
DS 2009: time

David Evans
de239@cl.cam.ac.uk

Time in distributed systems
1. there is no common universal time

I assume we don’t need to worry about relativistic effects

2. time is still complicated
I sunrise/sunset?
I radioactive decay?
I stars’ positions?
I seasons?
I tides?
I slowing of the planet’s rotation?

3. UTC (Coordinated Universal Time) is in step with TAI but based
on UT1

4. UTC services are offered by radio stations and satellites
5. RF signals take time to propagate—UTC can’t be known exactly
6. For a given receiver we can estimate a time interval during which

an event has happened w.r.t. UTC (see also page 14 and “interval
timestamps”)

Timestamps can differ

event
earth time

event
earth time ship 1, velocity

ship 2, velocity

large distances

Order of observation can differ

event event

ship 1 ship 2

large distances

Timers in computers

I based on frequency of oscillation of a quartz crystal (usually)
I each computer has a timer which interrupts periodically

I in practice, the number of interrupts per second varies slightly in
the fabricated devices and with temperature, so clocks may drift
(clock skew)

I timers can be set from transmitted UTC
I we cannot know the time at which an event occurs accurately,

but have to increase the interval to allow for clock drift as well as
other sources of inaccuracy

I important questions
1. Do we need accurate time?
2. how is time used in distributed systems?
3. what does “A happened before B” mean in a distributed system?

The problem with “happened before”

If two events have single-value timestamps which differ by less than
some value we can’t say in which order the events occurred.
With interval timestamps, when intervals overlap, we can’t say in
which order the events occurred

Examples of the use of time

I resource contention, e.g., airline booking

Policy if the reservation requests for two transactions may
each be satisfied separately but there are not
enough seats left for both, then the transaction
with the earliest timestamp wins

Note that there is no causality, the requests are independent. We
don’t need fine-grained accuracy, we just need a timestamp
ordering convention so all agree who won. On a tie (equal
timestamps) use an agreed tie-breaker, e.g., IP address/process
ID

Examples of the use of time

I programming environments, e.g., UNIX make (compile and link)
Suppose a make involves many components which are edited on
distributed computer. A component is edited immediately after a
make, but on a computer with a slow clock. The edited source is
given a timestamp earlier than the make and the source will not
be recompiled on the next make.

I This can be made unlikely to happen, if we ensure that clocks are
initialised reasonably accurately (e.g., not from the operator’s
watch)

I this is an example of correctness depending on correct event
ordering: did the edit take place before or after the last make?

Examples of the use of time

I did a credit/debit transaction take place before or after midnight?
(This affects the calculation of interest.)

I the value of shares at the time of buying/selling
I insider dealing—did X read Y before buying/selling?

Requirements of time are not the same

Some of these examples require only a means of agreement, so that all
participants in the computer system make the same decision. Others
require accurate time or the order of events in the real world when
causality is at issue.

Event ordering in DS

Define < to mean “happened before”
Within the context of inter-process communication (IPC)

I events within a single process are ordered
I events in region x1 < events in regions y2 and y3

I events in region x1 < events in region z2

I events in regions y1 and y2 < events in region z2

I for events in other regions we can’t say, unless we know the
precise accuracy of all physical clock values

IPC defines a partial order

IPC defines a partial ordering on the events in the DS. This ordering
is true whatever the local clocks of X, Y and Z indicate.

Event ordering and clocks

It is easier if the values of the local clocks respect this event ordering.
Suppose a message m is timestamped tX by X on sending:

send()

receive()

(X’s send caused Y’s receive.) Suppose Y’s local clock has reading tY
on receiving m (remember that Y also learns tX). What if we do this:

if tY > tX then
OK

else
tY ← tX + 1

end if
This imposes logical time on the system.

A problem with logical time

System time adjusted in this way will drift ahead of UTC. We could
use counters rather than timestamps if all we need is event ordering.
So, can we generate timestamps that

I are reasonably close to UTC
I preserve causal ordering

Synchronising physical clocks

Cristian’s algorithm (1989)
I assume one machine has a UTC receiver (the “time server”)
I each machine polls the time server periodically (period depends

on maximum clock drift allowed and accuracy required)
I server responds to a poll with its value of the time
I client receives this value and may:

I use it as it is
I add the known minimum network delay
I add half the time between this send and receive

Synchronising physical clocks

Cristian’s algorithm (cont’d)

Now consider resetting the receiver’s local clock from this value; call
it t

if t ≥ local time then
OK, use t to set the clock
or adjust the interrupt rate for a while to speed up the clock (e.g.,
10ms to 9ms)

else
adjust the interrupt rate to slow down the clock (e.g., 10ms to
11ms) (the clock can’t be put back or event ordering within the
local system would become incorrect!)

end if

Synchronising physical clocks

Berkeley Unix (Gusella & Zatti, 1989)

If no machines have receivers. . .
I a nominated "time-server" asks all machines for their times
I it computes the average value
I this is broadcast to all machines
I operator may set the time manually from time to time

Synchronising physical clocks

NTP (Mills 1991, etc.)

