets

Recommended book

* Cover, T.M. & Thomas,J.A. (1991). Elementsof information theory. New York: Wiley.



Information Theory and Coding

Computer Science Trip os Part 11, Mic haelmas Term
11 lectures by J G Daugman

1. Overview: What is Information Theory?

Key idea: The movemens andtransformation®finformation just like
thoseof a uid, are constrainedoy mathematicaland physical laws.
Thesdaws have deepconnectionsvith:

probability theory statistics,and conbinatorics
thermalynamicg(statisticalphysics)
spectralanalysisfourier (and other) transforms
samplingtheory prediction,estimationtheory
electricalengineeringbandwidth;signal-to-noiseatio)
complexiy theory (minimal descriptionength)
signalprocessingrepresetation, compressibilit

As sud, informationtheoryaddresseand ansversthe
two fundametal question®f comnunicationtheory:

1. What is the ultimate data compression?
(ansver: the ertropy of the data, H, is its compressiohmit.)

2. What is the ultimate transmissiomate of communication?
(ansver: the channelcapaciy, C, is its rate limit.)

All comnunicationsdhiemedie in betweenthesetwo limits on the com-
pressibiliy of data and the capaciy of a channel. Informationtheory
cansuggesmeando adiee thesetheoreticallimits. But the sulject
alsoextenddar beyond comnunicationtheory
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Important questions...to whidch InformationTheoryo ers ansvers:

How shouldinformationbe measured?

How mudh additionalinformationis gainedby somereductionin
uncertainy?

How do the a priori probabilitiesof possiblemessagedetermine
the informativenes®f receivinghem?

What is the informationcortent of a randomvariable?

How doesthe noiselewel in a comnunicationchannellimit its
capaciy to transmitinformation?

How doesthe bandwidth (in cycles/seconddf a comnunication
channellimit its capaciy to transmitinformation?

By what formalismshouldprior knowledgebe conbinedwith
incomingdatato draw formallyjusti able inferencefrom both?

How mudh informationin cortainedin a strandof DNA?

How mud informationis therein the ring patternof a neurone?

Historical origins and imp ortan t contributions:

Ludwig BOLTZMANN (1844-1906physicist,shavedin 1877that

thermalynamicertropy (de ned asthe energyof a statisticalen-
senble [sud asa gas]divided by its temperature: ergs/degreeis

relatedto the statistical distribution of molecularcon gurations,
with increasingrtropy correspndingto increasingandomnesg-e
madethis relationshigprecisavith hisfamoudormula S = k logW

whereS de nesertropy, W is the total number of possiblemolec-
ular con gurations,andk is the constah whicd bearsBoltzmann's
name: k =1.38 x 10 1% ergsper degreecenigrade. (The above
formula appearsasan epitaphon Boltzmann'sombstone.)This is
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equialert to the de nition of the information(\negeriropy") in an
enserhle, all of whosepossiblestatesare equiprobablebut with a
minus signin front (and whenthe logarithmis base2, k=1.) The
deepconnectionbetweeninformation Theory and that brand of
physicsconcerneavith thermaldynamicsand statisticalmedanics,
hingeupon Boltzmann'saork.

LeoSZILARD (1898-1964in 1929derti ed ertropy with informa-
tion. He formulatedkeyinformation-theoreticonceptgo sole the
thermalynamicparada knovn as\Maxwell's demon*(a though-
experimen about gasmoleculesn a partitionedbox) by shaving
that the amoun of informationrequiredby the demonabout the
positionsand velccities of the moleculesvas equal(negatiely) to
the demon'sertropy incremen

JameLlerk MAXWELL (1831-1879riginatedthe paradx called
\Maxwell's Demon"whid greatlyin uencedBoltzmannandwhid
led to the watershednsigh for informationtheory cortributed by
Szilard.At Canbridge,Maxwell foundedhe CavendishLaboratory
whidh becamehe originalDepartmen of Physics.

RV HARTLEY in 1928foundedcomnunicationtheory with his
paper Transmissionof Information. He proposedthat a signal
(or a comnunicationchannel)having bandwidth over a duration
T hasa limited number of degrees-of-freedomamely2 T, and
thereforet cancomnunicateat mostthis quanity of information.
Healsode nedtheinformationcortent of anequiprobablenserhle
of N possiblestatesasequalto log, N .

Norbert WIENER (1894-1964)ni ed informationtheoryandFourier
analysisby derivinga seriesof relationshipdetweenthe two. He
inverted \white noiseanalysis'of non-lineaisystemsand madethe
de nitive cortribution to madelingand describinghe information
coriert of stochasticprocesseknonvn asTime Series.




DennisGABOR (1900-197%rystallizedHartley'sinsigh by formu-
lating a generalUncertainty Principle for information,expressing
the trade-o for resolutionbetweenbandwidthand time. (Signals
that arewell speci edin frequencyortent must be poorly localized
in time, and thosethat are well localizedin time must be poorly
speci edin frequencycortert.) Heformalizedhe \Information Di-
agram"to descrile this fundametal trade-o , andderivedthe con-
tinuousfamily of functionswhich optimize(minimize)the conjoint
uncertainy relation. In 1974Gabor won the Nobel Prizein Physics
for hiswork in Fourieroptics,includingthe invertion of holograph.

ClaudeSHANNON(togethemwith WarrenWEAVER) in 1949wrote
the de nitive, classicwork in informationtheory: Mathematial
Theory of Communication. Dividedinto separatdreatmens for
cortinuous-timeand discrete-timesignals,systemsand channels,
this book laid out all of the key conceptandrelationshipghat de-
ne the eld today. In particular,heprovedthe famousSourceCod-
ing Theoremand the Noisy ChannelCaoding Theorem plus mary
otherrelatedresultsabout channelcapacty.

SKULLBACK andR A LEIBLER (1951)de nedrelative entropy
(alsocalledinformation for discrimination, or K-L Distance.)

E T JAYNES (sincel957)dewelomed maximum entropy methals
for inferencehypothesis-testingand decision-makindpasedn the
physicsof statisticalmedanics.Othershave inquiredwhetherthese
principleamposefundametal physicallimits to computationitself.

A N KOLMOGORDV in 1965proposedthat the complexity of a
string of data can be de ned by the length of the shortestbinary
programfor computingthe string. Thus the complexiy of data
Is its minimal description length, and this speci esthe ultimate
compressibiftofdata. The\Kolmogorar complexiy” K ofastring
Is apprximately equalto its Shannorertropy H, therely unifying
the theory of descriptie complexiy andinformationtheory




2. Mathematical Foundations; Probabilit y Rules;
Bayes' Theorem

What are randomvariables?What is prolability?

