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Distributed Systems - Introduction

• some systems background/context
• some legal/social context
• development of technology – DS evolution
• DS fundamental characteristics 
• software structure for a node
• model/architecture/engineering for a DS
• architectures for large-scale DS

– federated administration domains
– integrated domain-independent services
– detached, ad-hoc groups
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Costly Failures in Large-Scale Systems

• UK Stock Exchange - share trading system                        
- abandoned 1993, cost £400M

• CA automated childcare support
- pended 1997, cost $300M

• US tax system modernisation
- scrapped 1997, cost $4B

• UK ASSIST, statistics on welfare benefits                          
- terminated 1994, cost £3.5M 

• London Ambulance Service Computer Aided Despatching 
(LASCAD) scrapped 1992, cost £7.5M,  20 lives lost in 2 days
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What makes things special?

• normal software failure
• errant behaviour not accommodated by other pieces of the 

system
• cascade of the  failure is spectacular
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Why high public expectation?

Web experience
e.g.    information services: trains, postcodes, phone numbers
e.g.    online banking
e.g.    airline reservation
e.g.    conference management
e.g.    online shopping and auction

Things mostly work.

Properties: read mostly, server model, client-server paradigm, 
closely coupled, synchronous interaction (request-reply),
single-purpose, (often) private sector, (often) focussed
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Public-Sector Systems Especially
healthcare, police, social services, immigration, passports,

DVLA (driver + vehicle licensing), court-case workflow, tax, 
independent living for the aged and disabled, …

• bespoke and complex 
• large scale
• many types of client (many roles)
• web portal interface, but often not web-service model
• long timescale, high cost
• ubiquitous and mobile computing – still under research
• policy of competition and independent procurement vs. 

policy requiring interoperation
• legislation and government policy
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Some Legal/Policy Requirements - 1

“patients may specify who may see, and not see, their 
electronic health records (EHRs)”  - exclusions

“only the doctor with whom the patient is registered (for 
treatment) may prescribe drugs, read the patient’s EHR, 
etc.” - relationships

“the existence of certain sensitive components of EHRs must 
be invisible, except to explicitly authorised roles” 
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Some Legal/Policy Requirements - 2

“buses should run to time and bus operators will be punished 
if published timetables are not met.”

so bus operators can be reluctant to cooperate in traffic 
monitoring, even though monitoring could show that delay 
is often not their fault.
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Data Protection Legislation
Gathered data that identifies individuals must not be stored:

CCTV cameras: software must not recognise people and store 
identities with images 
(thermal imaging (infra-red) - just monitor/count)

Vehicle number plate recognition: must not be associated with 
people then stored with identities 
(only police allowed to look up)

Police records: accusations that are not upheld? 
Sally Geeson murder - previous army records of  LC Atkinson
Soham murders – previous police records of Huntley; 

Govt. now require interaction between counties

UK Freedom of Information Act: Jan 2005 
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Rapidly Developing and New Technology
• can’t ever design a “second system”, it’s always possible to do 

more next time 

• rapid obsolescence - incremental growth not sustainable long-
term (unlike e.g. telephone system)

• but big-bang deployment is a bad idea
design for incremental deployment

• mobile workers in healthcare, police, utilities etc.  
- integration of wired and wireless networks 

• ubiquitous computing: integration of camera and sensor data
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DS history: technology-driven evolution
• Fast, reliable (interconnected) LANs (e.g. Ethernet, Cambridge 

Ring) made DS possible in 1980s

• Early research was on distribution of OS functionality 
1. terminals + multi-access systems
2. terminals + pool of processors + dedicated servers 

(Cambridge CDCS)
3. Diskless workstations + servers (Stanford)
4. Workstations + servers (Xerox PARC) 

• Now WANs are fast and reliable...
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How to think about Distributed Systems

• fundamental characteristics
• software structure for a node
• model/architecture/engineering for a system
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DS fundamental characteristics
1. Concurrent execution of components
2. Independent failure modes
3. Transmission delay
4. No global time 

Implications:
2, 3 can’t know why there’s no reply – node/comms. failure 

and/or node/comms. congestion
4 can’t use locally generated timestamps for ordering 

distributed events
1, 3 inconsistent views of state/data when it’s distributed
1 can’t wait for quiescence to resolve inconsistencies
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single node - software structure
Support for distributed software may be:

1. directly by OS in a homogeneousish cluster (distributed OS design) – not the focus of 
this course

2. by a software layer (middleware) above potentially heterogeneous OS

components of
distributed software

middleware layer

OS
functions

homogeneous interface
above heterogeneous OS

OS interface

network

comms.
subsystem
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Distributed application structure – email, news, ftp

client’s email 
interface

SMTP 
simple mail

transfer protocol

OS comms. interface

names required: clients, messages
foo@cl.cam.ac.uk
messageID

specific application protocol

standard comms. supporting
all applications
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Distributed application structure – web documents

client’s WWW 
interface

HTTP 
hypertext

transfer protocol

OS comms. interface

names required: originally for documents
URLs universal resource locators
http://www.cl.cam.ac.uk/...
built above DNS naming 

specific application protocol

standard comms. supporting
all applications

(This scheme has been used for general distributed applications; 
W3C standards for Web Services – later)

http://www.cl.cam.ac.uk/�
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Distributed application structure – general support example

component of
distributed 
application

RPC
Remote

Procedure Call

OS comms. interface

names required: 
interfaces, procedures, (later – objects)

general application-level protocol

standard comms. supporting
all applications

RPC is an early example of a protocol above which distributed applications
may be developed. RPC examples: ISO-ODP, OSF-DCE
A middleware also includes services above the RPC layer
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Open and proprietary middleware

• Open: evolution is controlled by standards bodies (e.g. ISO) 
or consortia (e.g. OMG, W3C). Requests for proposals 
(RFPs) are issued, draft specifications published with RFCs 
(requests for comments) or similar.

• Closed, proprietary: can be changed by the owner  (clients 
may need to buy a new release). Consistency across versions 
is not guaranteed.  Good for technical extortion.

Related issues:
• single/multi language: can components be written in different 

languages and interoperate?
• open interoperability: can your system span multiple 

middlewares (including different implementations of the 
same MW)?
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DS Design: model, architecture, engineering
Programming model of distributed computation:

• What are the named entities? objects, components, services, 
...

• How is communication achieved?
- synchronous/blocking (request-response) invocation

e.g. client-server model
- asynchronous messages e.g. event notification model
- one-to-one, one-to-many?

• Are the communicating entities closely or loosely coupled?
- must they share a programming context?
- must they be running at the same time?
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System architecture: the framework within which the entities in 
the model interoperate

• Naming
• Location of named objects 
• Security of communication
• Authentication of participants
• Protection / access control / authorisation
• Replication to meet requirements for reliability, availability

May be defined within administration domains.
Need to consider multi-domain systems and interoperation 

within and between domains
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System engineering: implementation decisions

• Placement of functionality: client libraries, user agents, 
servers, wrappers/interception

• Replication for failure tolerance, performance, load balancing 
–> consistency issues

• Optimisations e.g. caching, batching
• Selection of standards e.g. XML, X.509
• What “transparencies” to provide at what level: 

(transparent = hidden from application developer: needn’t be 
programmed for, can’t be detected when running). 
distribution transparency: location? failure? migration?

may not be achievable or may be too costly 
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Architectures for Large-Scale, Networked Systems

1. Federated administration domains
– integration of databases
– integration of sensor networks
– small dynamic domains with members grounded in 

various static administration domains

2. Independent, external services - to be integrated

3. Detached, ad-hoc, anonymous groups; 
anonymous principals, issues of trust and risk
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1. Federated administration domains: Examples

• national healthcare services:
many hospitals, clinics, primary care practices.

• national police services:
county police forces 

• global company:
branches in London, Tokyo, New York, Berlin, Paris, ...

• transport
County Councils responsible for cities, some roads

• active city: 
fire, police, ambulance, healthcare services. 
mobile workers
sensor networks e.g. for traffic/pollution monitoring
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Federated domains - characteristics

• names: administered per domain (users, roles, services, 
data-types, messages, sensors, ….)

• authentication: users administered within a domain

• communication: needed within and between domains

• security: per-domain firewall-protection

• policies: specified per domain e.g. for access control
intra and inter-domain, plus some external policies to 
satisfy government, legal and institutional requirements

• high trust, high accountability
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small dynamic domains with members grounded in 
static administration domains

• e.g. assisted home-living (sheltered housing)
“patient” + various carers + technology

• carers have roles in primary care practices, hospitals, 
social services, out-sourced services

• care programme is specified by contract
- rights of patient to defined care
- obligations of carers and patients
- privacy of patient data
- need to audit people and technology
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dynamic domains - characteristics
• names: principals (users, roles): from home domains; 

services, data-types, messages, sensors: set up for small 
dynamic domains

• authentication: users administered within home domain. 
Need for credential check back to home domain (as in 
federated domains).

• communication: needed across domains

• policies: indicate contractual obligations and privileges 
(access control)

• audit of people, technology

• trust, based on observation of audit, (and reputation?)
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2. Independent, External Services - Examples

• commercial web-based services
e.g. online banking, airline booking etc.

• national services used by police and others
e.g. DVLA, court-case workflow 

• national health services
e.g. national Electronic Health Record (EHR) service

• e-science (grid) databases and generic services
e.g. astronomical, transport, medical databases
for computation (e.g. Xenoservers), or storage

• e-science may support “virtual organisations” –
collaborating groups across several domains
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Independent, external services - characteristics
• naming and authentication

may be client-domain-related,
and/or of individuals via certification authorities (CAs)

• access control policies
related to client roles in domains and/or individual principals
may provide support for “virtual organisations”

• need for: accounting, charging, audit
a basis for mutual trust (service done, client paid)

• trust
based on evidence of behaviour
clients exchange experiences, services monitor and record 
assume full connectivity, e.g. CAs can authenticate/identify
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3. Detached, ad-hoc, anonymous groups
• e.g. connected by wireless
• can’t assume trusted third-parties (CAs) accessible
• can’t assume knowledge of names and roles, identity likely to be by 

key/pseudonym
• new identities can be generated (by detected villains)

• parties need to decide whether to interact
• each has a trust policy and a trust engine
• each computes whether to proceed – policy is based on:

- accumulated trust information 
(from recommendations and evidence from monitoring)

- risk (resource-cost) and likelihood of possible outcomes
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Examples of detached ad hoc groups
and the need for trust

• Commuters regularly play cards on the train
• E-purse purchases
• Recommendations: of people and e.g.restaurants 

in a tourist scenario  
• Wireless routing via peers
• Routing of messages P2P rather than by dedicated 

brokers – reliability, confidentiality, altruism
• Trust has a context
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Promising Approaches for Large-Scale Systems

• Roles for scalability
• Parametrised roles for expressiveness
• RBAC for services, service-managed objects, including the 

communication service
• Policy specification and change management
• Policy-driven system management

• Asynchronous, loosely-coupled communication
publish/subscribe for scalability
event-driven paradigm for ubiquitous computing

• Database integration – how best to achieve it? 