Uses a hierarchy of machines (on the Internet, usually, but doesn’t
assume this)

stratum 2 servers

stratum 1 servers
(receive UTC)

...

I uses UDP
I allow for estimated network delay and adjust clocks as described

above
I accurate to a few tens of ms

lots more info is available

http://www.eecis.udel.edu/~mills/database/papers/history.pdf

Interval timestamps

I for any computer we can estimate how long UTC takes to reach
it, taking into account:

I atmospheric propagation
I network(s) transmission
I software overhead (e.g., local OS)

I instead of a single-valued timestamp, use an interval in which
UTC is estimated to lie

I use these interval values for ordering events, for example when
arriving messages need to be ordered

I sometimes we can’t say—this is the nature of distributed systems
(a weak ordering might be created, based on, e.g., the upper
interval bound)

Composing events

I applications are often interested in patterns of events
I fraud detection
I fault detection
I to control the volume of events propagated

I a composition service receives streams of events from distributed
sources and creates a stream of composite events. Example with
two event types, A, B

source of As

source of Bs

ABABBBABAAAABBABAABA

Composing events

I possible composition operators: AND, OR, SEQ (before/after)?
UNTIL?, AFTER?, NOT? . . .

I fundamental characteristics of DS make this tricky
I are all sources of A and B and connections to them operational?
I have all the As and Bs arrived? should we use a heartbeat

protocol?

I what is the consumption policy for As and Bs? historical, most
recent, . . . ?

I buffer size and garbage collection?

Ordering message delivery

Assumptions

1. messages are multicast to named process groups

2. reliable channels: a given message is delivered reliably to all
members of the group (no lost messages)

3. FIFO from a given source to a given destination

4. processes don’t crash (failure and restart not considered)-

5. processes behave as specified and send the same values to all
processes (we are not considering Byzantine behaviour)

Schematically

application

message service

OS comms.
interface

assume FIFO from each
source

at this level (done by
lower levels)

may buffer and reorder
messages

(as requested) before
delivery

may be delivered
message in a specified

order

Order schemes

no order messages are delivered to the application process in the
order received by the message service

causal order messages that are potentially causally related are
delivered in causal order at all processes

total order every process receives all messages in the same order

Aside: what are process groups

I membership management
I create (name, group members, group member, . . .)
I kill (name)
I join (name, process)
I leave (name, process)

I internal structure

none failure tolerant, complex protocols
some a single coordinator (and point of failure); simpler protocols

I closed or open
closed only members may send to the group name, e.g., parallel,

fault-tolerant algorithms
open a non-member can send to a group, e.g. to a set of servers

I failures
I a failed process leaves the group without executing leave

I robustness
I leave, join and failures happen during normal operation

Aside: what are process groups

I membership management
I create (name, group members, group member, . . .)
I kill (name)
I join (name, process)
I leave (name, process)

I internal structure

none failure tolerant, complex protocols
some a single coordinator (and point of failure); simpler protocols

I closed or open
closed only members may send to the group name, e.g., parallel,

fault-tolerant algorithms
open a non-member can send to a group, e.g. to a set of servers

I failures
I a failed process leaves the group without executing leave

I robustness
I leave, join and failures happen during normal operation

Aside: what are process groups

I membership management
I create (name, group members, group member, . . .)
I kill (name)
I join (name, process)
I leave (name, process)

I internal structure

none failure tolerant, complex protocols
some a single coordinator (and point of failure); simpler protocols

I closed or open
closed only members may send to the group name, e.g., parallel,

fault-tolerant algorithms
open a non-member can send to a group, e.g. to a set of servers

I failures
I a failed process leaves the group without executing leave

I robustness
I leave, join and failures happen during normal operation

Aside: what are process groups

I membership management
I create (name, group members, group member, . . .)
I kill (name)
I join (name, process)
I leave (name, process)

I internal structure

none failure tolerant, complex protocols
some a single coordinator (and point of failure); simpler protocols

I closed or open
closed only members may send to the group name, e.g., parallel,

fault-tolerant algorithms
open a non-member can send to a group, e.g. to a set of servers