Randomvariablesarevariableghat take on valuesdeterminedy prob-
ability distributions. They may be discreteor cortinuous,in eithertheir

domainor their range. For examplea streamof ASCIl encaledtext

characterdn a transmittedmessages a discreterandomvariable,with

a known probability distribution for any given natural language.An

analogspeet: signalrepreseted by a voltageor soundpressuravave-
form asa function of time (perhapswith addednoise),is a cortinuous
randomvariablehaving a cortinuousprobability densiy function.

Most of Information Theory involves probability distributions of ran-
dom variables,and conjoirt or conditional probabilitiesde ned over
enserblesof randomvariables. Indeed,the informationcortent of a
synbol or ewert is de nedby its (im)probability. Classicallythereare
two di erent points of viewabout what probability actuallymeans:

relative frequency: samplehe randomvariablea greatmary times
andtally up the fraction of timesthat ead of its di erent possible
valuesoccurs,to arrive at the probability of ead.

degree-of-kelief: probability is the plausibility of a proposition or
the likelihood that a particularstate(or valueof a randomvariable)
migh occur,ewenif its outcomecanonly be decidednce(e.g.the
outcomeof a particularhorse-race).

The rst view,the \frequertist" or operationalistview, is the onethat
predominatesn statisticsand in informationtheory Howewer, by no
meansdoesit capturethe full meaningof probability. For example,
the propositionthat "The moonis madeof green cheese" isone
whidh surelyhasa probability that we shouldbe ableto attach to it.
We could assesd#s probability by degree-ofddief calculationswhidc
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conbine our prior knowledgeabout physics,geologyand dairy prod-

ucts. Yet the \frequentist" de nition of probability could only assign
a probability to this proposition by performing(say) a large number

of repeatedtrips to the moon, and tallying up the fraction of trips on

which the moon turned out to be a dairy product....

In eithercasejt seemsensibldhat the lessprobablean ewert is, the
maoreinformationis gainedoy notingits occurrence(Surelydiscoering
that the moon IS madeof greencheesavould be more\informative"
than merelylearningthat it is madeonly of earth-like rocks.)

Probabilit y Rules

Most of probability theory waslaid down by theologiansBlaisePAS-
CAL (1623-1662¢hogaveit the axiomatizatiorthat we acceptoday;
and ThomasBAYES (1702-1761\whoexpressedneof its mostimpor-
tant and widely-appliegropositionsrelatingconditionalprobabilities.

Probability Theoryrestsupon two rules:

Product Rule:

p(A; B) = \joint probability of both A andB"
= p(AJB)p(B)

or equialertly,

= p(BjA)P(A)
Clearly in caseA and B areindependente\erts, they are not condi-
tionalizedon ead otherandso

P(AjB) = p(A)
andp(BjA) = p(B),

in whid casetheir joint probability is simplyp(A; B) = p(A)p(B).



SumRule;
If evert A is conditionalizedn a number of other everts B, then the
total probability of A is the sumofits joint probabilitieswith all B:

p(A) = XB D(A; B) = XB p(AjB)p(B)

From the Product Rule and the symmetrythat p(A; B) = p(B;A), it
is clearthat p(AjB)p(B) = p(BjA)p(A). Bayes'Theorenthenfollows:

Bayes'Theorem:

.\ _ P(A]B)p(B)

p(BJA) o(A)

The importanceof Bayes'Ruleis that it allovsusto rewersethe condi-
tionalizingof everts, andto computgy(BjA) fromknownledgeofp(AjB);
pP(A); andp(B): Oftentheseareexpressedsprior andposterior prob-
abilities,or asthe conditionalizingpf hypothesesipon data.

Worked Example:

Suppsethat a dreaddiseasea ects 1/1000thof all people.If you ac-
tually have the diseasea test for it is positive 95%of the time, and
negatie 5% of the time. If you don't have the diseasethe testis posi-
tive 5% of the time. We wishto know how to interprettest results.

Suppseyou test positive for the disease What is the likelihaod that
you actually have it?

We usethe above rules,with the following substitutionsof \data" D
and\hypothesis"H insteadof A andB:

D = data: the testis positive
H = hypothesisiyou have the disease
H = the otherhypothesis:you do not have the disease
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Beforeacquiringthe data, we knowv only that the a priori probabil-
ity of having the diseasés .001,which setsp(H). Thisis calleda prior.
We alsoneedto know p(D).

From the Sum Rule, we can calculatethat the a priori probability
p(D) of testingpositive, whatewer the truth may actuallybe, is:

pP(D) = p(DjH)p(H) + p(DjH)p(H) =(.95)(.001)+(.05)(.9995 .051

and from Bayes' Rule, we can concludethat the probability that you
actually have the diseas@iventhat you testedpositive for it, is mud
smallerthan you may have thouglt:

p(DjH)P(H) _ (:95)(001) _

10.019 (lessthan 2%).
p(D) (:051) ( )

p(HID) =

This quantity is calledthe posterior prolability becaus& is computed
after the obseration of data; it tells us how likely the hypothesisis,

givenwhatwe have obsered. (Note: it isanextremelycommorhuman
fallacyto confoundo(H D) with p(DjH): In the examplegiven, most
peoplewould reactto the positive test result by concludingthat the

likelihaod that they have the diseaseés .95, sincethat is the \hit rate"

of the test. They confoundp(DjH) = :95with p(HjD) = :019,whid

IS what actually matters.)

A nice featureof Bayes' Theoremis that it providesa simplemed-
anismfor repeatedlyupdatingour assessmenf the hypothesisasmore
data cortinuesto arrive. We canapply the rule recursiely, usingthe
latest posterior asthe newprior for interpretingthe next setof data.
In Arti cial Intelligencethis featureis importart becausdt allovsthe
systemati@andreal-timeconstructiorof interpretationghat canbe up-
datedcorntinuouslyasmoredata arrive in a time seriessud asa ow
of image9r spoken soundghat we wishto understand.
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3. Entropies Dened, and Why They are
Measures of Information

Theinformationcortert | of a singleevert or messages de nedasthe
base-2ogarithmof its probability p:

| = log,p (1)

and its entropy H is consideredhe negatie of this. Entropy canbe
regardedntuitivelyas\uncertairty," or\disorder." To gaininformation
IS to loseuncertaity by the sameamoun, sol andH dier onlyin
sign(if at all): H = | : Entropy andinformationhave units of bits.