And don’t forget:
• Mobile users
• Sensor network integration
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Opera Group – research themes
(objects policy events roles access control)

• Access Control (OASIS RBAC)
Open Architecture for Securely Interworking Services

• Policy expression and management
• Event-driven systems (CEA, Hermes)

EDSAC21: event-driven, secure application control for the 21st Century
• Trust and risk in global computing (EU SECURE)

secure collaboration among ubiquitous roaming entities
• TIME: Traffic Information Monitoring Environment

TIME-EACM event architecture and context management
• CareGrid: dynamic trust domains for healthcare applications
• SmartFlow: Extendable event-based middleware

see: www.cl.cam.ac.uk/Research/SRG/opera
for people, projects, publications for download

http://www.cl.cam.ac.uk/Research/SRG/opera�


Time in Distributed Systems

* There is no common universal time (Einstein) 
   but the speed of light is constant for all observers irrespective of their velocity 

* Assume our DS is earth-based

* Even then, time is complex
  - Sunrise/sunset?
  - Readioactive decay?
  - Stars’ positions?
  - Seasons?
  - Tides?
  - Slowing of the Earth’s rotation?

* UTC services are offered by radio stations and satellites -- receivers are available commercially
    Accuracy varies with weather conditions

* UTC signals take time to propagate -- UTC can’t be known exactly
     For a given receiver we can estimate a time interval during which an event has happened 
     w.r.t. UTC, see also T-11 "interval timestamps"

* UTC (Coordinated Universal Time) is in step with TAI but based on UT1

T-1



event e1 
at earth time t1

event e2 
at earth time t2

velocity v -->

velocity v’ -->

large distances

The spaceships observe different times for e1 and e2 and different values for e2 - e1
but observe e1 and e2 in the same order

T-2



star star

event e1 event e2

enormous distances

spaceship observes 
e1 before e2

e1 < e2

spaceship observes 
e2 before e1

e2 < e1

T-3



Timers in computers

* based on frequency of oscillation of a quartz crystal

* Each computer has a timer which interrupts periodically.
   Clock skew: in practice, the number of interrupts per hour varies slightly in the fabricated devices, 
   also with temperature, and clocks may drift

How is time used in distributed systems?

What does "A happened before B" mean  in a distributed system?

* We have already seen that we cannot know the time at which an event occurs accurately, 
   but only specify an interval. 
   We now have to increase that interval to allow for clock drift as well as other sources of inaccuracy.

If two events have single-value timestamps which differ by less than some value 
we CAN’T SAY in which order the events  occurred.

With interval timestamps, when intervals overlap, we CAN’T SAY in which order the events occurred.

-------------------------------------------

* note that computer systems tag events with timestamps, usually a local clock reading
   strictly, intervals should be used, see T-11

T-4

* timers can be set from transmitted UTC

Do we need accurate time?



Use of time in distributed systems: Examples

1. Any source of resource contention  e.g. airline booking   

Policy: if the reservation requests for two transactions may each be satisfied separately but
there are not enough seats left for both, then the transaction with the earliest timestamp wins.

Note that there is no causality, the requests are independent. We don’t need fine-grained accuracy, 
we just need a timestamp ordering convention so all agree who won.
On a tie (equal timestamps) use an agreed tie-breaker e.g. IP address/process ID

2. programming environments e.g. UNIX make (compile and link)

suppose a make involves many components which are edited on distributed computers 

suppose a component is edited immediately after a make, but on a computer with a slow clock 
and the edited source is given a timestamp earlier than the make
on the next make, this component is not recompiled

- this can be made unlikely to happen, if we ensure that clocks are initialised reasonably accurately 
  e.g. not from the operator’s watch 

- this is an example of correctness depending on correct event ordering
   did the edit take place before or after the last make?

T-5



3. Did a credit/debit transaction take place before or after midnight?
    This affects the calculation of interest.

Note that some of the above examples require only a means of agreement, so that all participants 
in the computer system make the same decision.

Others require accurate time or the order of events in the real world when causality is at issue.

4. The value of shares at the time of buying/selling

5. Insider dealing? Did X read Y before buying/selling?

T-6



But note external channels - and real/physical causality

P1

P2

P3

time

monitors pipe
for cracks

T-26

monitors pressure
in pipe

controls temperature
of steam

PIPE
RUPTURE

PRESSURE
DROP

RAISE 
TEMPERATURE

* The pipe ruptures (which causes a drop in pressure)
* P1 sends message to controller P3 to notify rupture
* P2 sends message to P3 to notify pressure drop

* P3 receives P2’s message before P1’s and increases temperature of steam
* P3 then receives P1’s message and infers (wrongly) 
                    that increasing the temperature has caused the pipe to rupture

e.g. monitoring and controlling a pipe along which steam is delivered under pressure

Here, causality is outside the message transport service.
Controller’s algorithm needs to take account of physical timestamps which must be accurate
Audit of system fault has to report on cause - maybe "can’t say" depending on timestamp accuracy

bringing forward:



Event ordering in distributed systems

time x1

x2

y1

y2

y3

z1

z2

X Y Z

IPC

IPC

define < to mean "happened before"

* events within a single process are ordered

* events in region x1 < events in regions y2, y3 

* events in region x1 < events in regions z2 

* events in region y1, y2 < events in regions z2

note that this ordering is true whatever the local clocks of X, Y and Z indicate

suppose inter-process communication (IPC) takes place:

IPC defines a PARTIAL ORDERING on the events in the DS

* for events in other regions we CAN’T SAY, unless we know the precise 
   accuracy of all physical clock values e.g. events in x1 and y1, y1 and z1 etc.

T-7



time X Y

IPCsend (m,tx)

receive (m,tx)

we must ensure that the values of the local clocks respect this event ordering

suppose a message m is timestamped tx by X on sending

suppose Y’s local clock has reading ty on receive(m,tx)

if ty > tx  OK
if ty < = tx  reset ty to tx + one increment

This imposes logical time on the system
(sometimes called Lamport time due to Lamport’s classic paper on this topic) 

BUT - system time adjusted in this way will drift ahead of UTC
we could use counters rather than timestamps if all we need is event ordering
How can we generate timestamps that are:
 - reasonably close to UTC
 - preserve causal ordering 

note that X’s send CAUSED Y’s receive

T-8



Protocols for synchronising physical clocks

* assume one machine has a UTC receiver (time server)

* each machine polls the time server periodically
  (period depends on maximum clock drift allowed and accuracy required)

* server sends back its value of the time

* client receives this value and may:
- use it as it is
- add the known minimum network delay
- add half the time between this send and receive

* now consider resetting the receiver’s local clock from this value

if value >= local-time   OK  use it to set the clock 
or adjust the interrupt rate for a while to speed up the clock (e.g. 10ms -> 9ms)

NOTE that time can’t be put back or event ordering
within the local system would become incorrect

if value < local time
adjust the interrupt rate to slow down the clock (e.g. 10ms ->11ms)

* a number of time servers can be used (replication increases reliability)

Cristian’s algorithm 1989

T-9



Berkeley UNIX (Gusella & Zatti, 1989)

*  if no machines have receivers . . . 
*  a nominated "time-server" asks all machines for their times
*  computes the average value

*  broadcasts to all machines
*  operator may set the time manually from time to time

NTP (Network Time Protocol) (Mills, 1991)

* for the Internet as a hierarchy of computers

* uses UDP

* accurate to a few tens of ms

primary servers
receive UTC

secondary
servers

level 3
servers

Cristian’s algorithm

multicast

* allow for estimated network delay and adjust clocks as described above

T-10



Interval timestamps

* for any computer we can estimate how long UTC takes to reach it, taking into account:
  - atmospheric propagation
  - network(s) transmission
  - software overhead (e.g. local OS)

T-11

* instead of a single-valued timestamp, use an interval in which UTC is estimated to lie

* use these interval values for ordering events,
   for example when arriving messages need to be ordered

* sometimes we "can’t say"   - this is the nature of distributed systems.
   a weak ordering might be created, based on e.g. the upper interval bound.



Composing events (realised as messages)

* applications are often interested in patterns of events
   -  fraud detection
   -  fault detection
   -  to control the volume of events propagated

T-12

* possible composition operators
             AND, OR, SEQ (before/after)? UNTIL?, AFTER?, NOT? ....
   note fundamental uncertainty of time in distributed systems

* a composition service receives streams of events from distributed sources 
   and creates a stream of composite events. Example with two event types, A, B

A  B  A  B  B  A  A  B  A
one source of A messages

one source of B messages

* ref I-12 for fundamental and engineering issues
  - are all sources of A and B and connections to them operational?
    have all the As and Bs arrived? (use a heartbeat protocol?)
  
* consumption policy for As and Bs? historical, most recent, ....

* buffer size and garbage collection



Ordering message delivery

assume FIFO from each source
at this level (done by lower levels)

ASSUMPTIONS 
- messages are multicast to named process groups
- reliable channels: a given message is delivered reliably to all members of the group (no lost messages)
- FIFO from a given source to a given destination
- processes don’t crash (failure and restart not considered)
- processes behave as specified and send the same values to all processes
  (we are not considering Byzantine behaviour)

may be delivered messages
in a specified order

may buffer and reorder messages 
(as requested) before delivery

application process

message service

OS comms
  interface

* no order
messages are delivered to the application process in the order received by the message service

* total order
every process receives all messages in the same order

* causal order
messages that are potentially causally related are delivered in causal order at all processes

T-13



Process groups

* membership create (name, <list of group members>)
kill   (name)
join   (name, process)
leave  (name, process)

* internal structure?
NO (peer) - failure tolerant, complex protocols
YES  (a single coordinator (and point of failure))
          - simpler protocols 
            e.g. if a join request must be to the coordinator, concurrent joins are avoided

* closed or open?
OPEN      - a non-member can send to a group, e.g. to a set of servers
CLOSED - only members may send to the group name e.g. parallel, fault-tolerant algorithms

* failures
a failed process leaves the group without executing leave

* robustness
leave, join and failures happen during normal operation - algorithms must be robust

Example: ISIS system at Cornell (Birman) -> Horus

T-14

will need
later for

algorithms



Message delivery - causal order

first, define in terms of one-to-one messages; later, multicast

P1

P2

P3

m

m’

time

we are concerned only with POTENTIAL causality (not the subject of messages)
if causal delivery order is required, m should be delivered before m’at P3

application

processes

definition of causal delivery order (where < means "happened before")

send (m) < send (m’)

  =>

deliver (m) < deliver (m’)

in the above example:    P1 sends m before P2 sends m’
                                           =>
                                     m should be delivered before m’ at P3

T-15

i j

k k



P1

P2

P3

m

m’

timeapplication

processes

now assume P1, P2 and P3 are in a process group and all messages are multicast to the group
(all processes receive all messages)

In this case, the message delivery system can implement causal delivery order by using vector clocks.
For total order, see T23 - T25

T-16



a VECTOR CLOCK is maintained by the message service at each node for each process:

P1

P2

P3

(1,0,0) (2,1,0)

(0,1,0) (1,2,0)

(1,0,1) (1,1,2)

vector notation:
 - fixed number of processes, N
 - each process’s message service keeps a vector of dimension N
 - for each process, each entry records the most up-to-date value of the state counter, 
   known to that process, for the process at that position

(set notation would be better for dynamic reconfiguration of groups 
  - the literature uses vectors)

T-17



P1

P2

P3

(1,0,0) (2,1,0)

(0,1,0) (1,2,0)

(1,0,1) (1,1,2)

(3,3,0)

(1,3,0)

(1,3,3) (1,3,4)

(4,3,4)

(1,4,4)

* before send increment local process’s state-value in local vector 

* on send, timestamp message with sending process’s local vector

* on deliver, increment receiving process’s state-value in its local vector and update 
   the other fields of the vector by comparing its values with the incoming timestamp
   and recording the higher value in each field
   thus updating this process’s knowledge of system state

message service operation:

T-18



P1

P2

P3

(1,0,0)

(1,1,0) (1,2,0)

(0,0,0)

(1,2,0)

m m’

at P3’s message service:

P3’s vector is (0,0,0)
m’ comes in from P2 with timestamp (1,2,0)

  P3’s message service buffers m’ until a message comes in from P1
   so P2 received a communication from P1 before sending this message

(1,0,0)

Implementing causal delivery order
T-19

(2,2,0)



the algorithm in more detail (at P3):

 ----------------------------------------------------------------------------------------------------------------------
               receiver vector       sender      sender vector      decision             new receiver vector
-----------------------------------------------------------------------------------------------------------------------
                     (0,0,0)                  P2           (1,2,0)               hold in buffer           (0,0,0)
                     (0,0,0)                  P1           (1,0,0)               deliver                      (1,0,1)
from buffer:  (1,0,1)                  P2           (1,2,0)               deliver                      (1,2,2)

T-20

in each case - do the sender and receiver agree on the state of all other processes?
if the sender has a higher value, buffer the message.



