Lecture 6

Denotational Semantics of PCF

Denotational semantics of PCF types

$$[\![nat]\!]\stackrel{\mathrm{def}}{=} \mathbb{N}_{\perp}$$
 (flat domain)

$$\llbracket bool
Vert \stackrel{\mathrm{def}}{=} \mathbb{B}_{\perp}$$
 (flat domain)

where $\mathbb{N} = \{0, 1, 2, \dots\}$ and $\mathbb{B} = \{true, false\}$.

Denotational semantics of PCF

To every typing judgement

$$\Gamma \vdash M : \tau$$

we associate a continuous function

$$\llbracket \Gamma \vdash M \rrbracket : \llbracket \Gamma \rrbracket \to \llbracket \tau \rrbracket$$

between domains.

3

Denotational semantics of PCF types

2

$$[\![nat]\!]\stackrel{\mathrm{def}}{=} \mathbb{N}_{\perp}$$
 (flat domain)

$$\llbracket bool \rrbracket \stackrel{\mathrm{def}}{=} \mathbb{B}_{\perp}$$
 (flat domain)

$$[\![au o au']\!] \stackrel{\mathrm{def}}{=} [\![au]\!] o [\![au']\!]$$
 (function domain).

where
$$\mathbb{N} = \{0, 1, 2, \dots\}$$
 and $\mathbb{B} = \{true, false\}$.

Denotational semantics of PCF type environments

$$\llbracket \Gamma
rbracket^{\leq} = \prod_{x \in dom(\Gamma)} \llbracket \Gamma(x)
rbracket^{\leq}$$
 (Γ -environments)

Denotational semantics of PCF type environments

$$\llbracket \Gamma \rrbracket \ \stackrel{\mathrm{def}}{=} \ \prod_{x \in dom(\Gamma)} \llbracket \Gamma(x) \rrbracket \ \ (\Gamma\text{-environments})$$

 $=\quad \text{the domain of partial functions } \rho \text{ from variables} \\ \text{to domains such that } dom(\rho) = dom(\Gamma) \text{ and} \\ \rho(x) \in \llbracket \Gamma(x) \rrbracket \text{ for all } x \in dom(\Gamma) \\$

Example:

1. For the empty type environment ∅,

$$\llbracket\emptyset\rrbracket=\{\,\bot\,\}$$

where \bot denotes the unique partial function with $dom(\bot) = \emptyset$.

Denotational semantics of PCF type environments

$$\llbracket \Gamma \rrbracket \ \stackrel{\mathrm{def}}{=} \ \prod_{x \in dom(\Gamma)} \llbracket \Gamma(x) \rrbracket \ \ (\Gamma\text{-environments})$$

= the domain of partial functions ρ from variables to domains such that $dom(\rho) = dom(\Gamma)$ and $\rho(x) \in \llbracket \Gamma(x) \rrbracket$ for all $x \in dom(\Gamma)$

2.
$$[\![\langle x \mapsto \tau \rangle]\!] = (\{x\} \to [\![\tau]\!])$$

2.
$$[\![\langle x \mapsto \tau \rangle]\!] = (\{x\} \to [\![\tau]\!]) \cong [\![\tau]\!]$$

2.
$$[\![\langle x \mapsto \tau \rangle]\!] = (\{x\} \to [\![\tau]\!]) \cong [\![\tau]\!]$$

3.

6

Denotational semantics of PCF terms, I

$$\llbracket \Gamma \vdash \mathbf{0} \rrbracket (\rho) \stackrel{\text{def}}{=} 0 \in \llbracket nat \rrbracket$$

$$\llbracket \Gamma \vdash \mathbf{true} \rrbracket(\rho) \stackrel{\text{def}}{=} true \in \llbracket bool \rrbracket$$

$$\llbracket \Gamma \vdash \mathbf{false} \rrbracket(\rho) \stackrel{\text{def}}{=} \mathit{false} \in \llbracket \mathit{bool} \rrbracket$$

Denotational semantics of PCF terms, I

5

$$\llbracket \Gamma \vdash \mathbf{0} \rrbracket (\rho) \stackrel{\text{def}}{=} 0 \in \llbracket nat \rrbracket$$

$$\llbracket \Gamma \vdash \mathbf{true} \rrbracket(\rho) \stackrel{\text{def}}{=} true \in \llbracket bool \rrbracket$$

$$\llbracket \Gamma \vdash \mathbf{false} \rrbracket(\rho) \stackrel{\text{def}}{=} \mathit{false} \in \llbracket \mathit{bool} \rrbracket$$

$$\llbracket \Gamma \vdash x \rrbracket(\rho) \stackrel{\text{def}}{=} \rho(x) \in \llbracket \Gamma(x) \rrbracket \qquad (x \in dom(\Gamma))$$