I failures
I a failed process leaves the group without executing leave

I robustness
I leave, join and failures happen during normal operation

Aside: what are process groups

I membership management
I create (name, group members, group member, . . .)
I kill (name)
I join (name, process)
I leave (name, process)

I internal structure

none failure tolerant, complex protocols
some a single coordinator (and point of failure); simpler protocols

I closed or open
closed only members may send to the group name, e.g., parallel,

fault-tolerant algorithms
open a non-member can send to a group, e.g. to a set of servers

I failures
I a failed process leaves the group without executing leave

I robustness
I leave, join and failures happen during normal operation

What is causal order?

if causal delivery order is required, m should be delivered before m′ at
P3

sendi m < sendj m′ ⇒ deliverk m < deliverk m′

so P1 sends m before P2 sends m′ ⇒ m should be delivered before m′

at P3

Causal order is feasible

Suppose that P1, P2, and P3 are in a process group and all messages
are multicast to the group (all processes receive all messages)

In this case, the message delivery system can implement causal
delivery order by using vector clocks. (Total order later.)

Vector clocks: implementing causal order
A vector clock is maintained by the message service at each node for
each process.

(1,0,0) (2,1,0)

(0,1,0) (1,2,0)

(1,0,1) (1,1,2)

Properties
I fixed number of processes, N
I each process’s message service keeps a vector of dimension N
I for each process, each entry records the most up-to-date value of

a state counter, known to that process, for the process at that
position

(set notation would be better for dynamic reconfiguration of
groups—but vectors have stuck)

Message service operation

(1,0,0) (2,1,0)

(0,1,0) (1,2,0)

(1,0,1) (1,1,2)

(1,3,0)

(3,3,0)

(1,3,3) (1,3,4)

(1,4,4)

(4,3,4)

I before send, increment local process’s state-value in local vector
I on send, timestamp message with sending process’s local vector
I on deliver, increment receiving process’s state-value in its local

vector and update the other fields of the vector by comparing its
values with the incoming timestamp and recording the higher
value in each field thus updating this process’s knowledge of
system state

An example

(1,0,0) (2,2,0)

(1,1,0) (1,2,0)

(1,0,0)

(0,0,0)

(1,2,0)

At P3, local vector is (0,0,0). m′ arrives from P2 with timestamp
(1,2,0), meaning that P2 received a communication from P1 before
sending m′.
Whole point: make it easy for a process to tell that it hasn’t received
some messages.

More detail at P3

receiver sender new receiver
vector sender vector decision vector
(0,0,0) P2 (1,2,0) hold in buffer (0,0,0)
(0,0.0) P1 (1,0,0) deliver (1,0,1)

from
buffer

(1,0,1) P2 (1,2,0) deliver (1,2,2)

Another example

0000

0000

0000

0000

1000

1001

1010 1020

1022

2020

1100

buffer

1220

Causal order is not total order!
0000

0000

0000

0000

1000

1001

1010

1200

1022

2200

1230

1223

1100

1020

3220

1320

m2 and m3 are not causally related
I P1 receives m1, m2, m3

I P2 receives m1, m2, m3

I P3 receives m1, m3, m2

I P4 receives m1, m3, m2

If application requires total order, this can be enforced using vector
clocks with extension to include ACKs and delivery to self (see
below). But the vectors can be a large overhead on message
transmission.

Totally ordered multicast

Totally ordered multicast can be achieved using a single logical clock
value as the timestamp

I sender multicasts to all including itself
I all acknowledge receipt as a multicast message
I message is delivered in timestamp order when all ACKs have

been received

If the delivery system must support both, so that applications can
choose, vector clocks can achieve both causal and total ordering.

Doing totally-ordered multicast
1 2

2

2

I all delivery systems collect messages, send ACKs and collect
ACKs

I P1 increments its clock to 1 and multicasts a message with
timestamp 1

I All delivery systems collect message, send ACK, and collect all
ACKs. No contention⇒ deliver message and increment local
clocks to 2

I if P2 and P3 both multicast messages with timestamp 3, use a
tie-breaker to deliver P2’s message before P3’s

Real-world causality
e.g., monitoring and controlling a pipe along which steam is delivered
under pressure

monitors
pipe for

cracks

monitors
pressure in

pipe

controls
temperature of

steam

pipe
rupture

pressure
drop

raise
temperature

1. The pipe ruptures (which causes a drop in pressure)

2. P1 sends message to controller P3 to notify rupture

3. P2 sends message to P3 to notify pressure drop

4. P3 receives P2’s message before P1’s and increases temperature
of steam

5. P3 then receives P1’s message and infers (wrongly) that
increasing the temperature has caused the pipe to rupture

