Concurrent Systems
and Applications

CST Part 1B
Michaelmas 2008

Lectures 4-9
Distributed Systems & Transactions

Steven Hand

steven.hand@cl.cam.ac.uk






Lecture 4: Distributed systems

Previous section

Recap on Java

Overview of this section

Distributed systems
Naming

Network communication
Compound operations

Crash-tolerance

Distributed Systems and Transactions Slide 4-1



Communication between processes

What problems emerge when communicating

between separate address spaces

between separate machines?

How do those environments differ from previous examples?

Recall that

within a process, or with a shared virtual address space,
threads can communicate naturally through ordinary data
structures — object references created by one thread can be

used by another (since all parties share a single copy of the
data)

failures are rare and at the granularity of whole processes
(e.g. SIGKILL by the user)

OS-level protection is also performed at the granularity of
processes — as far as the OS is concerned a process is
running on behalf of one user

Distributed Systems and Transactions Slide 4-2



Communication between processes (2)

Introducing separate address spaces means that data is not
directly shared between the threads involved

Access mechanisms and appropriate protection must be
constructed

At a low-level the representation of different kinds of data
may vary between machines — e.g. big endian v little endian

Names used may require translation — e.g. object locations
in memory (at a low-level) or file names on a local disk (at
a somewhat higher level)

Any communicating components need

to agree on how to exchange data — usually by the sender
marshalling from a local format into an agreed common
format and the receiver unmarshalling

— similar to using the serialization API to
read /write an object to a file on disk

to agree on how to name shared (or shareable) entities

Distributed Systems and Transactions Slide 4-3



Distributed systems

More generally, four recurring problems emerge when designing
distributed systems:

Components execute in parallel
— maybe on machines with very different performance
Communication is not instantaneous

— and the sender does not know
when /if a message is received

Components (and/or their communication links) may fail
independently

— usually need explicit failure detection and
robustness against failed components/links restarting

Access to a global clock cannot be assumed

— different components may observe
events in a different order

To varying degrees we can provide services to address these
problems. Is complete transparency possible?

Distributed Systems and Transactions Slide 4-4



Distributed systems (2)

Focus here is on basic naming and communication. Other
courses cover access control (Part 1B Intro. Security) and
algorithms (Part 2: Distributed Systems, Advanced Systems
Topics)

We’ll look at two different communication mechanisms:

Remote method invocation

Remote invocations look substantially like local calls:
many low-level details are abstracted

Remote invocations look substantially like local calls:
the programmer must remember the limits of this
transparency and still consider problems such as
independent failures

Not well suited to streaming or multi-casting data

Low-level communication using network sockets

A ‘lowest-common-denominator’: the TCP & UDP
protocols are available on almost all platforms

Much more for the application programmer to think
about; many wheels to re-invent

Distributed Systems and Transactions Slide 4-5



Interface definition

The provider and user of a network service need to agree on
how to access it and what parameters / results it provides. In
Java RMI this is done using Java interfaces

Easy to use in Java-based systems

What about interoperability with other languages?

Java RMI is rather unusual in using ordinary language facilities
to define remote interfaces. Usually a separate Interface
Definition Language (IDL) is used

This provides features common to many languages

The IDL has language bindings that define how its features
are realized in a particular language

An IDL compiler generates per-language stubs (contrast
with the rmic tool that only generates stubs for the JVM)

(An aside: they must also agree on what the service does, but
that needs human intervention!)

Distributed Systems and Transactions Slide 4-6



Interface definition: OMG IDL

We'll take OMG IDL (used in CORBA) as a typical example

1 //POS Object IDL example
2 module POS {
3 typedef string Barcode;

interface InputMedia {
typedef string OperatorCmd;
voilid barcode_input(in Barcode item);

o N O Ot

void keypad_input(in OperatorCmd cmd) ;
9 I
10 };

A module defines a namespace within which a group of
related type definitions and interface definitions occur

Interfaces can be derived using multiple inheritance

Built-in types include basic integers (e.g. 1ong holding
—231 .23 — 1 and unsigned long holding
0...2% — 1), floating point types, 8-bit characters,
booleans and octets

Parameter modifiers in, out and inout define the
direction in which parameters are copied

Distributed Systems and Transactions Slide 4-7



[nterface definition: OMG IDL (2)

Type constructors allow structures, discriminated unions,
enumerations and sequences to be defined:

struct Person {
string name;
short agej;

b

union Result switch(long) {
case 1 : ResultDataType r;
default : ErrorDataType e;
I

enum Color { red, green, blue };
typedef sequence<Person> People;

Interfaces can define attributes (unlike Java interfaces), but
these are just shorthand for pairs of method definitions:

attribute long value;

—

long _get_value();

void _set_wvalue(in long Vv);

Distributed Systems and Transactions Slide 4-8



Interface definition: OMG IDL (3)

IDL construct

Java construct

module

interface
constant

boolean

char, wchar

octet

string, wstring
short

unsigned short
long

unsigned long
float

double

enum, struct, union
sequence, array
exception
readonly attribute
attribute
operation

‘Holder classes’ are used for out and inout parameters —

package
interface + classes
public static final
boolean

char

byte
java.lang.String
short

short

long

long

float

double

class

array

class

Read-accessor method

Read,write-accessor methods
Method

these contain a field appropriate to the type of the

parameter

Distributed Systems and Transactions

Slide 4-9



Interface defintion: .NET

Instead of defining a separate IDL and per-language bindings,
the Microsoft .NET platform defines a common language subset
and programming conventions for making definitions that
conform to it

Many familiar features: static typing, objects (classes, fields,
methods, properties), overloading, single inheritance of
implementations, multiple implementation of interfaces, ...