0000 1000

0000

0000

0000 1001 1022

1010

2020

1020

1100 1220
buffer

P1

P2

P3

P4

1020

CAUSAL ORDER using vector clocks - example

algorithm: check for causal delivery order, 
                  i.e. receiver is not missing any message sender already has
                 (system state at receiver > system state at sender
                   for processes other than sender and receiver
                   recall we are assuming FIFO delivery from a given source)
                 if not causal order, pend message - hold in buffer
                 if causal order, deliver message to application and update local vector 
                        i.e. increment receiver’s count and set all other counts 
                             to greater of sender’s and receiver’s values,
                             thus updating receiver’s record of system state
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P3 (1020) to P1 (1000)
both have state of P2 as 0 and P4 as 0 -> deliver, P1->(2020)

P3 (1020) to P4 (1001)
both have state of P1 as 1 and P2 as 0 -> deliver, P4->(1022)

P3 (1020) to P2 (0000)
both have state of P4 as 0 - OK
P3 has state of P1 as 1, P2 has state of P1 as 0 -> buffer

P1 (1000) to P2 (0000)
both have state of P3 as 0 and P4 as 0 -> deliver, P2->(1100)

P3 (1020) to P2 (1100)
both have state of P1 as 1 and P4 as 0 -> deliver, P2-> (1220)

buffered message:

T-22



0000 1000

0000

0000

0000 1001 1223

1010

3220

1022

1100 1320

P1

P2

P3

P4

note TOTAL ORDER is not enforced by this algorithm

1200

2200

1020 1230

m2 and m3 are not causally related

m2

m3

P1 receives m1, m2, m3
P2 receives m1, m2, m3
P3 receives m1, m3, m2
P4 receives m1, m3, m2

If application requires TOTAL order, this can be enforced using vector clocks
     with extension to include ACKs and delivery to self (see below).
But the vectors can be a large overhead on message transmission.
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Totally ordered multicast, can be achieved more simply 
using a single logical clock value as the timestamp

assumptions again, ref T13: 
    - multicast
    - FIFO from each source to each destination
    - reliable channels
    - processes don’t crash
    - processes not Byzantine

algorithm:
    - sender multicasts to all including itself
    - all acknowledge receipt as a multicast message
    - message is delivered in timestamp order when all ACKs have been received.

If the delivery system must support both, so that applications can choose, 
vector clocks can achieve both causal and total ordering.
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0 1

0

0

P1

P2

P3

TOTALLY ORDERED MULTICAST - outline of approach

P2 and P3 both multicast messages with timestamp 3

all delivery systems collect messages, send ACKs and collect ACKs
and use a tie-breaker to deliver P2’s message before P3’s

ACKS

2

2

2

3

3

P1 increments its clock to 1 and multicasts a message with timestamp 1
All delivery systems collect message, send ACK and collect all ACKs
 - no contention - deliver message and increment local clocks to 2
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In practice, timeouts (long delay) due to congestion and/or failure of components 
and/or communication would have to be considered.



But note external channels - and real/physical causality

P1

P2

P3

time

monitors pipe
for cracks

T-26

monitors pressure
in pipe

controls temperature
of steam

PIPE
RUPTURE

PRESSURE
DROP

RAISE 
TEMPERATURE

* The pipe ruptures (which causes a drop in pressure)
* P1 sends message to controller P3 to notify rupture
* P2 sends message to P3 to notify pressure drop

* P3 receives P2’s message before P1’s and increases temperature of steam
* P3 then receives P1’s message and infers (wrongly) 
                    that increasing the temperature has caused the pipe to rupture

e.g. monitoring and controlling a pipe along which steam is delivered under pressure

Here, causality is outside the message transport service.
Monitors may not be able to participate in a process group and use multicast
Controller’s algorithm needs to take account of physical timestamps which must be accurate
Audit of system fault has to report on cause - maybe "can’t say" depending on timestamp accuracy



Consistency

Recall the properties of distributed systems: 
1. concurrent execution of components
2. independent failure modes
3. transmission delay
4. no global time

DS may be large in scale and widely distributed

Replicated objects
objects may be replicated e.g. naming data (name servers), web pages (mirror sites)
   - for reliability
   - to avoid a single bottleneck
   - to give fast access to local copies

updates to replicated objects
AND
related updates to different objects

Updates

must be managed in the light of 1-4 above

D-1
Distributed algorithms and protocols



Maintaining consistency of Replicas

WEAK CONSISTENCY  - fast access requirement dominates
update the "local" replica and send update messages to other replicas. 
Different replicas may return different values for an item.

STRONG CONSISTENCY - reliability, no single bottleneck
ensure that only consistent state can be seen (e.g. lock-all, update, unlock).
All replicas return the same value for an item.

WEAK CONSISTENCY - system model, architecture and engineering 

Simple approach: have a PRIMARY COPY to which all updates are made
and a number of BACKUP copies to which updates are propagated. 

Keep a HOT STANDBY for some applications for reliability and accessibility
(make update to hot standby synchronously with primary update).

BUT a single primary copy becomes infeasible as systems’ scale and distribution increase 
- primary copy becomes a bottleneck and (remote) access is slow.

*

D-2

* General approach: we must allow (concurrent) reads and writes to all replicas



1. concurrent updates at different replicas + (3) comms. delay

- the updates do not, in general, reach all replicas in the same (total) order? - see T-23 

2. failures of replicas
we must ensure, by restart procedures, that every update eventually reaches all replicas 

PROBLEMS

4. no global time
but we need at least a convention for arbitrating between conflicting updates 
- timestamps? - are clocks synchronised?
 e.g. conflicting values for the same named entry - password or authorisation change
 e.g. add/remove item from list - distribution list, access control list, hot list
 e.g. tracking a moving object - times must make physical sense
 e.g. processing an audit log    - times must reflect physical causality

 Requirement: the system MUST be made to converge to a consistent state as the update messages propagate

Weak Consistency of replicas - continued

(ref. DS properties 1-4)
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- the order of *conflicting* updates matters 

Further reading: 
Y Saito and M Shapiro, "Optimistic Replication" ACM Computing Surveys 37(1) pp.42-81, March 2005

In practice, systems may not rely solely on message propagation but also compare state from time to time 
e.g. name servers - Grapevine, GNS



Strong consistency

concept of TRANSACTION / transactional semantics 
- ACID properties (atomicity, consistency, isolation, durability)

start transaction
          make the same update to all replicas of an object
      or make related updates to a number of different objects 
end transaction
        (either COMMIT - all updates are made, are visible and persist
                 or ABORT - no changes are made)

implementation - first attempt:
      lock all objects
      make update(s)
      unlock all objects

problem: 
    - lack of availablity (a reason for replication)
       because of comms. delays, overload/slowness and failures.
     "I can’t work because a replica in Peru crashed"

solution for strong consistency of replicas: QUORUM ASSEMBLY
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QUORUM ASSEMBLY for replicas

Assume n copies. Define a read quorum QR and a write quorum QW
which must be locked for reading (QR) and writing (QW). 

QW > n/2

QR + QW > n

e.g. QW = n, QR = 1 is lock all copies for writing, read from any

These ensure: only one write quorum at a time can be assembled (deadlock? - see D10)
                      every QW and QR contain at least one up-to-date replica.
After assembling a (write) quorum, make all replicas consistent then do operation.

e.g. n=7, QW=5              QR=3

optimisation: after making a write quorum consistent, and performing the update, 
                      background-propagate to other replicas not in the quorum

D-5
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write quorum

write quorum

make consistent then apply update

write 

read 

read 

note that reads don’t change anything, so we still have:

write quorum

write

make consistent then apply update

time



For BOTH quora of replicas AND  related objects being updated under a transaction
we need ATOMIC COMMITMENT (all make the update(s) or none does)
- achieved by an ATOMIC COMMITMENT PROTOCOL such as 
  two-phase commit (2PC), an ISO standard

participating
site  PS

1

3 old
new

participating
site  PS

1
2
3

participating
site  PS

2
3

Two-phase commit (2PC)

commit
manager

CM
1

2
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e.g. for a group of four processes:
one functions as commit manager (CM) (after an external update request)
the others are participating sites (PS)

persistent 
store

Atomic Update of distributed data



participating
site  PS

1

3

old
new

participating
site  PS

1
2
3

participating
site  PS

2
3

commit
manager

CM
1

2

phase 1:
   1. CM requests votes from all (PS and CM) - all secure data and vote
   2. CM assembles votes including its own

phase 2:
      CM decides on commit (if all have voted) or abort
      This is the single point of decision - record in persistent store
   3. propagate decision
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Two-phase commit - notes:

recall - DS - independent failure modes

* before voting commit, each PS must:
    - record update in stable/persistent storage
    - record that 2PC is in progress

crash

on restart, find out what the decision was from CM

* before deciding commit, CM must:
    - get commit votes from all PSs
    - record its own update

on deciding commit, CM must
  - record the decision
  - then . . . propagate  . . .    it

crash

on restart, tell the PSs the decision
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some detail from the PS algorithm

either:   send abort vote and exit protocol
     or:    send commit vote and await decision (set timer)

timer expires:  consider CM crash which could have happened:

         either before CM decided commit (perhaps awaiting slow or crashed PSs)

         or after deciding commit and
             before propagating decision to any PS
             after propagating decision to some PSs

optimise - CM propagates PS list so any can be asked for the decision

some detail from the CM algorithm
send vote request to each PS
await replies (set timers)

if any PS does not reply, must abort
if 2PC is for quorum update, CM may contact further replicas after abort

D-9



Concurrency issues

consider a process group, each managing an object replica 
      (ref. T-11, assume open group with no internal structure)

suppose two (or more) different updates are requested at different replica managers 

two (or more) replica managers attempt to assemble a write quorum 
       if successful, will run a 2PC protocol as CM

either:  one succeeds in assembling a write quorum, the other(s) fail - OK
     or:  both/all fail to assemble a quorum (e.g. each of two locks half the replicas)
           and DEADLOCK

must have deadlock detection or prevention 
assume all quorum assembly requests are multicast to all the replica managers
    e.g. quorum assembler’s timer expires waiting for enough replicas to join
          it releases locked replicas and restarts, after backing off for some time

    e.g. some replica manager has become part of a quorum (request had a timestamp)
          then receives a request from a different quorum assembler (with a timestamp)
          All replica managers have an algorithm to agree which quorum wins
          and which is aborted, e.g. based on "earliest timestamp wins".

    e.g. could use a structured group so update requests are forwarded to the manager

D-10



Large-scale systems

it is difficult to assemble a quorum from a large number of widely distributed replicas 

manage scale by hierarchy:
define a small set of first-class servers (FCSs), each above a hierarchy of servers

ETC. ETC.

first-class servers (FCS) at top level

there are various approaches, depending on application requirements, e.g.

