
Consistency

Recall the properties of distributed systems:
1. concurrent execution of components
2. independent failure modes
3. transmission delay
4. no global time

DS may be large in scale and widely distributed

Replicated objects
objects may be replicated e.g. naming data (name servers), web pages (mirror sites)
 - for reliability
 - to avoid a single bottleneck
 - to give fast access to local copies

updates to replicated objects
AND
related updates to different objects

Updates

must be managed in the light of 1-4 above

D-1
Distributed algorithms and protocols

Maintaining consistency of Replicas

WEAK CONSISTENCY - fast access requirement dominates
update the "local" replica and send update messages to other replicas.
Different replicas may return different values for an item.

STRONG CONSISTENCY - reliability, no single bottleneck
ensure that only consistent state can be seen (e.g. lock-all, update, unlock).
All replicas return the same value for an item.

WEAK CONSISTENCY - system model, architecture and engineering

Simple approach: have a PRIMARY COPY to which all updates are made
and a number of BACKUP copies to which updates are propagated.

Keep a HOT STANDBY for some applications for reliability and accessibility
(make update to hot standby synchronously with primary update).

BUT a single primary copy becomes infeasible as systems’ scale and distribution increase
- primary copy becomes a bottleneck and (remote) access is slow.

*

D-2

* General approach: we must allow (concurrent) reads and writes to all replicas

1. concurrent updates at different replicas + (3) comms. delay

- the updates do not, in general, reach all replicas in the same (total) order? - see T-23

2. failures of replicas
we must ensure, by restart procedures, that every update eventually reaches all replicas

PROBLEMS

4. no global time
but we need at least a convention for arbitrating between conflicting updates
- timestamps? - are clocks synchronised?
 e.g. conflicting values for the same named entry - password or authorisation change
 e.g. add/remove item from list - distribution list, access control list, hot list
 e.g. tracking a moving object - times must make physical sense
 e.g. processing an audit log - times must reflect physical causality

 Requirement: the system MUST be made to converge to a consistent state as the update messages propagate

Weak Consistency of replicas - continued

(ref. DS properties 1-4)

D-3

- the order of *conflicting* updates matters

Further reading:
Y Saito and M Shapiro, "Optimistic Replication" ACM Computing Surveys 37(1) pp.42-81, March 2005

In practice, systems may not rely solely on message propagation but also compare state from time to time
e.g. name servers - Grapevine, GNS

Strong consistency

concept of TRANSACTION / transactional semantics
- ACID properties (atomicity, consistency, isolation, durability)

start transaction
 make the same update to all replicas of an object
 or make related updates to a number of different objects
end transaction
 (either COMMIT - all updates are made, are visible and persist
 or ABORT - no changes are made)

implementation - first attempt:
 lock all objects
 make update(s)
 unlock all objects

problem:
 - lack of availablity (a reason for replication)
 because of comms. delays, overload/slowness and failures.
 "I can’t work because a replica in Peru crashed"

solution for strong consistency of replicas: QUORUM ASSEMBLY

D-4

QUORUM ASSEMBLY for replicas

Assume n copies. Define a read quorum QR and a write quorum QW
which must be locked for reading (QR) and writing (QW).

QW > n/2

QR + QW > n

e.g. QW = n, QR = 1 is lock all copies for writing, read from any

These ensure: only one write quorum at a time can be assembled (deadlock? - see D10)
 every QW and QR contain at least one up-to-date replica.
After assembling a (write) quorum, make all replicas consistent then do operation.

e.g. n=7, QW=5 QR=3

optimisation: after making a write quorum consistent, and performing the update,
 background-propagate to other replicas not in the quorum

D-5

time

write quorum

write quorum

make consistent then apply update

write

read

read

note that reads don’t change anything, so we still have:

write quorum

write

make consistent then apply update

time

For BOTH quora of replicas AND related objects being updated under a transaction
we need ATOMIC COMMITMENT (all make the update(s) or none does)
- achieved by an ATOMIC COMMITMENT PROTOCOL such as
 two-phase commit (2PC), an ISO standard

participating
site PS

1

3 old
new

participating
site PS

1
2
3

participating
site PS

2
3

Two-phase commit (2PC)

commit
manager

CM
1

2

D-6

e.g. for a group of four processes:
one functions as commit manager (CM) (after an external update request)
the others are participating sites (PS)

persistent
store

Atomic Update of distributed data

participating
site PS

1

3

old
new

participating
site PS

1
2
3

participating
site PS

2
3

commit
manager

CM
1

2

phase 1:
 1. CM requests votes from all (PS and CM) - all secure data and vote
 2. CM assembles votes including its own

phase 2:
 CM decides on commit (if all have voted) or abort
 This is the single point of decision - record in persistent store
 3. propagate decision