Notethat | asde nedin Eqt (1) is newer positive: it rangesetween
Oand 1 asp variesfrom 1 to 0. Hownewer, sometimeshe signis
dropped,andl isconsiderethe samehingasH (aswe'll dolatertoo).

No informationis gained(no uncertainy is lost) by the appearance
of anewert or the receiptof a messagthat wascompletelycertainany-
way (p = 1, sol = 0). Intuitively, the moreimprobablean e\ert is,
the moreinformatiwe it is; and sothe monotonicbehaviour of Eqt (1)
seemappropriate.But why the logarithm?

The logarithmic measure is justi e d by the desire for information to
e additive. We wantthe algeba of our measuresto re ect the Rules
of Prolability. When independentpacketsof information arrive, we
would like to say that the total information received is the sum of
the individual pieces. But the prolabilities of independent events
multiply to give their combinead prolabilities, and so we must take
logarithms in order for the joint prolability of independent events
or messageso contribute additively to the information gained.

This principle can also be understad in terms of the conbinatorics
of statespacesSuppsewe have two independen problemspnewith n
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possiblesolutions(or states)eat having probability p,, andthe other
with m possiblesolutiongor states)eat having probability p,,. Then
the number of conbinedstatesis mn, andead of thesehasprobability
PmpPn. We would like to say that the informationgainedby specifying
the solutionto both problemsds the sum of that gainedfrom eat one.
This desiredoroperty is adieed:

I mn = 10G(PmPn) = 10G Pm + 0GP = Im + Iy (2)

A Note on Logarithms:

In informationtheorywe oftenwishto computethe base-4ogarithms
of quartities, but most calculators(and tools like xcalc) only o er

Napierian(base2.718...) and decimal(basel10) logarithms. Sothe
following corversionsare useful:

log, X = 1:443log. X = 3:3220g;( X
Henceforard we will omit the subscript;pase-4s always presumed.

Intuitive Exampleof the Information Measure (Eqt 1):

Supmse chooseat randomoneofthe 26lettersofthe alphalet, andwe
play the gameof\25 questions'in which you must determinewhich let-
ter | have chosen. will onlyansver 'yes'or 'no.' What is the minimum
number of sud questionghat you must askin orderto guaranee nd-
ingthe ansver? (What formshouldsud questionsake?e.g.\Is it A?"
\Is it B?" ...oristheresomemoreintelligen way to solhethis problem?)

The ansver to a Yes/No questionhaving equalprobabilitiescorveys
onebit worth of information. In the above examplewith equiprobable
states,you ne\er needto askmorethan 5 (well-phrased!questiongo
discoer the ansver, eventhoughthere are 26 possibilities. Appropri-
ately Eqt (1) tellsusthat the uncertaiy remwedasa resultof solving
this problemis about -4.7bits.
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Entropy of Ensembles

We now move from consideringhe informationcortert of a singleevert
or messageo that of anensemble An enserbleis the setof outcomes
of oneor morerandomvariables.The outcomesave probabilitiesat-
tachedto them. In generaltheseprobabilitiesare non-uniform,with
ewert i having probability p;, but they must sumto 1 becausall possi-
ble outcomesareincluded;hencehey form a probability distribution:

‘Pl @)

The entropy of an ensemblds simply the averageertropy of all the
elemets in it. We cancomputetheir averageertropy by weighing eat
of the logp; cortributions by its probability p;:

H= 1= " plogp (4)
|

Eqt (4) allovsusto speakof the informationcortert or the ertropy of
a randomvariable,from knowvledgeof the probability distribution that
it obeys. (Entropy does not degend upon the actual valuestaken by
the randomvariable! { Only upon their relative prolabilities.)

Let us considera randomvariablethat takeson only two values,one
with probability p andthe otherwith probability (1 p). Entropy isa
concae functionof this distribution,andequalif p= Oorp = 1:

1

0.9 —

0.8 —

0.7 —

0.6 —
H(p) versus p.

0.5

H(p)

0.4
0.3 H(X)=—plog p — (1 - p)log(1 - p) = H(p)
0.2

0.1




Exampleof entropy as avelage uncertainty:

The variousletters of the written Englishlanguagehave the following
relative frequenciefprobabilities) in descendingrder:

E T O A N | R S H D L C..
.105 .072 .066 .063 .059 .055 .054 .052 .047 .035 .029 .023 ...

If they had beenequiprobablethe ertropy of the ensernle would
have beenlogz(2—16) = 4.7 bits. But their non-uniformprobabilitiesim-
ply that, for example,an E is nearly v e timesmorelikely than a C
surelythis prior knavledges a reductionin the uncertairy of this ran-
domvariable.In fact, the distribution of Englishlettershasan ertropy
of only 4.0bits. This meanghat asfewasonly four "Yes/No'questions
areneededin principle,to idertify oneofthe 26lettersof the alphalet;
not ve.

How canthis be true?

That isthesugectmatterof Shannon'SOURCE CODING THEOREM
(so namedbecausat usesthe \statistics of the source,"the a priori
probabilitiesof the messaggeneratorfo constructan optimal cade.)

Notethe important assumptionthat the \sourcestatistics"areknaowvn!

Seeral further measure®f ertropy needto be de ned, involving the
marginal joint, andconditionalprobabilitiesof randomvariables.Some
key relationshipswvill then emergethat we canapplyto the analysisof
comnunicationchannels.

Notation: We usecapitallettersX andY to namerandomvariables,
and lower caselettersx andy to referto their resgective outcomes.
Thesearedrawn from particularsetsA andB: x 2 fag; ay;:::a;9, and
y 2 fhy;by; ;b g. The probability of a particular outcomep(x = &)

isdenotedp;, with0 p;  1and’p = 1.
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An ensemblas just a randomvariableX , whoseertropy wasde ned
in Eqt (4). A joint ensembleXY" is an enserhle whoseoutcomes
areorderedpairsx;y with x 2 faj;ap;;;;aggandy 2 fby; by; il Q.
The joint enserble XY de nesa probability distribution p(x; y) over
all possiblgoint outcomey; y.