* update requests must be made to a FCS

* FCSs use quorum assembly and 2PC among FCSs then propagate the update 
   to all FCSs - each propagates down its subtree(s)

* correct read is from a FCS which assembles a read quorum of FCSs
   fast read is from any server - risk missing latest updates

ref lab TR 383 N Adly (PhD) Management of replicated data in large-scale systems
(includes a survey of algorithms for both strong and weak consistency) Nov 1995
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Concurrency control: general transaction scenario (distributed objects)

* consider related updates to different objects

* concurrent transactions may have objects in common

(ref: CS/OS books part 3, CSA course, DB course)

pessimistic concurrency control
     (strict) two-phase locking (2PL)
     (strict) timestamp ordering (TSO)

optimistic concurrency control (OCC)
     - take shadow copies of objects
     - apply updates to shadows
     - request commit of a validator which implements commit or abort (do nothing)

---------------------------------------------

* transactions that involve distributed objects, any of which may fail at any time,
   must ensure atomic commitment

---------------------------------------------

* with pessimistic concurrency control we must use an atomic commitment protocol 
   such as two-phase commit

* if a fully optimistic approach is taken we do not lock objects for commitment 
   since the validator creates new object versions (ref CS ED1 Ch20, ED2 Ch21, OS Ch 22)
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Concurrency control for transactions

strict two-phase locking 2PL

for objects involved in the transaction - attempt to lock object and apply update
     - old and new versions are kept

phase 1:

 

phase 2:
(for STRICT 2PL, locks are held until commit)
commit update - using e.g. 2PC

strict timestamp ordering

each transaction is given a timestamp

the object compares the timestamp of the requesting transaction with that of its 
most recent update: if later - OK

if earlier - REJECT (too late) - that transaction aborts

(for STRICT TSO, locks are held until commit)
commit update - using e.g. 2PC

for objects involved in the transaction, attempt to lock object and apply update
      - old and new versions are kept
      - locks are held while other objects are acquired
      - susceptible to DEADLOCK

---------------------------------------
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More algorithms and protocols for Distributed Systems

We have defined process groups as having peer or hierarchical structure (ref. T-14)
and have seen that a coordinator may be needed to run e.g. 2PC

With peer structure, an external process may send an update request
to any group member which then functions as coordinator

If the group has hierarchical structure, one member is elected as coordinator

That member must manage group protocols and external requests must be directed to it
(note that this solves the concurrency control (potential deadlock) problem 
while creating a single point of failure and a possible bottleneck)

Assume:   each process has a unique ID known to all members
                the process with highest ID is coordinator

Note: any process may fail at any time
An ELECTION ALGORITHM is run when the coordinator is detected as having failed
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Election algorithm - BULLY
* P notices no reply from coordinator
* P sends ELECT message to all processes with higher IDs
* If any reply, P exits
* if none reply, P wins
  P gets any state needed from storage
  P sends COORD message to the group

----------------------------------------
* on receipt of ELECT message
   - send OK
   - hold an election if not already holding one
-----------------------------------------

5

4

3

2

1

5

4

3

2

1

ELECTOK

ELECT

OK

(i) (ii)
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Election algorithm - RING

Processes are ordered into a ring - known to all
  - can bypass a failed process provided algorithm uses acknowledgements

* P notices coordinator not functioning

* P sends ELECT, tagged with its own ID, around the ring

------------------------------------------

on receipt of ELECT:
without receiver’s ID: append ID and pass on
with receiver’s ID (has been all round) send (COORD, highest-ID)

many elections may run concurrently
all should agree on the same highest ID

------------------------------------------
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Distributed mutual exclusion

Suppose N processes hold an object replica 
             and we require that only one at a time may access the object

examples: - ensuring coherence of distributed shared memory
                - distributed games
                - distributed whiteboard

Assume - the object is of fixed structure,
             - processes update-in-place 
             - then the update is propagated (not part of the algorithm)

---------------------------------------------

Each process executes code of the form:

entry protocol

critical section (access object)
exit protocol

D-17

i.e. for use by simultaneously running, tightly coupled components managing 
object replicas in main memory. We have already seen the approach of LOCKING 
persistent object replicas for transactional update.



Distributed mutual exclusion:

1. centralised algorithm

one process is elected as coordinator

entry protocol:
send request message to coordinator
wait for reply (OK-enter) from coordinator

exit protocol:
send finished message to coordinator

-----------------------------------------

+ FCFS or priority or another policy  - coordinator reorders 

+ economical (3 messages)

- single point of failure

- what does no reply mean?    waiting for region? - OK!
                                              coordinator has failed?

    solve by using extra messages 
       - coordinator ack’s request 
       - send again when process can enter region
       - send periodic heartbeats (at application- or a lower level)

- coordinator is bottleneck
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Distributed mutual exclusion:

2. token ring

entry protocol:
wait for token to arrive

exit protocol:
pass token to next process

a token giving permission to enter critical region circulates indefinitely

--------------------------------------------

- inflexible - ring order, not FCFS or priority or ...

+ quite efficient, 
   but token circulates when no-one wants region

- must handle loss of token

- crashes? use ack - reconfigure - bypass
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Distributed mutual exclusion:

3. distributed (peer-to-peer) algorithm

entry protocol:
send a timestamped request to all processes including oneself
(there is a convention for global ordering of TS)

exit protocol:
reply to any deferred requests

--------------------------------------------

+ fair - FCFS
- not economical, 2(n-1) messages + any acks
- n points of failure
- n bottlenecks

only when all process have replied can the region be entered
on receipt of a message
   - defer reply if in CR
   - reply immediately if you are not executing a request
   - if you are, 
      compare your request message timestamp with that of the message. 
      reply immediately if incoming timestamp is earlier, otherwise, defer reply 

- no reply - failure or deferral?
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Distributed ApplicationsDistributed Applications

Operating System CommsOperating System Comms

NetworkNetwork

Introduction to Middleware I

• What is Middleware?
– Layer between OS and distributed applications
– Hides complexity and heterogeneity of distributed system 
– Bridges gap between low-level OS comms and programming 

language abstractions
– Provides common programming abstraction and 

infrastructure for distributed applications

Distributed Applications

Middleware

Operating System Comms

(packets, bits, …)

(remote calls, object invocation, 
messages, …)

(sockets, IP, TCP, UDP, …)

Network
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Introduction to Middleware II

• Middleware provides support for (some of):
– Naming, Location, Service discovery, Replication 
– Protocol handling, Communication faults, QoS
– Synchronisation, Concurrency, Transactions, Storage
– Access control, Authentication

• Middleware dimensions:
Request/Reply vs. Asynchronous Messaging
Language-specific vs. Language-independent
Proprietary vs. Standards-based
Small-scale vs. Large-scale
Tightly-coupled vs. Loosely-coupled components
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Outline

• Part I: Remote Procedure Call (RPC)
– Historic interest, but can still be very useful

• Part II: Object-Oriented Middleware (OOM)
– Java RMI
– CORBA
– Reflective Middleware

• Part III: Message-Oriented Middleware (MOM)
– Java Message Service
– IBM MQSeries
– Web Services

• Part IV: Event-Based Middleware
– Cambridge Event Architecture
– Hermes
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Part I: Remote Procedure Call (RPC)

• Makes remote function calls look local
• Client/server model
• Request/reply paradigm usually implemented with 

message passing in RPC service
• Marshalling of function parameters and return value

Caller RPC Service RPC Service Remote
Function

call(…)

1) Marshal args
2) Generate ID
3) Start timer 4) Unmarshal

5) Record ID

6) Marshal
7) Set timer

8) Unmarshal
9) Acknowledge

fun(…)

message
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Properties of RPC

Language-level pattern of function call
• easy to understand for programmer

Synchronous request/reply interaction
• natural from a programming language point of view
• matches replies to requests
• built in synchronisation of requests and replies

Distribution transparency (in the no-failure case)
• hides the complexity of a distributed system

Various reliability guarantees
• deals with some distributed systems aspects of failure
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Failure Modes of RPC

• Invocation semantics supported by RPC in the light of:
network and/or server congestion, 
client, network and/or server failure 

note DS independent failure modes
• RPC systems differ, many examples, local was Mayflower

Exactly once (RPC system retries a few times)
• Hard error return – some failure most likely

note that “exactly once” cannot be guaranteed 

At most once (RPC system tries once)
• Error return – programmer may retry
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Disadvantages of RPC

 Synchronous request/reply interaction
• tight coupling between client and server
• may block for a long time
• leads to multi-threaded programming

at client and, especially, server

 Distribution Transparency
• Not possible to mask all problems

 Lacks notion of service
• programmer may not be interested in specific servers

 RPC paradigm is not object-oriented
• invoke functions on servers as opposed to methods on objects

fork(…)

join(…)

remote call
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Part II: Object-Oriented Middleware (OOM)

• Objects can be local or remote
• Object references can be local or remote
• Remote objects have visible remote interfaces
• Makes remote objects look local using proxy 

objects
• Remote method invocation looks like this

object A

proxy 
object B

OOM OOM

skeleton 
object B

object B

local remote

object
request
broker

/
object

manager

object
request
broker

/
object

manager
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Properties of OOM

Support for object-oriented programming model
• objects, methods, interfaces, encapsulation, …
• exceptions (also in some RPC systems e.g. Mayflower)

Location Transparency
• system maps object references to locations

Synchronous request/reply interaction
• same as RPC

Services 
• easier to build using object concepts
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Java Remote Method Invocation (RMI)

• Distributed objects in Java

public interface PrintService extends Remote {
int print(Vector printJob) throws RemoteException;

}

• RMI compiler creates proxies and skeletons
• RMI registry used for interface lookup
• Everything in Java, unless you like pain (single-

language system)
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CORBA

• Common Object Request Broker Architecture
– Open standard by the OMG (Version 3.0)
– Language and platform independent

• Object Request Broker (ORB)
– General Inter-ORB Protocol (GIOP) for communication
– Interoperable Object References (IOR) contain object location
– CORBA Interface Definition Language (IDL)

• Stubs (proxies) and skeletons created by IDL compiler
– Dynamic remote method invocation

• Interface Repository
– Querying existing remote interfaces

• Implementation Repository
– Activating remote objects on demand
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CORBA IDL

• Definition of language-independent remote interfaces
– Language mappings to C++, Java, Smalltalk, …
– Translation by IDL compiler

• Type system
– basic types: long (32 bit), 

long long (64 bit), short, 
float, char, boolean, 
octet, any, …

– constructed types: struct, union, sequence, array, enum
– objects (common super type Object)

• Parameter passing
– in, out, inout
– basic & constructed types passed by value
– objects passed by reference

typedef sequence<string> Files;
interface PrintService : Server {
void print(in Files printJob);

};
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CORBA Services (selection)

• Naming Service
– Names → remote object references

• Trading Service
– Attributes (properties) → remote object references

• Persistent Object Service
– Implementation of persistent CORBA objects

• Transaction Service
– Making object invocation a part of transactions

• Event Service and Notification Service
– Asynchronous communication based on messaging 

(cf. MOM); not integrated programming model with general 
IDL messages
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Disadvantages of OOM

 Synchronous request/reply interaction only
• So CORBA oneway semantics added
• Asynchronous Method Invocation (AMI)

• Can be yucky
• But implementations may not be loosely coupled

 Distributed garbage collection
• Releasing memory for unused remote objects

 OOM rather static and heavy-weight
• Bad for ubiquitous systems and embedded devices
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Reflective Middleware

• Flexible middleware (OOM) for mobile and context-
aware applications – adapt to context through 
monitoring and substitution of components