Denotational semantics of PCF terms, II

Denotational semantics of PCF terms. II

7

$$\begin{split} & \left[\!\!\left[\Gamma \vdash \mathbf{succ}(M)\right]\!\!\right](\rho) \\ & \stackrel{\mathrm{def}}{=} \begin{cases} \left[\!\!\left[\Gamma \vdash M\right]\!\!\right](\rho) + 1 & \text{if } \left[\!\!\left[\Gamma \vdash M\right]\!\!\right](\rho) \neq \bot \\ \bot & \text{if } \left[\!\!\left[\Gamma \vdash M\right]\!\!\right](\rho) = \bot \\ \end{split} \\ & \left[\!\!\left[\Gamma \vdash \mathbf{pred}(M)\right]\!\!\right](\rho) \\ & \stackrel{\mathrm{def}}{=} \begin{cases} \left[\!\!\left[\Gamma \vdash M\right]\!\!\right](\rho) - 1 & \text{if } \left[\!\!\left[\Gamma \vdash M\right]\!\!\right](\rho) > 0 \\ \bot & \text{if } \left[\!\!\left[\Gamma \vdash M\right]\!\!\right](\rho) = 0, \bot \\ \end{split} \\ & \left[\!\!\left[\Gamma \vdash \mathbf{zero}(M)\right]\!\!\right](\rho) \stackrel{\mathrm{def}}{=} \begin{cases} true & \text{if } \left[\!\!\left[\Gamma \vdash M\right]\!\!\right](\rho) = 0 \\ false & \text{if } \left[\!\!\left[\Gamma \vdash M\right]\!\!\right](\rho) > 0 \\ \bot & \text{if } \left[\!\!\left[\Gamma \vdash M\right]\!\!\right](\rho) = \bot \\ \end{cases} \end{split}$$

Denotational semantics of PCF terms, II

Denotational semantics of PCF terms, III

7

Denotational semantics of PCF terms, III

$\llbracket \Gamma \vdash \mathbf{if} \ M_1 \ \mathbf{then} \ M_2 \ \mathbf{else} \ M_3 \rrbracket(\rho)$

$$\stackrel{\text{def}}{=} \begin{cases} \llbracket \Gamma \vdash M_2 \rrbracket(\rho) & \text{if } \llbracket \Gamma \vdash M_1 \rrbracket(\rho) = true \\ \llbracket \Gamma \vdash M_3 \rrbracket(\rho) & \text{if } \llbracket \Gamma \vdash M_1 \rrbracket(\rho) = false \\ \bot & \text{if } \llbracket \Gamma \vdash M_1 \rrbracket(\rho) = \bot \end{cases}$$

$$\llbracket\Gamma \vdash M_1 M_2 \rrbracket(\rho) \stackrel{\text{def}}{=} (\llbracket\Gamma \vdash M_1 \rrbracket(\rho)) (\llbracket\Gamma \vdash M_2 \rrbracket(\rho))$$

Denotational semantics of PCF terms, V

$$\llbracket \Gamma \vdash \mathbf{fix}(M) \rrbracket(\rho) \stackrel{\text{def}}{=} fix(\llbracket \Gamma \vdash M \rrbracket(\rho))$$

Recall that *fix* is the function assigning least fixed points to continuous functions.

Denotational semantics of PCF terms, IV

NB: $\rho[x \mapsto d] \in \llbracket \Gamma[x \mapsto \tau] \rrbracket$ is the function mapping x to $d \in \llbracket \tau \rrbracket$ and otherwise acting like ρ .

Denotational semantics of PCF

Proposition. For all typing judgements $\Gamma \vdash M : \tau$, the denotation

$$\llbracket\Gamma \vdash M\rrbracket : \llbracket\Gamma\rrbracket \to \llbracket\tau\rrbracket$$

is a well-defined continous function.

10

Denotations of closed terms

For a closed term $M \in \mathrm{PCF}_{\tau}$, we get

$$\llbracket \emptyset \vdash M \rrbracket : \llbracket \emptyset \rrbracket \to \llbracket \tau \rrbracket$$

and, since $\llbracket \emptyset \rrbracket = \{ \perp \}$, we have

$$\llbracket M \rrbracket \stackrel{\text{def}}{=} \llbracket \emptyset \vdash M \rrbracket (\bot) \in \llbracket \tau \rrbracket \qquad (M \in \mathrm{PCF}_{\tau})$$

Soundness

Proposition. For all closed terms $M, V \in \mathrm{PCF}_{\tau}$,

if
$$M \Downarrow_{\tau} V$$
 then $\llbracket M \rrbracket = \llbracket V \rrbracket \in \llbracket \tau \rrbracket$.

Compositionality

Proposition. For all typing judgements $\Gamma \vdash M : \tau$ and $\Gamma \vdash M' : \tau$, and all contexts $\mathcal{C}[-]$ such that $\Gamma' \vdash \mathcal{C}[M] : \tau'$ and $\Gamma' \vdash \mathcal{C}[M'] : \tau'$,

$$\begin{split} &\textit{if} \ \ \llbracket\Gamma \vdash M\rrbracket = \llbracket\Gamma \vdash M'\rrbracket : \llbracket\Gamma\rrbracket \to \llbracket\tau\rrbracket \\ &\textit{then} \ \ \llbracket\Gamma' \vdash \mathcal{C}[M]\rrbracket = \llbracket\Gamma' \vdash \mathcal{C}[M]\rrbracket : \llbracket\Gamma'\rrbracket \to \llbracket\tau'\rrbracket \end{split}$$

13

Substitution property

Proposition. Suppose that $\Gamma \vdash M : \tau$ and that $\Gamma[x \mapsto \tau] \vdash M' : \tau'$, so that we also have $\Gamma \vdash M'[M/x] : \tau'$. Then,

$$\begin{bmatrix} \Gamma \vdash M'[M/x] \end{bmatrix} (\rho)
 = \llbracket \Gamma[x \mapsto \tau] \vdash M' \rrbracket (\rho [x \mapsto \llbracket \Gamma \vdash M \rrbracket])$$

for all $\rho \in \llbracket \Gamma
rbracket$.

12

14

Substitution property

In particular when
$$\Gamma = \emptyset$$
, $[\![\langle x \mapsto \tau \rangle \vdash M']\!] : [\![\tau]\!] \to [\![\tau']\!]$ and
$$[\![M'[M/x]]\!] = [\![\langle x \mapsto \tau \rangle \vdash M']\!] ([\![M]\!])$$