Marginal proability: From the SumRule,we canseethat the proba-
bility of X taking on a particularvaluex = a; is the sumof the joint
probabilitiesof this outcomefor X andall possibleoutcomedor Y :

px = &) =" p(x = ay)

We cansimplify this notationto: p(x) = g p(X;y)
y
andsimilarly: py) =" p(xy)

Conditionalprobability: From the Product Rule,we caneasilyseethat
the conditionalprobability that x = a;, giventhaty = by, is:

iy PX=any = 1)
We cansimplify this notationto: p(xjy) = ngy;/)
p(X; y)

andsimilarly: [X) =
y: p(yjx) o(x)

It is now possiblé¢o de nevariousertropy measurefor joint enserhles:

Joirt ertropy of XY

HXY) = Pay)Iog oy ()

(Notethat in comparisomwith Eqt (4), we have replacedhe *{' signin
front by takingthe recipraal of p insidethe logarithm).
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Fromthis de nition, it followsthat joint ertropy is additiveif X andY
areindependeh randomvariables:

HOXGY)=HX)+HEY) 1 p(x;y) = p(x)py)
Prove this.

Conditionalertropy of an ensernle X, giventhat y = b

measureghe uncertaity remainingabout randomvariable X after
specifyingthat randomvariableY has taken on a particular value
y = b. It is de ned naturally asthe ertropy of the probability dis-
tribution p(xjy = b):

1
p(xjy = )

H(Xjy=1h)="p(xjy = b)log (6)

If we now considerthe above quariity averageal over all possibleout-
comeghat Y migh have, eat weighied by its probability p(y), then
we arrive at the...

Conditionalertropy of an ensernle X, givenanenserale Y :

HIXIY) =" PO Py log 2 (7)

and we know from the SumRule that if we move the p(y) term from
the outer summationovery, to insidethe inner summationover x, the
two probability termsconbineandbecomaeust p(x; y) summedbver all
X;y. Hencea simplerexpressioffor this conditionalertropy is:

H(XjY) = p(x:y)log

. 8
p(x]y) )
This measurethe averageuncertainy that remainsabout X , whenY
IS known.
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ChainRulefor Entropy

The joint ertropy, conditionalertropy, and marginalertropy for two
enserblesX andY arerelatedby:

HX:Y)=HX)+ H(Y)X) = H(Y)+ H(X]Y) (9)

It shouldseemnatural and intuitiv e that the joint ertropy of a pair of
randomvariablesis the ertropy of oneplusthe conditionalertropy of
the other (the uncertaiy that it addsonceits degndencenthe rst
onehasbeendiscouted by conditionalizingpn it). You canderiwe the
ChainRulefromthe earlierde nitions of thesethreeertropies.

Corollaryto the ChainRule:

If we have threerandomvariablesX;Y;Z, the conditionalizingof the
joint distribution of any two of them, upon the third, is alsoexpressed
by a ChainRule:

HOX;YjZ)=HXjZ)+ H(Y|X;Z) (10)

\Independencd&oundon Entropy"

A consequena® the ChainRule for Entropy is that if we have mary
di erent randomvariablesX 1; X5: :::: X, thenthe sumof all their in-
dividual ertropiesis an upper boundon their joint ertropy:
N
H(X 1 X200 Xn) ) H(X;) (11)
|:
Their joint ertropy only readiesthis upper boundif all of the random
variablesareindependen
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Mutual InformationbetweenX andyY

The mutual information betweentwo randomvariablesmeasureshe
amoun of informationthat onecorveysabout the other. Equialerily,
it measureghe averagereductionin uncertainy about X that results
fromlearningabout Y. It is de ned:

p(X; y)

L(X5Y) = PO y)log o(x)p(y)

ClearlyX saysasmud about Y asY sasabout X . Notethat in case
X andY areindependen randomvariablesthenthe numeratorinside
the logarithmequalghe denominator.Thenthe logterm vanishesand
the mutual informationequalszero,asoneshouldexpect.

(12)

Non-negativig: mutual informationis always 0. In the ewert that
the two randomvariablesare perfectly correlated,then their mutual
informationis the ertropy of either onealone. (Another way to sa
thisis: I (X;X) = H(X): the mutual informationof a randomvari-
ablewith itselfis just its ertropy. For this reasonthe ertropy H (X)
ofarandomvariableX issometimegeferredo asits self-information.)

Thesepropertiesarere ectedin threeequinalernt de nitions for the mu-
tual informationbetweenX andY :

1(X:Y) = H(X) HX]Y) (13)
LOX5Y) = H(Y) H(YX)=1(Y;X) (14)
1(X:Y) = HX)+ H(Y) H(X:Y) (15)

In a sensdhe mutual informationl (X ;Y) is the intersectiorbetween
H (X ) andH (Y), sincat represets their statisticaldepgendenceln the
Venndiagramgiven at the top of pagel8, the portion of H (X)) that
doesnot lie within I (X ;Y) isjust H (X Y). Theportionof H (Y) that
doesnot lie within | (X ;Y) isjust H (Y |X).
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DistanceD (X ;Y) betweenX and¥Y

The amoun by whidh the joint ertropy of two randomvariablesex-
ceedgheir mutual informationis a measuref the \ distance" between
them:

D(X;Y)=H(X;Y) 1(X;Y) (16)
Note that this quartity satis esthe standardaxiomsfor a distance:
D(X;Y) O, D(X;X)=0, D(X;Y)=D(Y;X), and
D(X;Z) D(X;Y)+ D(Y;2).

|=4

Relative ertropy, or Kullbad-Leiblerdistance

Anotherimportant measurefthe \distance"betweentwo randomvari-
ablesalthoughit doesnot satisfythe above axiomdor adistancemetric,
is the relative entropy or Kullback-Leibler distanc. It is alsocalled
the information for discrimination. If p(x) andg(x) aretwo proba-
bility distributionsde ned over the samesetof outcomes, then their
relative ertropy is:

D (Pka) =, 0 I0gh )
Notethat Dk (pkg) 0,andin casep(x) = g(x) thentheir distance
Dk (pkg) = 0,asonemight hope. Honvever, this metricis not strictly a
\distance,"sincein generalt lackssymmetry:D | (pkq) 6 D | (gkp).

(17)

The relative ertropy Dk L (pkg) is a measuref the \ine ciency" of as-
sumingthat a distributionis g(x) whenin factit is p(x). If we have an

optimal cadefor the distribution p(x) (meaninghat we useon average
H (p(x)) bits, its ertropy, to descrileit), thenthe number of additional
bits that we would needto useif we insteaddescriled p(x) usingan

optimal cade for g(x), would be their relative ertropy D | (pkQ).

17



HX,Y)

HO H(
Venn Diagram: Relationship amongentropies and mutual information.

