
Storage services

Consider various computing environments and scenarios

 professional, academic, commercial, home - based on traditional wired and wireless networks

 mobile users with computing devices: internet-connected
 and/or using wireless/ad hoc networks - new - wired and wireless networks

 pervasive/active environments - sensor networks’ logs/databases - new - wired and wireless

S-1

Some scenarios (consider domain architecture, naming, location,
 security (authentication, authorisation, communication))

 1. single domain behind firewall - local files served by network-based file service
 & accessing remote files and services

 2. Open, internet-based file services: commercial services, cooperative P2P file sharing

 3. e-science/GRID: storage for compute-service environments, database services

 4. digital libraries, copyright, professional societies, publishers: scientific archive

 (high-level issues: persistence of data through technology change
 persistence of scientific archive - who guarantees persistence?)

Traditional environments
* program/document storage, development
 application/system program load and run-time data access

* application-level services (local and remote)
 databases, CAD, email, naming directories,
 photo editing, newsgroups, digital libraries

* integration of various media within a service, as opposed to dedicated servers e.g. VoD
 continuous media, audio/video, work best with QoS guarantees

* vast amount of material is accumulated:
 collections of images (e.g., support for memory loss patients - "my day" images)
 audits of professional caring activities of NHS and SS
 logs of sensor data - traffic, pollution, building projects such as tunnels

* composite documents with components of different media types
 linking related information across files (copying - vs - dangling references)
 issue: persistence of material linked to
 structure helps cooperative work and synchronisation of updates

Examples of requirements - 1
S-2

Different media types and file structure

Should a storage service provide support for structure representation, indexing and retrieval ?

S-3

* mobile users - access to files from remote locations
 - secure connection to home domain?
 - or use a commercial, internet-based file service?
 (to place wanted files close to where they will be used)
 - support for detached operation: copy, disconnect, work on local copy of file,
 reconnect, synchronise

* grid services
 e.g. GRID-accessible petabytes of astronomical or genomic data
 e.g. storage to support e-science computations
 e.g. data shared by "virtual organisations" - controlled access, non-repudiation
 e.g. data provenance
 e.g. public data such as EHRs (security/trust is crucial)

* peer-to-peer (P2P)
 using spare capacity across the Internet for file storage, backup/archive
 issues of privacy, integrity, persistence, trust
 cooperative rather than commercial model (e.g. "sharing music with friends")
 what scarce resource are you saving? (particularly important in the new world of big,
 cheap discs)

* applications for download into home/other systems e.g. into thin clients

Examples of requirements - 2
(consider naming, location, security(authentication, authorisation, communication))

Storage in a single-domain distributed system

C clients of storage services

S storage services

network

C C C

S S S

.....

......

clients have no local discs, system provides shared storage servers
 early design - V system at Stanford
 network computers
clients have local discs, no dedicated storage services
 part of shared filing system - Unix mount
clients have local discs, system provides shared storage servers
 use of clients discs:
 for private system (local desktop separate from shared servers - Xerox, Windows?)
 part of shared filing system - Unix mount
 system files for bootstrapping
 cached files: first-class copy is in shared service
 temporary files - not backed up by sys-admin

S-4

optional component in
some configurations

Storage service functionality

 is it bound into a single OS file system model
 e.g. single pathname format?

* functionality - how to distribute?
- storage and retrieval of data (whole files or parts)
- name resolution (directory service)
- access control
- existence control (garbage collection)
- concurrency control

is the service responsible for managing, or assisting with:
 - multiple cached copies of a file
 - replicas of a file (replicated on servers for reliability)
or are these application-level concerns?

* level of interface
- remote blocks (some early systems e.g. RVD remote virtual disc; SANs do it now)

S-5

- remote, UID-named files (interactions may involve whole files or parts)

- remote path-named files (NAS)

client system may do block layout - minimal overhead at server
or server does block layout - interface in terms of blockID

server does block layout - more overhead at server

bound into a single style of naming

* caching and replication

* open or closed?

a) closed storage architecture (single OS accesses SS)

client

directory
service (DS)

file storage
service

OS interface

arbitrary
byte-sequences

named blocks
the OS may interact
with the remote storage
service at either level

b) open storage architecture

file storage service

clients
of OS-A
directory
service-A

clients
of OS-B

email DBMS
persistent

programming
language

public interface

S-6

file
storage
service

directory
service-B

Storage service architectures

private interface

applications
(file-sharing,
download)

S-7remote interface at file storage level - example

open (pathname , mode)

directory
service

SFID
OK

handle
(small integer

or SFID)

read (handle , bytes)

handle

SFID

bytes

remote storage service

cache

user
OS

SFID = system file-identifier

1

2

3 4

if the remote service is stateless
i.e. holds no info on files in use and
does not support an open operation
this interaction is just a number of reads

assumes interactions can involve byte sequences rather than only whole-files

S-8
operations in remote storage service interface

SFID create
read (SFID, byte-range)
write (SFID, byte-range)
delete (SFID) ?
lock (SFID) ?
open (SFID) ?
close (SFID) ?

? depend on
 design decisions

Does the server hold state?