D-7

Two-phase commit - notes:

recall - DS - independent failure modes

* before voting commit, each PS must:
 - record update in stable/persistent storage
 - record that 2PC is in progress

crash

on restart, find out what the decision was from CM

* before deciding commit, CM must:
 - get commit votes from all PSs
 - record its own update

on deciding commit, CM must
 - record the decision
 - then . . . propagate . . . it

crash

on restart, tell the PSs the decision

D-8

some detail from the PS algorithm

either: send abort vote and exit protocol
 or: send commit vote and await decision (set timer)

timer expires: consider CM crash which could have happened:

 either before CM decided commit (perhaps awaiting slow or crashed PSs)

 or after deciding commit and
 before propagating decision to any PS
 after propagating decision to some PSs

optimise - CM propagates PS list so any can be asked for the decision

some detail from the CM algorithm
send vote request to each PS
await replies (set timers)

if any PS does not reply, must abort
if 2PC is for quorum update, CM may contact further replicas after abort

D-9

Concurrency issues

consider a process group, each managing an object replica
 (ref. T-11, assume open group with no internal structure)

suppose two (or more) different updates are requested at different replica managers

two (or more) replica managers attempt to assemble a write quorum
 if successful, will run a 2PC protocol as CM

either: one succeeds in assembling a write quorum, the other(s) fail - OK
 or: both/all fail to assemble a quorum (e.g. each of two locks half the replicas)
 and DEADLOCK

must have deadlock detection or prevention
assume all quorum assembly requests are multicast to all the replica managers
 e.g. quorum assembler’s timer expires waiting for enough replicas to join
 it releases locked replicas and restarts, after backing off for some time

 e.g. some replica manager has become part of a quorum (request had a timestamp)
 then receives a request from a different quorum assembler (with a timestamp)
 All replica managers have an algorithm to agree which quorum wins
 and which is aborted, e.g. based on "earliest timestamp wins".

 e.g. could use a structured group so update requests are forwarded to the manager

D-10

Large-scale systems

it is difficult to assemble a quorum from a large number of widely distributed replicas

manage scale by hierarchy:
define a small set of first-class servers (FCSs), each above a hierarchy of servers

ETC. ETC.

first-class servers (FCS) at top level

there are various approaches, depending on application requirements, e.g.

* update requests must be made to a FCS

* FCSs use quorum assembly and 2PC among FCSs then propagate the update
 to all FCSs - each propagates down its subtree(s)

* correct read is from a FCS which assembles a read quorum of FCSs
 fast read is from any server - risk missing latest updates

ref lab TR 383 N Adly (PhD) Management of replicated data in large-scale systems
(includes a survey of algorithms for both strong and weak consistency) Nov 1995

D-11

Concurrency control: general transaction scenario (distributed objects)

* consider related updates to different objects

* concurrent transactions may have objects in common

(ref: CS/OS books part 3, CSA course, DB course)

pessimistic concurrency control
 (strict) two-phase locking (2PL)
 (strict) timestamp ordering (TSO)

optimistic concurrency control (OCC)
 - take shadow copies of objects
 - apply updates to shadows
 - request commit of a validator which implements commit or abort (do nothing)

* transactions that involve distributed objects, any of which may fail at any time,
 must ensure atomic commitment

* with pessimistic concurrency control we must use an atomic commitment protocol
 such as two-phase commit

* if a fully optimistic approach is taken we do not lock objects for commitment
 since the validator creates new object versions (ref CS ED1 Ch20, ED2 Ch21, OS Ch 22)