Fano'sinequality

We know that conditioningreducesertropy: H(XjY) H(X). It

is clearthat if X andY areperfectlycorrelatedthentheir conditional
ertropy is 0. It shouldalsobe clearthat if X is ary deterministic
functionof Y, then again,thereremainsno uncertairty about X once
Y is knowvn and sotheir conditionalertropy H (X jY) = 0.

Fano'sinequaliy relatesthe probability of error Pe in guessing< from
knavledgeofY to their conditionalertropy H (XjY), whenthe number
of possibleoutcomess jA] (e.g.the lengthof a synbol alphalet):
H(XjY) 1

logjAj

(18)

e

The lower boundon Pg is a linearlyincreasingunctionof H (XjY).

The\Data Processindnequaliy”

If randomvariablesX, Y, andZ form a Markov chain(i.e. the condi-
tional distribution of Z dependsonly on'Y andis indegenden of X),
whidh is normallydenotedasX ! Y ! Z, thenthe mutual informa-
tion must be monotonicallydecreasingver stepsalongthe chain:

1(X;Y) 1(X:2Z) (19)

Weturn now to applyingthesemeasureandrelationshipdo the study
of comnunicationschannels (The folloving materialis from McAuley)

18



D, 1/8 B, 3/8 D, 1/8

A 172 c 18 A 172 - c 18

B, 1/4 E, 1/4 B, 1/4



Symbols

Source
encoder

Encoding
- s







|
Symbols : Source 4\/_» Symbols
> >
| encoder Decoder
|
|

Channel L»Y






0 @0
0.1
1-p . 1 L
0 0
g— @
p 1.0
@Q— @3
X Y .
p 1
L [ 0

1p 999999 @———2 > @ 999999



Correction

Source 4\/_,
»  encoder Decoder

Observer

Correction data







1(X;Y)

0.5

0.1
02 g3 0a
* 05 g6
P(transiton) ~ 0.7 o8 09

0 o s A
0 01 02 03 04 05 06 07 08 09 1
P(transition)






Capacity

099 |

0.98

0.97

0.96 |

095 |

094 |

0.93

0.92

091 |

0.9
le-08  1le-

07 1e-06 1e-05 0.0001 0.001 0.01
P(transition)

0.1

Residual error rate

0.1

0.01

0.001

0.0001

le-05

1le-06

le-07

le-08

1le-09

le-10
0.01

Repetitiion code
H(O.

01)

0.1
Code rate







Residual error rate

le-10

le-20

1le-08

1le-07

le-06 1e-05 0.0001
Mean error rate

0.001

0.01

0.1


















1. Foundations: Probabilit y, Uncertain ty, and Information

2. Entropies De ned, and Why they are Measures of Information

3. Source Coding Theorem; Prex, Variable-, and Fixed-Length Codes
4. Channel Types, Prop erties, Noise, and Channel Capacity

5. Contin uous Information; Density; Noisy Channel Coding Theorem
6. Fourier Series, Convergence, Orthogonal Representation
7. Useful Fourier Theorems; Transform Pairs; Sampling; Aliasing
8. Discrete Fourier Transform. Fast Fourier Transform Algorithms
9. The Quantized Degrees-of-F reedom in a Contin uous Signal

10. Gab or-Heisen berg-W eyl Uncertain ty Relation. Optimal \Logons"
11. Kolmogoro v Complexit y and Minimal Description Length.

Jean Baptiste Joseph Fourier (1768 - 1830)
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Intro duction to Fourier Analysis, Synthesis, and Transforms

It has been said that the most remarkable and far-reading relationship in all of mathemat-
icsis the simple Euler Relation,

€ +1=0 (1)
which contains the v e most important mathematical constarts, as well as harmonic analysis.
This simple equationuni es the four main branchesof mathematics: f 0,1g represem arithmetic,

represems geometry i represets algebra,and e = 2:718:: represeims analysis, since one way
to de ne eis to computethe limit of (1+ )" asn! 1.

Fourier analysisis about the represemation of functions (or of data, signals, systems,...) in

terms of sudh complexexponertials. (Almost) any function f (x) can be represeted perfectly as
a linear combination of basisfunctions:

X
fF(x)= & «(x) (2)
k
where many possiblechoicesare available for the expansionbasisfunctions ¢(x). In the case
of Fourier expansionsin one dimension,the basisfunctions are the complex exponertials:

k(X) = exp(i «X) 3)
wherethe complexconstart i = P ~ 1. A complexexponertial cortains both a real part and an
imaginary part, both of which are simple (real-valued) harmonic functions:

exp( )= cos()+ isin() (4)

which you caneasilycon rm by usingthe power-seriede nitions for the transcendemal functions
exp, cos,and sin:

2 3 n
exp() = 1+f+§+§+ +ﬁ+ : (5)
2 4 6
cos() = 1 sita o owmt (6)
_ 3 5 7
sin() = st 7t (7)

Fourier Analysis computesthe complexcoe cien ts ¢, that yield an expansionof somefunction
f (x) in terms of complex exponertials:

X
f(x) = Ck exp(i kX) (8)
k= n
where the parameter  correspndsto frequencyand n speci es the number of terms (which
may be nite or in nite) usedin the expansion.

Eadh Fourier coe cien t ¢, in f (x) is computedasthe (\inner product”) projection of the function
f (x) onto onecomplexexponertial exp( i x) assaiated with that coe cien t:
Z 1=
G = = f(x)exp( i kx)dx (9)
T 1=

wherethe integral is taken over one period (T) of the function if it is periodic, or from 1 to
+1 if it is aperiodic. (An aperiodic function is regardedas a periodic one whoseperiod is 1 ).
For periodic functions the frequencies ¢ usedare just all multiples of the repetition frequency;

for aperiodic functions, all frequenciesnust be used. Note that the computedFourier coe cien ts
C« are complex-\alued.
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10dg

V2 =9
g kot

(36)

We had at time ¢t = 0, g(z,y,0) the unblurred image of f(z,y), but at some
time ¢ = 7 we have observed the blurred picture g(z,y, 7). Using the Taylor
expansion:

2

_ dg 20%g
g(x,y,O)— g($7y77—)_ Ta_t(a:7y77—)+7— 8?(%73/77—) -

To the first order we obtain:
J=9-krViyg
Again in difference equations:

V2f($7y):f($+17y)+f($_17y)+f($7y+1)+f($7y_1)_4f($7y)

and the convolution kernel:

3.4.3 Noise removal

If we know there is some periodic signal embedded in a very noisy signal, we
can use the autocorrelation function to extract the signal. We take a single sine
wave in uniform white noise with a SNR or 0.1 or -10dB:

The noise is of course uncorrelated at points other than n = 0. In the case of a
set of superimposed periodic signals, we can use the autocorrelation function to
remove the noise and then perform the DFT to extract the individual frequency
components. Such techniques have applicability in passive sonar.
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Figure 13: (a) sine wave in noise and (b) autocorrelation
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9 Quantized Degrees-of-F reedom in a Contin uous Signal

We have now encourtered several theorems expressingthe idea that even though a signal
is continuous and densein time (i.e. the value of the signal is de ned at ead real-valued
momert in time), neverthelessa nite and countable set of discrete numbers su ces to
describe it completely, and thus to reconstruct it, provided that its frequencybandwidth is
limited.