• Interfaces for reflection
– Objects can inspect middleware behaviour

• Interfaces for customisability
– Dynamic reconfiguration depending on environment
– Different protocols, QoS, ...
– e.g. use different marshalling strategy over unreliable 

wireless link
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Part III: Message-Oriented Middleware (MOM)

• Communication using messages
• Messages stored in message queues
• Optional message servers decouple client and server
• Various assumptions about message content

Client App.

local message
queues

Server App.

local message
queues

message
queues

Network Network Network

Message Server
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Properties of MOM

Asynchronous interaction
– Client and server are only loosely coupled
– Messages are queued
– Good for application integration

Support for reliable delivery service
– Keep queues in persistent storage

Processing of messages by intermediate message server
– May do filtering, transforming, logging, …
– Networks of message servers

Natural for database integration
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IBM MQSeries

• One-to-one reliable message passing using queues
– Persistent and non-persistent messages
– Message priorities, message notification

• Queue Managers
– Responsible for queues
– Transfer messages from input to output queues 
– Keep routing tables

• Message Channels
– Reliable connections between queue managers

• Messaging API: MQopen Open a queue
MQclose Close a queue
MQput Put message into opened queue
MQget Get message from local queue
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Java Message Service (JMS)

• API specification to access MOM implementations
• Two modes of operation specified:

– Point-to-point
• One-to-one communication using queues

– Publish/Subscribe
• cf. Event-Based Middleware

• JMS Server implements JMS API
• JMS Clients connect to JMS servers
• Java objects can be serialised to JMS messages
• A JMS interface has been provided for MQ
• pub/sub? - just a specification?
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Disadvantages of MOM

 Poor programming abstraction (but has evolved)
• Rather low-level (cf. Packets)
• Request/reply more difficult to achieve 
• Can lead to multi-threaded code

 Message formats unknown to middleware
• No type checking (JMS addresses this – implementation?)

 Queue abstraction only gives one-to-one communication
• Limits scalability (JMS pub/sub – implementation?)
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Web Services

• Use well-known web standards for distributed computing
Communication

• Message content expressed in XML
• Simple Object Access Protocol (SOAP)

– Lightweight protocol for sync/async communication

Service Description
• Web Services Description Language (WSDL)

– Interface description for web services

Service Discovery
• Universal Description Discovery and Integration (UDDI)

– Directory with web service descriptions in WSDL
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Properties of Web Services

Language-independent and open standard

SOAP offers OOM and MOM-style communication:
• Synchronous request/reply like OOM
• Asynchronous messaging like MOM
• Supports internet transports (http, smtp, ...)
• Uses XML Schema for marshalling types to/from 

programming language types

WSDL says how to use a web service

UDDI helps to find the right web service
• Exports SOAP API for access

http://api.google.com/GoogleSearch.wsdl
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Disadvantages of Web Services

 Low-level abstraction
• leaves a lot to be implemented

 Interaction patterns have to be built 
• one-to-one and request-reply provided
• one-to-many?
• still service invocation, rather than notification
• nested/grouped invocations, transactions, ... 

 Location transparency?
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What we lack, so far

 General interaction patterns
• we have one-to-one and request-reply
• one-to-many? many to many?
• notification?
• dynamic joining and leaving?

 Location transparency
• anonymity of communicating entities

 Support for pervasive computing
• data values from sensors
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Part IV: Event-Based Middleware aka Publish/Subscribe

• Publishers (advertise and) publish events (messages)
• Subscribers express interest in events with subscriptions
• Event Service notifies interested subscribers of published events
• Events can have arbitrary content (typed) or name/value pairs

Event Service
Subscriber

Subscriber

Subscriber

Publisher

Publisher

Publisher

publish

publish

publish

subscribe

subscribe

subscribe

notify

notify

notify
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Topic-Based and Content-Based Pub/Sub

• Event Service matches events against subscriptions
• What do subscriptions look like?

Topic-Based Publish/Subscribe
– Publishers publish events belonging to topic or subject
– Subscribers subscribe to topic

subscribe(PrintJobFinishedTopic, …)

(Topic and) Content-Based Publish/Subscribe
– Publishers publish events belonging to topics and 
– Subscribers provide a filter based on content of events
subscribe(type=printjobfinshed, printer=‘aspen’, …)
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Properties of Publish/Subscribe

Asynchronous communication
• Publishers and subscribers are loosely coupled

Many-to-many interaction between pubs. and subs.
• Scalable scheme for large-scale systems
• Publishers do not need to know subscribers, and vice-versa
• Dynamic join and leave of pubs, subs, (brokers - see later)

(Topic and) Content-based pub/sub very expressive
• Filtered information delivered only to interested parties
• Efficient content-based routing through a broker network  
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Composite Event Detection (CED)

• Content-based pub/sub may not be expressive enough
– Potentially thousands of event types (primitive events)
– Subscribers interest: event patterns (define high-level events)

• Event Patterns
PrinterOutOfPaperEvent or PrinterOutOfTonerEvent

• Composite Event Detectors (CED)
– Subscribe to primitive events and publish composite events

Publisher

Publisher

Publisher

CED

CED

CED

Publisher

Subscriber

Subscriber
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Summary

• Middleware is an important abstraction for building 
distributed systems

• Synchronous vs. asynchronous communication
• Scalability, many-to-many communication
• Language integration
• Ubiquitous systems, mobile systems

1. Remote Procedure Call
2. Object-Oriented Middleware
3. Message-Oriented Middleware
4. Event-Based Middleware



Names in Distributed Systems

* Unique Identifiers (UIDs) e.g. 128 bits
are never reused
refer to either: nothing, or: the same thing at all times
UIDs (may) achieve location-independence: the named object can be moved

* pure and impure names (Needham)

* pure names
- the name itself yields no information e.g. UID
- contains no location information
- commits system to nothing
- can only be used to compare with other similar bit-patterns e.g. in table look-up

* impure names
examples:  email addresses
                  foo.cl.cam.ac.uk
                  host-ID, object-ID (unless used ONLY to generate UIDs)
                  disc-pack-ID, object-ID

- the name yields information
- commits the system to maintaining the context in which the name is to be resolved
   e.g. the directory hierarchy uk/ac/cam/cl

N-1



Unique names

uniqueness is achievable by using

 - a hierarchical name:  scope of uniqueness is level in hierarchy

 - a bit pattern:  flat, system-wide uniqueness

* a problem with pure names:

- how do you know that an object does not exist?
          how may a global search be avoided?

* a problem with impure names

- how to restructure the namespace
   e.g. when objects move about
         when companies restructure

Issues

N-2

- how to engineer uniqueness?

- where to look them up?



examples of names - note requirement for unique identification

Health Service ID  -  every citizen at birth (but hospitals still use local names)
UK National Insurance  - on employment
US Social Security  - on employment

Professional Societies:  ACM, IEEE, BCS  
Charities:                     National Trust, RSPB, ...
Services:                       RAC, AA, AAA (US)

Credit cards
Bank accounts
Utilities:  gas/electricity/water/phone  customer numbers

Loyalty schemes: Airlines - frequent flyer,  hotels,  shops 

Passport
Driving licence

-------------------------------------------------------------------

look for structure, explicit or implicit
is allocation centralised or distributed?
what is the resolution context?

Database key  - must be unique.  e.g. "David Evans" could be a poor choice 
                       

N-3



Telephone company analogy (wired service)

* geographically partitioned, distributed naming database

* given a name, (Yudel Luke) or (Yudel Luke, 3 Acacia Drive) which directory to use?
       don’t know where to lookup pure names

* call (#) -> unobtainable,  # came from official cache
we detect out-of-date values, call directory enquiries
cache until new directory comes

* frequency of update (some years ago)
e.g. Cambridge area: 1,000,000 entries
                                 5,000 updates per week 

* caching numbers in a personal address book (an unofficial cache)
call (#) -> unobtainable,    report fault if use often
call directory enquiries, or ask another contact (may have moved, or changed provider)

* can’t find an entry
     e.g. Phillips company - check spelling: Philips

e.g. look under S.S. rather than Social Services

BT offer a web service www.thephonebook.com   ( name and address -> # )
- only offers exact search e.g.Phillips, Cambridge -  doesn’t suggest Philips
need higher-level tools - "do you mean Philips?" increasingly use search engines to augment directories

N-4

electronic is current, paper is an official cache



Naming Services in Distributed Systems 

in general - provide clients with values of attributes of named objects

name space
the collection of valid names recognised by a name service 
a precise specification is required, giving the structure of names

e.g. ISBN-10: 1-234567-89-1     namespace identifier: namespace-specific string
      /a/b/c/d                               filing system, variable length, hierarchical
      puccini.cl.cam.ac.uk          DNS machine name, see later for DNS
      e.g. Mach OS 128-bit         port name (system-wide UID)      

naming domain
a name space for which there exists a single overall administrative authority 
for assigning names within it
this authority may delegate name assignment for nested sub-domains (see below for Internet DNS)

name resolution or binding
obtaining a value which allows an object to be used

e.g.  file-service? 
IP-address,  port#,  timestamp

name
service

LATE BINDING is considered GOOD PRACTICE
programs should contain names, not addresses  e.g. a machine may fail and a service restarted on another.
Your local agent may cache resolved names for subsequent use + may expire values based on timestamp.
Cached values aren’t embedded in programs and are always used at one’s own risk.
If they don’t work you have (your agent has) to look the name up again.

for a large-scale system, name resolution is an iterative process which requires navigation among name servers (N-8)

N-5



Names, attributes and values stored by a name service

example: user

computer

service

group

alias

directory?

login name, mailbox host(s)

architecture, OS, network-address, owner

network-address, version#, protocol

list of names of members

canonical name

list of hosts holding the directory

directories may be held as a separate structure
rather than as just a type of name as here

* attribute-based (inverse) lookup may be offered - 
  a YELLOW PAGES style of service for object discovery  e.g. X.500, LDAP

* directories are likely to be replicated for scalability, fault-tolerance, efficiency

* directory names will resolve to a list of hosts, as above, with their addresses to avoid further lookup

TOO MUCH information might be dangerous - could reveal structure

N-6

object type attribute list



query:
object type, object-name, attribute-name  ->  attribute-value

attribute-based lookup may be offered (yellow-pages style):
object-type, attribute-value  ->  list of object names having that attribute value

checking:
object type, object-name, attribute-name, attribute-value  ->  yes/no

machine, foo.cl.cam.ac.uk, location       -> IP address
user, some-user-name, public-key          -> PK-bit-pattern
etc .... 

ACL, filename, some-user-name, write-access -> yes/no  
(is the user on the ACL with the permissions requested? e.g. Xerox PARC Grapevine)

machine, OS version#  -> list of machines

N-7
A useful structure for names



Architecture of name resolution

user
program

user
agent

NS1

NS2

NS3

user agent starts off with the root address of the name service
or some well-known sub-tree root:
  e.g. the location of the uk directory for agents in the UK

to resolve cl.cam.ac.uk, the UA can start from the uk directory 
then ac then cam then cl

the UA (and directories) will cache resolved names as hints for future use

---------------------------------------------

alternative: any name server will take a name,
resolve it and return the required attribute
client can sometimes choose e.g. select "recursive" in DNS 

N-8

in practice, there are engineering optimisations: local caches are tried first,
directories may be able to indicate whether they offer recursive evaluation, etc.