D-12

Concurrency control for transactions

strict two-phase locking 2PL

for objects involved in the transaction - attempt to lock object and apply update
 - old and new versions are kept

phase 1:

phase 2:
(for STRICT 2PL, locks are held until commit)
commit update - using e.g. 2PC

strict timestamp ordering

each transaction is given a timestamp

the object compares the timestamp of the requesting transaction with that of its
most recent update: if later - OK

if earlier - REJECT (too late) - that transaction aborts

(for STRICT TSO, locks are held until commit)
commit update - using e.g. 2PC

for objects involved in the transaction, attempt to lock object and apply update
 - old and new versions are kept
 - locks are held while other objects are acquired
 - susceptible to DEADLOCK

D-13

More algorithms and protocols for Distributed Systems

We have defined process groups as having peer or hierarchical structure (ref. T-14)
and have seen that a coordinator may be needed to run e.g. 2PC

With peer structure, an external process may send an update request
to any group member which then functions as coordinator

If the group has hierarchical structure, one member is elected as coordinator

That member must manage group protocols and external requests must be directed to it
(note that this solves the concurrency control (potential deadlock) problem
while creating a single point of failure and a possible bottleneck)

Assume: each process has a unique ID known to all members
 the process with highest ID is coordinator

Note: any process may fail at any time
An ELECTION ALGORITHM is run when the coordinator is detected as having failed

D-14

Election algorithm - BULLY
* P notices no reply from coordinator
* P sends ELECT message to all processes with higher IDs
* If any reply, P exits
* if none reply, P wins
 P gets any state needed from storage
 P sends COORD message to the group

--
* on receipt of ELECT message
 - send OK
 - hold an election if not already holding one

5

4

3

2

1

5

4

3

2

1

ELECTOK

ELECT

OK

(i) (ii)

D-15

Election algorithm - RING

Processes are ordered into a ring - known to all
 - can bypass a failed process provided algorithm uses acknowledgements

* P notices coordinator not functioning

* P sends ELECT, tagged with its own ID, around the ring

--

on receipt of ELECT:
without receiver’s ID: append ID and pass on
with receiver’s ID (has been all round) send (COORD, highest-ID)

many elections may run concurrently
all should agree on the same highest ID

--

D-16

Distributed mutual exclusion

Suppose N processes hold an object replica
 and we require that only one at a time may access the object

examples: - ensuring coherence of distributed shared memory
 - distributed games
 - distributed whiteboard

Assume - the object is of fixed structure,
 - processes update-in-place
 - then the update is propagated (not part of the algorithm)

Each process executes code of the form:

entry protocol

critical section (access object)
exit protocol

D-17

i.e. for use by simultaneously running, tightly coupled components managing
object replicas in main memory. We have already seen the approach of LOCKING
persistent object replicas for transactional update.

Distributed mutual exclusion:

1. centralised algorithm

one process is elected as coordinator

entry protocol:
send request message to coordinator
wait for reply (OK-enter) from coordinator

exit protocol:
send finished message to coordinator

+ FCFS or priority or another policy - coordinator reorders

+ economical (3 messages)

- single point of failure

- what does no reply mean? waiting for region? - OK!
 coordinator has failed?

 solve by using extra messages
 - coordinator ack’s request
 - send again when process can enter region
 - send periodic heartbeats (at application- or a lower level)

- coordinator is bottleneck

D-18

Distributed mutual exclusion:

2. token ring

entry protocol:
wait for token to arrive

exit protocol:
pass token to next process

a token giving permission to enter critical region circulates indefinitely

--

- inflexible - ring order, not FCFS or priority or ...

+ quite efficient,
 but token circulates when no-one wants region

- must handle loss of token

- crashes? use ack - reconfigure - bypass

D-19

Distributed mutual exclusion:

3. distributed (peer-to-peer) algorithm

entry protocol:
send a timestamped request to all processes including oneself
(there is a convention for global ordering of TS)

exit protocol:
reply to any deferred requests

--

+ fair - FCFS
- not economical, 2(n-1) messages + any acks
- n points of failure
- n bottlenecks

only when all process have replied can the region be entered
on receipt of a message
 - defer reply if in CR
 - reply immediately if you are not executing a request
 - if you are,
 compare your request message timestamp with that of the message.
 reply immediately if incoming timestamp is earlier, otherwise, defer reply

- no reply - failure or deferral?

D-20