Sud theoremsmay seemcourter-intuitiv e at rst: How could a nite sequenceof num-
bers, at discrete intervals, capture exhaustively the continuous and uncountable stream of
numbers that represent all the valuestaken by a signal over someinterval of time?

In general terms, the reasonis that bandlimited cortinuous functions are not as free to
vary as they might at rst seem. Consequetly, specifying their values at only certain
points, su ces to determine their valuesat all other points.

Three examplesthat we have already seenare:

Nyquist's Sampling Theorem: If a signal f (x) is strictly bandlimited so that it
contains no frequency componerts higher than W, i.e. its Fourier Transform F (k)
satis es the condition

F (k) = Ofor jkj > W (1)

then f (x) is completely determined just by sampling its values at a rate of at least
2W. The signal f (x) can be exactly recovered by using ead sampledvalueto x the
amplitude of a sinc(x) function,

sin( x)
X

sinc(x) = (2)
whosewidth is scaledby the bandwidth parameter W and whoselocation corresponds
to ead of the sample points. The continuous signal f (x) can be perfectly recovered
from its discrete samplesf () just by adding all of those displacedsinc(x) functions
together, with their amplitudes equal to the samplestaken:
X n sin(Wx n)
fx)= fn — ——-— 2 3)
N W Wx n)
Thus we seethat any signal that is limited in its bandwidth to W, during some
duration T hasat most 2W T degrees-of-freedom.Ilt can be completely speci ed by
just 2WT real numbers (Nyquist, 1911;R V Hartley, 1928).

Logan's Theorem: If a signal f (x) is strictly bandlimited to one octave or less, so
that the highest frequency componert it contains is no greater than twice the lowest
frequency componert it cortains

I(max 2kmin (4)
i.e. F (k) the Fourier Transform of f (x) obeys
F(jkj > Kmax = 2Kmin) = 0 5)

and
F(jkj < kmin) = 0 (6)

and if it is alsotrue that the signal f (x) contains ho complex zercesin common with
its Hilb ert Transform (to o complicated to explain here, but this constraint servesto
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exclude families of signals which are merely amplitude-modulated versions of eadh
other), then the original signal f (x) can be perfectly recovered (up to an amplitude
scaleconstart) merely from knowledge of the set f x;g of zero-crossingf f (x) alone:

fxjg suc that f (x;) = 0 (7)

Commerts:
(1) This is a very complicated, surprising, and recert result (W F Logan, 1977).

(2) Only an existencetheorem hasbeenproven. There is sofar no stable constructive
algorithm for actually making this work { i.e. no known procedurethat can actually
recover f (x) in all cases,within a scalefactor, from the mere knowledge of its zero-
crossingsf (x) = 0; only the existenceof suc algorithms is proven.

(3) The \Hilb ert Transform" constraint (where the Hilbert Transform of a signal
is obtained by corvolving it with a hyperbola, h(x) = 1=x, or equivalertly by shifting
the phaseof the positive frequencycomponerts of the signalf (x) by + =2 and shifting
the phaseof its negative frequency components by  =2), serwesto exclude ensem-
bles of signalssud as a(x) sin(! x) where a(x) is a purely positive function a(x) > O.
Clearly a(x) modulates the amplitudes of suc signals, but it could not change any
of their zero-crossingswhich would always still occur at x = 0; —; 2-; 3, ..., and so
such signalscould not be uniquely represened by their zero-crossings.

(4) It is very dicult to seehow to generalizeLogan's Theorem to two-dimensional
signals(such asimages). In part this is becausethe zero-crossingof two-dimensional
functions are non-derumerable (uncountable): they form cortin uous\snakes," rather
than a discreteand countable setof points. Also, it is not clear whether the one-actave
bandlimiting constraint should be isotropic (the samein all directions), in which case
the projection of the signal's spectrum onto either frequency axis is really low-pass
rather than bandpass;or anisotropic, in which casethe projection onto both frequency
axesmay be strictly bandpassbut the di erent directions are treated di erently.

(5) Logan's Theorem has been proposed as a signi cant part of a \brain theory”
by David Marr and TomasoPoggio, for how the brain's visual cortex processesand
interprets retinal image information. The zero-crossingsof bandpass- Itered retinal
imagesconstitute edgeinformation within the image.

The Information Diagram: The Similarity Theorem of Fourier Analysis asserts
that if afunction becomesarrower in onedomain by a factor a, it necessarilypbecomes
broader by the samefactor a in the other domain:

f(x) ! F(k) (8)

1k

flax) ! JiF - 9)
The Hungarian Nobel-Laureate Dennis Gabor took this principle further with great
insight and with implications that are still revolutionizing the eld of signal processing
(basedupon wavelets), by noting that an Information Diagram represenation of sig-
nals in a plane de ned by the axesof time and frequencyis fundamertally quantized.
There is an irreducible, minimal, areathat any signal can possibly occupy in this
plane. Its uncertainty (or spread)in frequency times its uncertainty (or duration) in
time, has an inescapablelower bound.
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10 Gabor-Heisen berg-W eyl Uncertain ty Relation. \Logons."
10.1 The Uncertain ty Principle

If we de ne the \e ectiv e support" of a function f (x) by its normalized variance, or the
normalized second-momet
fOOf (X)(x  )2dx
( x)?= tz4g (10)
f(x)f (x)dx

where is the meanvalue, or normalized rst-moment, of the function:
xf (x)f (x)dx
= A (11)
f (x)f (x)dx

and if we similarly de ne the e ectiv e support of the Fourier Transform F (k) of the function
by its normalized variance in the Fourier domain:
F(k)F (k)(k ko)2dk
( k2= Lz (12)
F(K)F (k)dk

where ko is the mean value, or normalized rst-moment, of the Fourier transform F (k):
Z .,
kF (K)F (k)dk
F(K)F (k)dk

then it can be proven (by Schwartz Inequality argumerts) that there exists a fundamental
lower bound on the product of thesetwo \spreads," regardlessof the function f (x):

() k) 4+ (14)

This is the famous Gabor-Heiserberg-Weyl Uncertainty Principle. Mathematically it is
exactly identical to the uncertainty relation in quantum physics, where ( x) would be
interpreted asthe position of an electron or other particle, and (k) would be interpreted
asits momertum or deBroglie wavelength. We seethat this is not just a property of nature,
but more abstractly a property of all functions and their Fourier Transforms. It is thus a
still further respect in which the information in continuous signalsis quantized, sincethe
minimal areathey can occupy in the Information Diagram has an irreducible lower bound.