* NO specified as stateless e.g. NFS

- simple crash recovery
- can’t help with concurrency control
- can’t help with cache management (clients have to ask for time-last-modified)

* YES - supports open/close
 holds who has files open and access mode
- crash recovery - need to interact with clients to rebuild state
- concurrency control
 exclusive or shared locks better than write or read locks
- cache management
 can notify holders of copies when a new version is written

assumes interaction at byte sequence level,
as in S-7, rather than whole-file

Existence control - garbage collection

* storage service at file level can’t help (doesn’t see naming graphs)

* a directory service (multiple instances?) can do existence control for its own objects, ref S-6 b)
 OK for a closed architecture and for a single naming scheme within an open architecture
 provided sharing is restricted to that scheme’s files.
* what about
 - objects shared by different systems? (e.g. video clip in document)
 - objects not stored in directories?

* lost object problem SFID create (...)
server allocates metadata in persistent store
either: - server crash -
or: reaches client’s main memory only,
 - client crash -
on server or client restart, client repeats create (...)

* Consider a "touch" operation provided by the storage service. All clients (i.e. services, not users)
 must touch all their files periodically. Untouched files are deleted (archived)

e.g. A Birrell and R Needham "A Universal File Server" IEEE Trans SE 6(5), pp 450-453, May 1980
 Cambridge File Server: - open architecture - many OS clients
 - minimal support for structure without enforcing path-naming
 - some composite operations with transactional semantics

S-9

a file should stay in existence for as long as it is reachable from the root of the directory naming graph

CFS - the Cambridge File Server
Developed as part of the Cambridge Distributed Computing System (CDCS) in the late 1970’s.
CDCS was used as the Lab’s research environment throughout the 1980’s.

CFS provides:
 two primitive types: byte and UID

two abstractions:
 file - an uninterpreted sequence of bytes
 named persistently by a PUID with a random component
 index - a sequence of PUIDs, itself named by a PUID

* existence control:
indexes form a general naming network starting from a specific root index
objects are preserved while they are reachable from the root

- reference counts are used (the number of times a UID is included in an index)
- an asynchronous garbage collector is used for cyclic structures

Indexes are used by CFS’s clients to mirror their directory structures

* concurrency control - just MRSW

open - a TUID is issued as a handle and the PUID locked
 TUIDs are timed out (15 mins) reset on access
close - release PUID lock

all index operations are failure atomic (all or nothing is done)

S-10

http://www.research.microsoft.com/NeedhamBook/cmds.pdf

rootroot index
contains PUIDs

of root directories
of registered

client systems

Tripos root CAP root research FS root

..........
to

indexes
and files

PUID of root held secret
within CFS

PUID of Tripos etc
held also by Tripos etc

CFS index structure
S-11

some CFS operations
object-ID = file or index ID
PUID = permanent/preserved ID for closed object
TUID = transient ID for open object

open [object-ID, {read/write}] -> TUID
close [TUID, {commit,abort}] -> commit/abort

create-index [existing index-ID, entry] -> index-ID

preserve [index-ID, entry, object-ID] -> done

retrieve [index-id, entry] -> object-ID

delete [index-ID, entry] -> done

NOTE: no delete-index , garbage collection instead

create-file [index-ID, entry, ...] -> file-ID

read [file-ID, offset, length] -> data

write [file-ID, offset, length, data] -> done

NOTE: no delete-file, garbage collection instead

S-12

index operations

file operations

note transaction
no lost object problem

note transaction
no lost object problem

Open, Structured Files, an approach

CFS indexes allow:
 - different client operating systems’ file services to use CFS
 (their filenames and directory specifications can differ) - openness
 - existence control (garbage collection) across file systems
 via reachability from root of index structure

Can the CFS index approach be generalised to allow:
 - embedded links within files, linking to different file systems
 (e.g. to use different media types - video/audio clips)
 - still have existence control, so be able to detect these embedded links

note: for scalability we would need multiple instances of CFS and distributed garbage collection
 not addressed in CDCS for a LAN-based file service

Idea: extend the storage type system to specify the storage
 structure sufficient to locate embedded links

base types: byte-sequence
 SFID

generators: sequence
 record
 union
 ? other ? set, bag,

S-13

e.g. a directory might be:
 a sequence of records with each record containing a byte-sequence and an SFID

If the storage structure is stored as metadata for each stored object then
 - SFIDs can be located for existence control
 - objects can be kept in existence while any link to them remains

contrast with:
- typical network-based file systems model a file as a sequence of bytes identified by a SFID.

- relational databases typically specify records with fixed-length fields
 (and have a higher-level type system cf. programming languages)

- embedded URLs (which typically fail after a short time)
 the entire Web cannot be searched for embedded URLs before documents are deleted or moved
 the storage service level has no knowledge of structure

- DTDs for web documents - more general info
 XML type system - more general info - higher level, not concerned with storage

e.g. a thesis might be a loose structure of sequences of variable-length byte-sequences
 and embedded references.
 A typical requirement is to move sections of material around. The structure can be retained.

The idea was explored in the project:
Multi-Service Storage Architecture (MSSA)
theses: Sue Thomson 1990 and Sai lai Lo (1994) Lab TR 326 and DD

S-14