Examples of name services

Grapevine - see below N-17
Xerox PARC early 80’s
- two-level naming hierarchy    name@registry
                                                birrell@pa
- primarily for email, but also gave (primitive) authentication (password as attribute) and access control
- any GV server would take a request from a GV-user agent

ISO standard based on an extension of Grapevine, developed at Xerox PARC
- three-level naming hierarchy

Clearinghouse

DNS - see below N-10 to N-13 

GNS  - see below N-18 to N-20
developed for DEC at SRC, Lampson et al. 1986
        - full hierarchical naming
        - support for namespace reconfiguration

ref: Birrell, Levin, Needham, Schroeder, Comm. ACM 25(1) April 82

N-9

X.500 - see below N-21



Example: DNS - the Internet Domain Name System

What does it name?   in practice, the objects named are:
      * computers
      * servers such as mail hosts
      * servers providing other services

* domains    directories - resolution contextsnamed objects

examples of domain names:
mit.edu
cl.cam.ac.uk
cs.tcd.ie
tu-darmstadt.de

Before 1987 the whole naming database was held centrally and copied to selected servers periodically
The Internet had become too large for this approach and a hierarchical scheme was needed 
       (Mockapetris 1987)

N-10

Definition of names
      hierarchy of components or labels (total max 255 chars)
      highest level of hierarchy is last component 
      label: max 63 chars, case insensitive, restrictions on characters (but arguments over relaxing these)
final label of a fully qualified name (a TLD) can be :
      3+ letter code:  type of hosting organisation 
                             edu, gov, mil are still US-based, others e.g. com, net, org, int, jobs can be anywhere
      2+ letter code: area of registrar, defined by ISO 3166 e.g. uk,  fr, ie, de, .... 
      arpa:               for inverse lookup (e.g. 20.0.232.128.in-addr.arpa)

final 2-letter label doesn’t imply country of location of host, just where registered
e.g. www.yahoo.co.uk has been in Germany



queries can relate to individual hosts or zones/domains, examples:

A          computer name                ->   IPv4 address 
AAAA  computer name                ->   IPv6 address 
MX       mail-host (domain)          ->  < host, preference, IP address >  list
                                                           includes mail hosts for detached computers
NS       DNS servers for a domain -> < host, IP address, ... >  list

computers using DNS are grouped into zones, e.g. uk, cam
within a zone, management of sub-domains is delegated
  e.g. cl is managed locally by the domain manager - names added to a local file

primary name server (authority) for a zone is the computer that holds the master list for the zone
usually there will be secondary servers, holding replicas, for the zone

N-11

Unix examples
/etc/hosts  holds IP addresses of hosts in local domain

$  /usr/bin/nslookup
> set q=A
> cosi.cl.cam.ac.uk
Address:    128.232.8.110
> www.cl.cam.ac.uk
Address:     128.232.0.20
>set q=MX
>cl.cam.ac.uk
mail exchanger = 5   mx.cl.cam.ac.uk
Address: 128.232. ... 

$  /usr/bin/nslookup
> set q=NS
> cl.cam.ac.uk
Server:       128.232.1.2
Address:    128.232.1.2#53
cl.cam.ac.uk nameserver=resolv1.cl.cam.ac.uk.
cl.cam.ac.uk nameserver=resolv6.cl.cam.ac.uk.
cl.cam.ac.uk nameserver=resolv2.cl.cam.ac.uk.
cl.cam.ac.uk nameserver=resolv3.cl.cam.ac.uk.
cl.cam.ac.uk nameserver=resolv0.cl.cam.ac.uk.

> set q=A
> resolv1.cl.cam.ac.uk
 ...
Address = 128.232.1.2



DNS name servers (note the large scale)

*   the domain database is partitioned into directories which form a distributed namespace

* resolved queries are cached (by user agent and at directories) as naming data tends to be stable
   if not in directory, consult cache. values returned with a TTL (time to live)

e.g. ac.uk    may be held on the computer   nsl.cs.ucl.ac.uk

* directories are replicated for availability and good response 
  (authoritative name server for domain is distinguished (weak consistency))

*   can lookup DNS directory address for a domain: IP address, well-known port
     need a starting point for name resolution

cl.cam.ac.uk
names - attributesac.uk cam.ac.uk

cl.cam.ac.uk
eng.cam.ac.uk

   cam.ac.uk
cl.cam.ac.uk
   qmw.ac.uk
dcs.qmw.ac.uk

optimisations

* queries and responses may be batched into composite query messages

N-12

frequently used so have
a redundant direct link (engineering issue)



 DNS future issues

1. mobile/roaming devices attach anywhere worldwide

2. mobile, wireless ad-hoc networks, groups form (MANETS)
    (i) some node may act as an internet gateway
              single-hop or multi-hop connection to it
    (ii) may be detached from Internet, may be prepared to share services
    
approaches 
first need protocols - mobile IP: mip6 IETF working group

for 1 above: device can contact local DNS server
                   local and home can cooperate
                   can you be monitored while roaming? - privacy?

for 2(ii) above: any node may broadcast offering to act as DNS server
            asuming it has server code and others have client code
            the group can then advertise services to clients

for 2(i) above - any node can connect, as in 1, via the gateway,
            provided gateway has appropriate code

N-13



Back to general name service issues: Replication and Consistency

directories are replicated for scalability etc....
how should propagation of updates between replicas be managed?

lookup (args) is the most recent value, known system-wide, 
guaranteed to be returned?

if system-wide consistency is guaranteed we have:  - delay to update
                                                                              - delay on lookup  

it is essential to have fast access to naming data
- so we must relax the strong consistency requirement

this is justified because:
1. naming data doesn’t change very fast, changes propagate quickly, inconsistencies will be rare

YES   - info on users and machines
NO     - distribution lists
NEW/NO  - mobile users and computers
NEW  - huge number of things to be named - does the design rely on low update traffic?
                (like service advertisements)

2. we detect obsolete naming data when it doesn’t work
YES - users
NO   - distribution lists

3. if it works it doesn’t matter that it’s out of date
you might have made the request a little earlier - recall uncertainties over time in DS

N-14



lookup (args) either:   value, version# / timestamp
or:         not known at time  (timestamp of last update)

The crux of this problem

what should be returned when only weak consistency is supported:

consistency vs availability tradeoff
have to choose availability for name services - they underlie most use of the system

examples:
service on failed machine - restart at new IP address - update directories - rare event
user changes company - coarse time grain
companies merge - coarse time grain
change of password - takes time to propagate - insecurity during propagation?
changes to ACLs and DLs - insecurity during propagation?
revocation of users’ credentials - may have been used for authentication/authorisation
hot lists - must PUSH rather than PULL - must propagate fast

so - take care what name services are being used for, and how they are being used.
       Perhaps active database triggers could be useful 
       (register interest in some change - notified of change immediately)
           DNS-SD tries to do this

N-15



Long-term consistency must be ensured for correctness

requirement:
if updates stopped there would be consistency after all updates had propagated

* updates are propagated by the message transport system
   conflicting updates might arrive out of order
   need an arbitration policy e.g. based on timestamps

* typically, transmit whole directories periodically and compare them
   tag the directory with a version number after this consistency check 
   e.g. GNS declares a new "epoch" after such a check

N-16

this cannot be tested
      - we cannot guarantee there will be periods with no updates (quiescence)
      - we would, in any case, need to specify failure behaviour in detail



N-17Example: Grapevine - outline

registration 
server

mail
server

registration
database mail host

2D names name@registry

A grapevine (GV) server

every GV server contains the gv registry which contains
registry name  ->  list of locations

2 types of name within a registry
group-name -> list of members

used for distribution lists,
         access control lists

individual-name  -> attributes:  (password, mail-host list, .....)

Note: small scale allows rapid navigation

problems - soon outgrew its specification:
      #servers,  #clients
      huge distribution lists not foreseen 
      message transport used for update messages - updates could be held up.



N-18DEC’s Global Name Service (GNS)

Butler Lampson 1986, Designing a Global Name Service, Proc. 5th ACM PODC, pp1-10
Aims: * long life

many changes in the organisation of the name space
* large size

arbitrary number of names and administrative domains

define two-dimensional (2D) names of the form < directory name, value name >

where value names may be a tree such as
 foo

mailboxes password phone/fax

hostA.....hostN

the GNS directory structure is
 - hierarchical
 - every directory has a UID, a directory identifier (DI)

A full name is any name starting with a DI
* doesn’t require a single root directory
* doesn’t rely on the availability of some root directory

Names



N-19GNS continued
If the directory hierarchy is reconfigured a directory may still be found via its DI
Names starting with that DI will not change, if the reconfiguration is above that DI

top

DEC IBM

Cam-MA SRC YTH TJW

top

IBM

YTH TJWDEC

Cam-MA SRC

Compaq

old names still work
below the DEC directory

Support is needed to locate a directory from its DI (a pure name - where do we look it up?)
as well as the usual location of directories by pathname lookup. 
Top level directories provide DIs with directory names. 

Compaq

top

DEC 311Compaq

999

552

top

DEC 311

Compaq

999

552
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top

DEC 311Compaq

999

552

top

DEC 311

Compaq

999

552

names starting from DEC: 311/SRC, birrell
name of DEC directory: is always 311

was:      999/DEC, name
now:     999/Compaq/DEC, name

names starting above DEC

was:      999/DEC/SRC, birrell
now:     999/Compaq/DEC/SRC, birrell

directory entries
        - include DIs with directory names
        - include pathnames from root

directory top=999

311=999/DEC 
552=999/Compaq

directory DEC=311

directory Compaq=552

directory top=999

311=999/Compaq/DEC 
552=999/Compaq

directory DEC=311

directory Compaq=552

311=999/Compaq/DEC



N-21X.500 Directory Service (White and Yellow pages)

ISO and CCITT standard, above OSI protocol stack. 
More general than a name service where names must be known precisely and are resolved to locations.

components:
DIT       directory information tree
DSA     directory service agent
DUA     directory user agent 
DAP     directory access protocol 

resource-consuming and difficult to use

1993 major revision including replication, access control, schema management.
But X.500 was never accepted as a generic name service. 
X.509 certificates for authentication and authorisation have been successful.

Lightweight Directory Access protocol (LDAP)   Howes, Kille, Yeong, Robbins, 1993

* access protocol built on TCP/IP

* heavy use of strings, instead of ASN.1 data-types

* simplification of server and client

* current status V3

* LDUP duplication and update protocol (but see internet draft draft-zeilenga-ldup-harmful-02.txt)

IETF accepted.  can download free and deploy - widely used



Naming - summary

Naming for the Internet - see DNS

Naming for companies, world-wide  - see Grapevine, GNS

Standard name services - X.500 (CCITT, ISO), X.509 for authentication, LDAP (IETF)

Naming for the web - document names are based on Internet naming:
        scheme://host-name:port/pathname at host
        scheme = protocol: http, ftp, local file, ...
        host name = web server’s DNS address, default port 80
        pathname in web server’s world of file containing web page 

e.g. http://www.cl.cam.ac.uk/research/.....
     