10.2 Gabor \Logons"

Dennis Gabor named such minimal areas\logons" from the Greek word for information, or
order: logos. He thus establishedthat the Information Diagram for any cortinuous signal
canonly contain a xed number of information \quanta." Each sudh quantum constitutes
an independent datum, and their total number within a region of the Information Diagram
represers the number of independent degrees-of-freedonenjoyed by the signal.
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The unique family of signalsthat actually achieve the lower bound in the Gabor-Heiserberg-
Weyl Uncertainty Relation are the complex exponertials multiplied by Gaussians. These
are sometimesreferred to as\Gab or wavelets:"

f(x) = e 0 X0 Ktk ) (15)

localized at \epoch" xp, modulated by frequency kg, and with size or spread constart a.
It is noteworthy that such wavelets have Fourier Transforms F (k) with exactly the same
functional form, but with their parameters merely interchangedor inverted:

F(k)=e (k ko)2a? gxo(k ko) (16)

Note that in the caseof a wavelet (or wave-padet) certered on xo = 0, its Fourier Trans-
form is simply a Gaussiancertered at the modulation frequencykg, and whosesizeis 1=a,
the reciprocal of the wavelet's spaceconstart.

Becauseof the optimality of such wavelets under the Uncertainty Principle, Gabor (1946)
proposedusing them as an expansionbasisto represen signals. In particular, he wanted
them to be usedin broadcast telecommunications for encaling cortin uous-time informa-
tion. He called them the \elementary functions” for a signal. Unfortunately, becausesuch
functions are mutually non-orthogonal, it is very dicult to obtain the actual coe cien ts
neededas weights on the elemerary functions in order to expand a given signal in this
basis. The rst constructive method for nding sud \Gab or coe cien ts" was developed
in 1981 by the Dutch physicist Martin Bastiaans, using a dual basis and a complicated
non-local in nite series.

The following diagrams show the behaviour of Gabor elemenary functions both ascomplex
wavelets, their separatereal and imaginary parts, and their Fourier transforms. When a
family of sudh functions are parameterizedto be self-similar, i.e. they are dilates and trans-
lates of eat other so that they all have a common template (\mother" and \daughter"),

then they constitute a (non-orthogonal) wavelethbasis. Today it is known that an in nite

class of wavelets exist which can be used as the expansion basis for signals. Becauseof
the self-similarity property, this amounts to represening or analyzing a signal at di erent
scales This general eld of investigation is called multi-r esolution analysis.
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Gabor wavelets are complex-valued functions, so for ead value of x we have a phasorin
the complex plane (top row). Its phaseewlvesasa function of x while its magnitude grows
and decgs accordingto a Gaussianervelope. Thus a Gabor wavelet is a kind of localised
helix. The di erence between the three columns is that the wavelet has been multiplied
by a complex constart, which amounts to a phaserotation. The secondrow shows the
projection of its real and imaginary parts (solid and dotted curves). The third row shows
its Fourier transform for ead of these phaserotations. The fourth row shaows its Fourier
power spectrum which is simply a Gaussiancenred at the wavelet's frequency and with
width reciprocal to that of the wavelet's ervelope.
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The rst three rows show the real part of various Gabor wavelets. In the rst column,
theseall have the sameGaussianervelope, but di erent frequencies.In the secondcolumn,
the frequenciescorrespond to thoseof the rst column but the width of ead of the Gaussian
envelopesis inversely proportional to the wavelet's frequency sothis set of waveletsform a
self-similar set (i.e. all are simple dilations of eat other). The bottom row shows Fourier
power spectra of the corresponding complex wavelets.
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2D Gabor Wavelet: Real Part 2D Fourier Transform
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Figure 1: The real part of a 2-D Gabor wavelet, and its 2-D Fourier transform.

10.3 Generalization to Tw o Dimensional Signals

An e ectiv e strategy for extracting both coheren and incoherert image structure is the
computation of two-dimensionalGabor coe cien ts for the image. This family of 2-D lIters
were originally proposed as a framework for understanding the orientation-selective and
spatial-frequency-selectie receptive eld properties of neuronsin the brain's visual cortex,
and as useful operators for practical image analysis problems. These 2-D lters are con-
jointly optimal in providing the maximum possibleresolution both for information about
the spatial frequency and orientation of image structure (in a sense\what"), simultane-
ously with information about 2-D position (\where"). The 2-D Gabor Iter family uniquely
achievesthe theoretical lower bound for joint uncertainty over thesefour variables, as dic-

tated by the inescapableUncertainty Principle when generalizedto four-dimensional space.

These properties are particularly useful for texture analysis becauseof the 2-D spectral
speci city of texture as well as its variation with 2-D spatial position. A rapid method
for obtaining the required coe cien ts on theseelemenary expansionfunctions for the pur-
poseof represering any image completely by its \2-D Gabor Transform," despite the non-
orthogonality of the expansionbasis, is possiblethrough the useof a relaxation neural net-
work. A large and growing literature now exists on the e cien t use of this non-orthogonal
expansionbasisand its applications.

Two-dimensional Gabor lters over the image domain (x; y) have the functional form
f(x;y) = e [(x x0)2= 2+(y yo)?= 2]e iluo(x xo)t vo(y Yo)l 17)

where (Xo;Yo) specify position in the image, ( ; ) specify e ea:tivewidth and length, and
(Uo; Vo) specify modulation, which has spatial frequency! o = u3+ v3 and direction ¢ =
arctan(vo=up). (A further degree-of-freedomot included above is the relativ e orientation of
the elliptic Gaussianervelope, which createscross-termsin xy.) The 2-D Fourier transform
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F(u;v) of a 2-D Gabor Iter has exactly the samefunctional form, with parameters just
interchangedor inverted:

F(uv)=e [(u uo)? 2+(v vo)? 2]ei[xo(u Uo)+ Yo(v Vo)l (18)

The real part of onemember of the 2-D Gabor Iter family, certered at the origin (Xg;Yo) =
(0;0) and with unity aspect ratio = = 1 is showvn in the gure, together with its 2-D
Fourier transform F (u; v).

2-D Gabor functions can form a complete self-similar 2-D wavelet expansionbasis, with
the requiremenrts of orthogonality and strictly compact support relaxed, by appropriate
parameterization for dilation, rotation, and translation. If we take ( x;y) to be a chosen
generic 2-D Gabor wavelet, then we can generatefrom this one member a complete self-
similar family of 2-D wavelets through the generating function:

mpg O Y) =2 2™ ( x8y9 (19)

where the substituted variables (x%y9 incorporate dilations in sizeby 2 ™, translations in
position (p;q), and rotations through orientation

x°= 2 Mxcog )+ ysin( )] p (20)
y=2 ™[ xsin( )+ ycos()] q (21)
It is noteworthy that as consequencesf the similarity theorem, shift theorem, and modu-
lation theorem of 2-D Fourier analysis, together with the rotation isomorphism of the 2-D
Fourier transform, all of these e ects of the generating function applied to a 2-D Gabor
mother wavelet ( x;y) = f(Xx;y) have corresponding identical or reciprocal e ects on its

2-D Fourier transform F (u;v). These properties of self-similarity can be exploited when
constructing e cien t, compact, multi-scale codesfor image structure.

10.4 Grand Unication of Domains: an Entente Cor diale

Until now we have viewed \the spacedomain” and \the Fourier domain" assomehav oppo-
site, and incompatible, domains of represenation. (Their variables are reciprocals; and the
Uncertainty Principle declaresthat improving the resolution in either domain must reduce
it in the other.) But we now can seethat the \Gab or domain" of represenation actually
embracesand uni es both of these other two domains. To compute the represertation of
a signal or of data in the Gabor domain, we nd its expansionin terms of elemenary
functions having the form

f(X) = e ikoxe (x xg)%=a? (22)
The single parameter a (the space-constah in the Gaussianterm) actually builds a con-
tinuous bridge betweenthe two domains: if the parameter a is made very large, then the
secondexponertial above approaces1.0, and soin the limit our expansionbasisbecomes

: — ik oXx
aI!llm f(x)=e ™ (23)
the ordinary Fourier basis. If the frequency parameter kg and the size parameter a are
instead made very small, the Gaussianterm becomeshe approximation to a delta function
at location X, and so our expansionbasisimplements pure space-domainsampling:
lim f(x)= (X Xp) (24)
ko;a! 0O

Hencethe Gabor expansionbasis\contains" both domains at once. It allows us to make
a cortinuous deformation that selectsa represermation lying anywhere on a one-parameter
corntinuum betweentwo domainsthat were hitherto distinct and mutually unapproadable.
A new Entente Cordiale, indeed.
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Reconstruction of Lena: 25, 100, 500, and 10,000 Two-Dimensional Gabor Wavelets

Figure 2: lllustration of the completenessof 2-D Gabor wavelets as basis functions.
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11 Kolmogoro v Complexit y and Minimal Description Length

An idea of fundamental importance is the measureknown as Kolmogorov complexity: the
complexity of a string of data is de ned as the length of the shortest binary program for
computing the string. Thus the complexity is the data's \minimal description length."

It is an amazing fact that the Kolmogorov complexity K of a string is approximately
equal to the entropy H of the distribution from which the string is a randomly drawn
sequence.Thus Kolmogorov descriptive complexity is intimately connectedwith informa-
tion theory, and indeed K de nes the ultimate data compression. Reducing the data to a
program that generatesit exactly is obviously a way of compressingit; and running that
program is a way of decompressingit. Any set of data can be generatedby a computer
program, even if (in the worst case)that program simply consistsof data statemerts. The
length of such a program de nes its algorithmic complexity.

It is important to draw a clear distinction betweenthe notions of computational com-
plexity (measuredby program execution time), and algorithmic complexity (measured by
program length). Kolmogorov complexity is concernedwith nding descriptions which
minimize the latter. Little is known about how (in analogy with the optimal properties
of Gabor's elemenary logonsin the 2D Information Plane) one might try to minimize
simultaneously along both of these orthogonal axesthat form a \Complexit y Plane."

Most sequencesof length n (where \most" considersall possible permutations of n
bits) have Kolmogorov complexity K closeto n. The complexity of a truly random binary
sequenceis as long as the sequenceitself. Howevwer, it is not clear how to be certain of
discovering that a given string has a much lower complexity than its length. It might be
clear that the string

0101010101010101010101010101010101010101010101010101010101010101

hasa complexity much lessthan 32 bits; indeed, its complexity is the length of the program:
Print 32 "01"s. But considerthe string

0110101000001001111001100110011111110011101111001100100100001000

which looks random and passesmost tests for randomness. How could ygu discover that
this sequencas in fact just the binary expansionfor the irrational number 2 1, and that
therefore it can be speci ed extremely concisely?

Fractals are examplesof ertities that look very complex but in fact are generated by
very simple programs (i.e. iterations of a mapping). Therefore, the Kolmogorov complexity
of fractals is nearly zero.

A sequencexs; X2; X3; i Xn Of length n is said to be algorithmically randomif its Kol-
mogorov complexity is at least n (i.e. the shortest possibleprogram that can generatethe
sequencds a listing of the sequencéitself):

K (X1X2X3:::Xpjn)  n (25)

An in nite string is de ned to be incompressibleif its Kolmogorov complexity, in the limit
asthe string gets arbitrarily long, approadesthe length n of the string itself:

- K (X1x2x3:::Xnjn
im < i) _
n'l n

1 (26)
An interesting theorem, called the Strong Law of Large Numbers for Incompressible Se-

guenes, assertsthat the proportions of 0's and 1's in any incompressiblestring must be
nearly equal! Moreover, any incompressiblesequenceamust satisfy all computable statistical
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tests for randomness. (Otherwise, identifying the statistical test for randomnessthat the
string failed would reduce the descriptive complexity of the string, which cortradicts its
incompressibility.) Therefore the algorithmic test for randomnessis the ultimate test, since
it includeswithin it all other computable tests for randomness.
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