Also W3C have defined standards for web services (see Middleware slide 20)
         (with message content expressed in XML)
         SOAP - simple object access protocol
         WSDL - web service description language
         UDDI - universal description descovery and integration
                      (directory with web service description in WSDL)

N-22



Object-oriented middleware (ref I-9, I-15, M-8, M-14)

Name Services in middleware

remotely accessible objects are registered with local ORB
a remote object reference is returned which may be entered in a name service 
    together with an associated name

e.g. CORBA  Naming Service
                     name -> remote object reference
      CORBA Trading Service
                     attributes -> name, remote object reference  
      JAVA     Naming and Directory Interface (JNDI) for services

     naming interface: service interface publication
                                 service-name -> remote object reference
     directory interface: attribute -> remote object reference

N-23



Message-oriented middleware (ref M-16 to 20)

MOM evolved from the packet switching paradigm
naming and routing may be defined statically
e.g. IBM MQSeries queue names are assumed known to the application 
      and embody fixed routing from client to server

Event-based middleware (ref M-23 to 26)
names are topics or event types, used by (advertisers) publishers and subscribers
     
topics may be assumed to be known (TIBCO)
         or may be advertised (research systems: Siena, Hermes, ... )

message routing tables, for publications, 
          are set up from (advertisments and) subscriptions

e.g. JMS (Java Messaging Service) can use JNDI 

N-24

subscription can be  either topic/type or attribute/content-value based
        e.g. topic hierarchy: stocks . stock-exchange-name . stock-type . stock-subtype
                      subscription:  stocks  . * . utilities . * 

may be integrated with a programming language 

e.g. for message type:  seen (person, room)
              subscription: seen (person = *, room = FN34)

e.g. attribute/content:  
              subscription: stocks, stock-exchange-name=NY, stock-type=mining, value>$100, ...
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Access Control



2

Motivating example: a national Electronic Health Record 
(EHR) service. Police and Social Services are similar

• MUST protect EHRs from journalists, insurance 
companies, family members etc.

• access policy defined both nationally and locally
• generic scalable policy => RBAC
• exception of individuals is allowed by law, 

(all doctors except my uncle Fred Smith)
“Patients’ Charter”  => parametrised roles

• may need to express relationships between parameters
treating-doctor ( doctor-id, patient-id )
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Access Control: Requirements / Motivation

• large scale
=> role based access control (RBAC)

• potentially widely distributed systems
• heterogeneous components, developed independently but 

must interoperate
=> service-level policy agreements (SLAs)

(which roles authorise their activators to use which 
services?) negotiated within and between domains

• incremental deployment 
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OASIS RBAC

• OASIS services name their clients in terms of roles

• OASIS services specify policy in terms of roles
- for role entry (activation)
- for service invocation (authorisation, access control)

both in Horn clause form
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OASIS model of role activation

a role activation rule is of the form:
condition1, condition2, ….. |- target role

where the conditions can be
- prerequisite role
- appointment credential
- environmental constraint
all are parametrised
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OASIS role (continued) membership rules

as we have seen, a role activation rule:
cond1*, cond2, cond3*, ….. |- target role

role membership rule:
the role activation conditions that must remain true, e.g.*
for the principal to remain active in the role

monitored using event-based middleware
another contributor to an active security environment
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OASIS model of authorisation

An authorisation rule is of the form:
condition1, condition2, ….. |- access

where the conditions can be
- an active role
- an environmental constraint
all are parametrised
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access control

policy

A Service Secured by OASIS Access Control

principal role
entry policy

OASIS
-secured
service

credential records
(active roles’ status)

RMC = role membership certificate
= role entry
= use of service

credentials

RMC

RMC

Check persistent credentials and 
environmental constraints

Check environmental constraints

monitoring
heartbeats or change events
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Active Security Environment
Monitoring membership rules of active roles

service A

CRRMC

service B

CRRMC

service C

CRRMC

ECR ECR

heartbeats or
status-change

events

RMC = role membership certificate
CR    = credential record
ECR = external credential record

a prerequisite role
for service C’s role

a prerequisite role
for service C’s role
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Roles and RBAC
• naming of roles for scalability, manageability, policy 

specification  e.g. doctor, sergeant
• separate administration of people in roles
• parametrised roles for expressiveness: exclusions and 

relationships e.g. treating-doctor( doctor-ID,patient-ID )
• RBAC for access control policy

for services and service-managed objects,
(including the communication service) 

“all doctors except ……”
“only the doctor with whom the patient is registered for 
treatment may prescribe drugs, read the patients’ EHR, …”
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• asynchronous message-passing rather than request-reply

• advertise, subscribe, publish/notify for scalability
e.g. subscribe to and be notified of: 
bus-seen-event (busID=uni4.*, location=*)

• event-driven paradigm for ubiquitous computing: 
sensors generate data, notified as events

• compose/correlate events for higher level semantics 
e.g. traffic congestion, pollution and traffic

• database integration – how best to achieve it?

Event-driven communication paradigm



2

Event-Driven Systems (1)
Cambridge Event Architecture (CEA), 1992 -
• extension of O-O middleware, typed events 

“advertise, subscribe, publish/notify”, direct or mediated,
publishers (or mediators if  >1 publisher for a type)
process subscription filters and multicast to relevant subscribers

• federated event systems:
gateways/contracts/XML 

• applications:
– multimedia presentation control
– pervasive environments (active house, active city, active office)
– tracking mobile entities (active badge technology)
– telecommunications monitoring and control
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Event-Driven Systems (2)

Hermes large-scale event service, 2001-4
work of Peter Pietzuch

• loosely-coupled
• publish/subscribe
• widely distributed event-broker network 
• via a P2P overlay network (DHT)
• distributed filtering (optimise use of comms.)  
• rendezvous nodes for advertisers/subscribers 
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Use of P2P/DHT substrate
• Broker IP addresses hashed into 128-bit space
• Event topics hashed into 128-bit space
• Brokers keep tables of nearest neighbours (for different 

common prefixes) in 128-bit space – see next slide
• Event messages routed to broker nearest to event topic’s 

hash value in O(logN) hops – called the “rendezvous 
node” for that topic

• Paths to same destination converge quickly
• Can exploit proximity (latency, bandwidth)
• Resilient to join/leave/failure of nodes
• Scales to millions of nodes
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Pastry e.g. node 2030xx…’s routing table starts:

0* 1* 2* 3*
20* 21* 22* 23*
200* 201* 202* 203*
2030*

etc.

2031* 2032* 2033*
e.g. route to 2032xx…

e.g. route to 1xxxx…
Id,a Id,aId,a

Id,a Id,aId,a

Id,a Id,aId,a

Id,aId,a Id,a

e.g. route to 22xxx…

e.g. route to 200xxx…

• nodeIds and keys are in some base 2b(e.g. 4)
• each entry, except those for itself, contains  the Id and 

IP address a of another node
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Hermes Pub/Sub Design

• Event Brokers   
– provide middleware functionality
– logical overlay P2P network with content-based routing and filtering
– easily extensible

• Event Clients ( Event Publishers     
Event Subscribers            )

– connect to any Event Broker
publishers advertise,
subscribers subscribe (brokers set up routing state),
publishers publish,
brokers route messages and notify publications to subscribers

– lightweight, language-independent

B

P

S
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Algorithms I – Topic-Based Pub/Sub

• Type Msg, Advertisements, Subscriptions, Notifications
• Rendezvous Nodes
• Reverse Path Forwarding

– Notifications follow Advs and then the reverse path of Subs

B4

B2

B5

B1

B3

P1

P2

S1

S2

RR
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• Filtering State
• Notifications follow reverse paths of subscriptions
• Covering and Merging supported

Algorithms II – Content-Based Pub/Sub

B4

B2

B5

B1

B3

P1

P2

S1

S2

RR
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Implementation

• Actual implementation
– Java implementation of event broker and event clients
– Event types defined in XML Schema
– Java language binding for events using reflection

• Implementation within a simulator
– Large-scale, Internet-like topologies
– Up to 104 nodes
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But pub/sub is not sufficient for general applications
• decouples publishers and subscribers  

– pubs/subs need not be running at the same time  
• publishers are anonymous to subscribers

– subs need to know topic (attributes), not pubs’ names and locations 
but receivers may need to know the sender or sender’s role

• only multicast, one-to-many communication
– may also need one-to-one and request-reply

• can’t reply
– either anonymously, e.g. to vote, or identified

• efficient notification for large-scale systems
– but one-to-one should also be efficient – optimise
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Event-Driven systems (3) 

Event composition (correlation) 
Pietzuch, Shand, Bacon, Middleware 2003, 

IEEE Network, Jan/Feb 2004

• composite event service above event brokers
• service instances placed to optimise communication
• FSM recognisers – parallel evaluation
• events have source-specific interval timestamps
• simulations of large-scale systems…
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Bottom-up and/or Top-Down?
• Can we express all we require by bottom-up composition 

of primitive events?
• Do we also need high-level models of context? 

e.g. maps, plans, mathematical models, GIS
• What can users be expected to express?
• How is the top-down, bottom-up gap bridged and high-

level requirements converted into event  subscriptions?
“nearest empty meeting room?”, “turn off the lights if the 

room is empty”, “quickest way to get to Stansted airport?”

Work-in-Progress
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aggregation,
inference,

storage, control

sensor clusters

Integrating sensor networks (1)

Event Communication and Composition

Application

device control

devices

event flow
control flow

Event
Databases

Application Context models
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Integrating sensor networks (2)

• data: sensor-ID, data value, timestamp, location
• value aggregation from densely deployed sensors
• inaccuracies masked – data cleansing
• heterogeneous sensor data correlated (fused)

Information/semantics:
• events defined, to present sensor data to applications 

including context models
• events correlated, higher-level events generated
• real-time delivery may be required
• level of data logging required?
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Traffic monitoring applications
sensors: SCOOT loops for counting, cameras, thermal imaging 

(infra-red detectors), acoustic detectors

• I subscribe to 
bus-seen-event (busID=uni4.*, location=MadingleyP&R)
and my desktop is pinged when the bus is detected.
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Traffic monitoring applications (cont’d)
• Route-advice service: on entering my car I indicate my 

destination on a touch-sensitive map – route is shown, car 
monitored and route updated dynamically as conditions 
change. 

• Easy to do with bespoke systems and/or coupling 
applications with sensors

How to allow the application developer builds the service by 
subscribing to advertised events, including high-level 
events such as congestion (degree, location)

Work-in-Progress: TIME-EACM grant
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Irisys infra-red cameras + motion detection
• combined with video for validation (and banal tasks like 

aiming the thing (
• privacy-preserving
• Testing carried out on Dept. Eng. roof, Fen Causeway, 2006
• ~ 90% accuracy cf. video. 
• wired communication via Engineering Dept.
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Irisys – mirroring annual manual count

• carried out on Cambridge radial roads annually
• we did Huntingdon Rd, 9th Oct 2006, 8am –

7pm
• using one of DTG’s sentient vans
• incoming and outgoing traffic
• validated against video
• over 90% accuracy cf. video if cycles excluded 

(and our inexpert positioning of the sensor)
• county haven’t told us how their manual count 

compares with video
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Irisys – ongoing monitoring

• mounted on a lamp post on Madingley Road
• connection to CL via Wifi



20

Stagecoach/ACIS bus monitoring

• GPS location of buses on some Stagecoach routes
• radio transfers data back to base (some GPRS, some custom)
• bus-stop displays (of timetables and expected arrival times)
• live and historical data from ACIS since Aug 2007, under a 

NDA
• this data allows journey times and congestion to be analysed 

and predicted
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Healthcare monitoring application

1. Emergency detection based on sensor values and image 
analysis – how to decide when to summon help?

2. Smart homes: monitoring for falls, visitors, … 
(guide-dogs - vs - people?) (visitors - vs - burglars?)

3. Tagging objects: “where did I leave …?”, or to build a 
world model for navigation avoiding obstacles 

Economic model?  cost of technology-vs-more people?  risks of 
false positives and false negatives?

Work-in-Progress: CareGrid grant

sensors: body sensors for blood-pressure, blood-sugar, etc. cameras or 
thermal imaging (infra-red detectors) in smart homes, tagging objects



Integrating databases with pub/sub
• note: continuous queries require recording of individual 

queries and individual response, one-to-one.
• instead: databases advertise events:

event type (<attribute-type>)
based on virtual relations

• clients subscribe and are notified of occurrences
• the pub/sub service does the filtering – not the database 
• we have used PostgreSQL - active predicate store
“cars-for-sale(maker, model, colour, automatic?, …..)”

many databases e.g. in Cambridge area 

22
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DB Motivating Example – Police IT

George Smiley is suspected of masterminding a nationwide 
terrorist organisation.

• As well as looking up his past database records, the 
investigators (special terrorism unit) subscribe, in all 43 
counties, to advertised database update events specifying 
his name as an attribute.
Note inter-domain naming and access control.

• Triggers are set in the databases so that any future records 
that are made, relating to his movements and activities, will 
be published and notified automatically and immediately to 
those authorised to investigate him. 
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Securing pub/sub using RBAC
At the event client level – use RBAC
• domain-level authorisation policy indicates, for event types and 

attributes, the roles that can advertise/publish and subscribe
• inter-domain subscription is negotiated, as for any other service
• note that spamming is prevented – only authenticated roles can use the 

pub/sub service to advertise/publish

At the event-broker level – use encryption
• are all the event brokers trusted? 

if not, some may not be allowed to see (decrypt) some (attributes of) 
some messages. 
this affects content-based routing.



Storage services

Consider various computing environments and scenarios

   professional, academic, commercial, home - based on traditional wired networks

   mobile users with computing devices:  internet-connected 
                        and/or using wireless/ad hoc networks        - new - wired and wireless networks

   pervasive/active environments - sensor networks’ logs/databases - new - wired and wireless

S-1

Some scenarios (consider domain architecture, naming, location, 
                                   security (authentication, authorisation, communication))
                 ref: Introduction 21 - 30, Access Control A24 - 27

  1. single domain behind firewall - local files served by network-based file service
                                                   + accessing remote files and services

  2. Open, internet-based file services: commercial services, cooperative P2P file sharing

  3. e-science/GRID: storage for compute-service environments, database services

  4. digital libraries, copyright, professional societies, publishers: scientific archive

      (high-level issues: persistence of data through technology change
                                  persistence of scientific archive - who guarantees persistence?)



Traditional environments
* program/document storage, development
   application/system program load and run-time data access

* application-level services (local and remote)
            databases,  CAD,  email,  naming directories, 
            photo editing, newsgroups,  digital libraries

* integration of various media within a service,  as opposed to dedicated servers e.g. VoD
        continuous media, audio/video, work best with QoS guarantees

* vast amount of material is accumulated: 
           collections of images,  
           support for memory loss patients - "my day" images
           audits of professional caring activities of NHS and SS
           logs of sensor data - traffic, pollution, building projects such as tunnels
          

* composite documents with components of different media types
   linking related information across files (copying - vs - dangling references)
   issue: persistence of material linked to
                structure helps cooperative work and synchronisation of updates

Examples of requirements - 1
S-2

Different media types and file structure

Should a storage service provide support for structure representation, indexing and retrieval ? 
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* mobile users - access to files from remote locations
      - secure connection to home domain?  
      - or use a commercial, internet-based file service?
        (to place wanted files close to where they will be used)
      - support for detached operation: copy, disconnect, work on local copy of file,
        reconnect, synchronise

* grid services 
   e.g. GRID-accessible petabytes of astronomical or genomic data
   e.g. storage to support e-science computations
   e.g. data shared by "virtual organisations" - controlled access, non-repudiation
   e.g. data provenance
   e.g. public data such as EHRs (security/trust is crucial)

* peer-to-peer (P2P)
   using spare capacity across the Internet for file storage, backup/archive 
   issues of privacy, integrity, persistence, trust
   cooperative rather than commercial model (e.g. "sharing music with friends")
   what scarce resource are you saving?

* applications for download into home/other systems e.g. into thin clients 

Examples of requirements - 2
(consider naming, location, security(authentication, authorisation, communication))



Storage in a single-domain distributed system

C clients of storage services

S storage services

network

C C C

S S S

.....

......

clients have no local discs, system provides shared storage servers
       early design - V system at Stanford
       network computers
clients have local discs, no dedicated storage services
       part of shared filing system - Unix mount
clients have local discs, system provides shared storage servers
       use of clients discs:
          for private system (local desktop separate from shared servers - Xerox, Windows?)
          part of shared filing system - Unix mount
          system files for bootstrapping
          cached files: first-class copy is in shared service
          temporary files - not backed up by sys-admin

S-4

optional component in
some configurations



Storage service functionality

 is it bound into a single OS file system model
 e.g. single pathname format?

* functionality - how to distribute?
- storage and retrieval of data (whole files or parts)
- name resolution (directory service)
- access control
- existence control (garbage collection)
- concurrency control

is the service responsible for managing, or assisting with:
    - multiple cached copies of a file?
    - replicas of a file (replicated on servers for reliability)
or are these application-level concerns?

* level of interface
- remote blocks (some early systems e.g. RVD remote virtual disc; SANs do it now)

S-5

- remote, UID-named files (interactions may involve whole files or parts)

- remote path-named files (NAS)

client system may do block layout - minimal overhead at server
or server does block layout - interface in terms of blockID

server does block layout - more overhead at server

bound into a single style od naming 

* caching and replication

* open or closed?



a) closed storage architecture (single OS accesses SS)

client

directory
service (DS)

file storage
service

OS interface

arbitrary 
byte-sequences

named blocks
the OS may interact
with the remote storage
service at either level

b) open storage architecture

file storage service

clients 
of OS-A
directory
service-A

clients 
of OS-B

email DBMS
persistent

programming
language

public interface
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file
storage
service

directory
service-B

Storage service architectures

private interface

applications
(file-sharing,
download)



S-7remote interface at file storage level - example

open ( pathname , mode )

directory
service

SFID
OK

handle
(small integer

or SFID)

read ( handle ,  bytes )

handle

SFID

bytes

remote storage service

cache

user
OS

SFID = system file-identifier

1

2

3 4

if the remote service is stateless
i.e. holds no info on files in use and 
does not support an open operation
this interaction is just a number of reads 

assumes interactions can involve byte sequences rather than only whole-files
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operations in remote storage service interface

SFID create 
read   (SFID, byte-range)
write  (SFID, byte-range)
delete (SFID)          ?
lock    (SFID)          ?
open   (SFID)          ?
close   (SFID)          ?

? depend on 
  design decisions

Does the server hold state?

* NO specified as stateless e.g. NFS

- simple crash recovery
- can’t help with concurrency control
- can’t help with cache management (clients have to ask for time-last-modified)

* YES - supports open/close
  holds who has files open and access mode
- crash recovery - need to interact with clients to rebuild state
- concurrency control
  exclusive or shared locks better than write or read locks
- cache management
  can notify holders of copies when a new version is written

assumes interaction at byte sequence level,
as in S-7, rather than whole-file



Existence control - garbage collection

* storage service at file level can’t help (doesn’t see naming graphs)

* a directory service (multiple instances?) can do existence control for its own objects, ref S-6 b) 
   OK for a closed architecture and for a single naming scheme within an open architecture 
          provided sharing is restricted to that scheme’s files.
* what about 
    - objects shared by different systems? (e.g. video clip in document)
    - objects not stored in directories?

* lost object problem SFID create (...)
server allocates metadata in persistent store
either:         - server crash - 
or:           reaches client’s main memory only, 
                   - client crash - 
on server or client restart, client repeats create (...)

* Consider a "touch" operation provided by the storage service. All clients (i.e. services, not users)
   must touch all their files periodically. Untouched files are deleted (archived)

e.g. A Birrell and R Needham "A Universal File Server" IEEE Trans SE 6(5), pp 450-453, May 1980
      Cambridge File Server: - open architecture - many OS clients
                                            - minimal support for structure without enforcing path-naming
                                            - some composite operations with transactional semantics
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a file should stay in existence for as long as it is reachable from the root of the directory naming graph



CFS - the Cambridge File Server
Developed as part of the Cambridge Distributed Computing System (CDCS) in the late 1970’s.
CDCS was used as the Lab’s research environment throughout the 1980’s.

CFS provides: 
   two primitive types: byte and UID

two abstractions:
  file - an uninterpreted sequence of bytes
          named persistently by a PUID with a random component
  index - a sequence of PUIDs, itself named by a PUID

* existence control:
indexes form a general naming network starting from a specific root index
objects are preserved while they are reachable from the root

- reference counts are used  (the number of times a UID is included in an index)
- an asynchronous garbage collector is used for cyclic structures

Indexes are used by CFS’s clients to mirror their directory structures

* concurrency control - just MRSW

open -  a TUID is issued as a handle and the PUID locked
            TUIDs are timed out (15 mins) reset on access
close - release PUID lock

all index operations are failure atomic (all or nothing is done) 

S-10

http://www.research.microsoft.com/NeedhamBook/cmds.pdf



rootroot index
contains PUIDs

of root directories
of registered 

client systems

Tripos root CAP root research FS root

..........
to

indexes
and files

PUID of root held secret 
within CFS

PUID of Tripos etc 
held also by Tripos etc

CFS index structure
S-11



some CFS operations
object-ID = file or index ID
PUID = permanent/preserved ID for closed object
TUID = transient ID for open object

open [object-ID, {read/write}] -> TUID
close [TUID, {commit,abort}] -> commit/abort

create-index [existing index-ID, entry] -> index-ID

preserve [index-ID, entry, object-ID] -> done

retrieve  [index-id, entry] -> object-ID

delete [index-ID, entry] -> done

NOTE: no delete-index , garbage collection instead

create-file [index-ID, entry, ... ] -> file-ID

read [file-ID, offset, length]  -> data

write [file-ID, offset, length, data] -> done

NOTE: no delete-file, garbage collection instead

S-12

index operations

file operations

note transaction
no lost object problem

note transaction
no lost object problem



Open, Structured Files, an approach

CFS indexes allow:
 - different client operating systems’ file services to use CFS
                    (their filenames and directory specifications can differ) - openness
 - existence control (garbage collection) across file systems 
                      via reachability from root of index structure 

Can the CFS index approach be generalised to allow:
 - embedded links within files, linking to different file systems 
       (e.g. to use different media types - video/audio clips)
 - still have existence control, so be able to detect these embedded links

note: for scalability we would need multiple instances of CFS and distributed garbage collection
         not addressed in CDCS for a LAN-based file service

Idea: extend the storage type system to specify the storage
         structure sufficient to locate embedded links

base types:  byte-sequence
                  SFID

generators:   sequence
                    record
                    union
                    ? other ? set, bag, .....

S-13



e.g. a directory might be:
      a sequence of records with each record containing a byte-sequence and an SFID

If the storage structure is stored as metadata for each stored object then 
    - SFIDs can be located for existence control
    - objects can be kept in existence while any link to them remains

contrast with:
- typical network-based file systems model a file as a sequence of bytes identified by a SFID.

- relational databases typically specify records with fixed-length fields
   (and have a higher-level type system cf. programming languages)

- embedded URLs (which typically fail after a short time)
   the entire Web cannot be searched for embedded URLs before documents are deleted or moved
   the storage service level has no knowledge of structure

- DTDs for web documents - more general info 
   XML type system - more general info - higher level, not concerned with storage

e.g. a thesis might be a loose structure of sequences of variable-length byte-sequences 
      and embedded references.
      A typical requirement is to move sections of material around. The structure can be retained.

The idea was explored in the project:
Multi-Service Storage Architecture (MSSA)
theses: Sue Thomson 1990 and Sai lai Lo (1994) Lab TR 326 and DD

S-14
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