Metadata describing these definitions is available at run-time,
e.g. to control marshalling

Interfaces can be defined in an ordinary programming
language and do not need an explicit IDL compiler

Languages vary according to whether they can be used to
write clients or servers in this system — e.g. JScript and

COBOL vs VB, C#, SML

Distributed Systems and Transactions Slide 4-10



Naming

How should processes identify which resources they wish to
access?

Within a single address space in a Java program we could use
object references to identify shared data structures and either

pass them as parameters to a thread’s constructor

access them from static fields

When communicating between address spaces we need other
mechanisms to establish

unambiguously which item is going to be accessed

where that item is located and how communication with it
can be achieved

Late binding of names (e.g. lumines.cl.cam.ac.uk) to
addresses (128.232.10.40) is considered good practice —
i.e. using a name service at run-time to resolve names, rather
than embedding addresses directly in a program

Distributed Systems and Transactions Slide 4-11



Names

Names are used to identify things and so they should be unique
within the context that they are used. (A directory service may
be used to select an appropriate name to look up —e.g. “find
the nearest system providing service xyz”)

In simple cases unique IDs (UIDs) may be used — e.g. process
IDs in UNIX

UIDs are simply numbers in the range 0...2" — 1 for an
N-bit namespace. (Beware: UID # user ID in this
context!)

Allocation is easy if IV is large — just allocate successive
integers

Allocation is centralized (designs for allocating process 1Ds
on highly parallel UNIX systems are still the subject of
research)

What can be done if N is small? When can/should UIDs
be re-used?

Distributed Systems and Transactions Slide 4-12



Names (2)

More usually a hierarchical namespace is formed — e.g.
filenames or DNS names

The hierarchy allows local allocation by separate allocators
if they agree to use non-overlapping prefixes

The hierarchy can often follow administrative delegation of
control

Locality of access within the structure may help
implementation efficiency (if I lookup one name in
/home/smh22/ then perhaps I'm likely to lookup other
names in that same directory)

Lookups may be more complex. Can names be arbitrarily
long?

Distributed Systems and Transactions Slide 4-13



Names (3)

We can also distinguish between pure and impure names

A pure name yields no information about the identified object
— where it may be located or where its details may be held in a
distributed name service

—e.g. a UNIX process ID on a multi-processor
system does not say on which CPU the process
should run, or which user created it

An impure name contains information about the object — e.g.
e-mail to smh22@cam.ac.uk will always be sent to a mail
server in the University

Are DNS names, e.g. lumines.cl.cam.ac.uk pure or
impure?

Are IPv4 addresses, e.g. 128.232.10.40 pure or
impure?

Names may have structure while still being pure — e.g.
Ethernet MAC addresses are structured 48-bit UIDs and
include manufacturer codes, and broadcast/multicast flags.
This structure avoids centralized allocation

In other schemes, pure names may contain location hints.
Crucially, impure names prevent the identified object from
changing in some way (usually moving) without renaming

Distributed Systems and Transactions Slide 4-14



Name services

2. Resolve

" Name service

3. Address

4. Access 1. Register

Server

A namespace is a collection of names recognised by a name
service — e.g. process IDs on one UNIX system, the
filenames that are valid on a particular system or the
Internet DNS names that are defined

A naming domain is a section of a namespace operated
under a single administrative authority — e.g. management
of the c1.cam.ac.uk portion of the DNS namespace is
delegated to the Computer Lab

Binding or name resolution is the process of making a
lookup on the name service

How does the client know how to contact the name service?

Distributed Systems and Transactions Slide 4-15



Name services (2)

Although we’ve shown the name service here as a single entity,
in reality it may

be replicated for availability (lookups can be made if any of
the replicas are accessible) and read performance (lookups
can be made to the nearest replica)

be distributed, e.g. separate systems may manage different
naming domains within the same namespace (updates to
different naming domains require less co-ordination)

allow caching of addresses by clients, or caching of partially
resolved names in a hierarchical namespace

Distributed Systems and Transactions Slide 4-16



Security

In a distributed system, access control is needed to:

control communication to/from the various components
involved,

- e.g. consider an industrial system with a component on
one computer recording the temperature and responding
to queries from another computer that controls settings
on a machine its attached to

- how does the controller know that the temperature
readings come from the intended probe?

- how does the probe know that it’s being queried by the
intended controller?

control operations that one component does on behalf of
users,

- e.g. a file server may run as the privileged root on a
UNIX machine

- when accessing a file on behalf of a remote client it needs
to know who that client is and either cause the OS to
check access would be OK, or to do those checks itself

Again, covered more fully in the Part 1B security and Part
IT distributed systems courses

Distributed Systems and Transactions Slide 4-17



Security (2)

We'll look at basic sensible things to do when writing
distributed systems in Java

use a security manager class to limit what the JVM is able
to do

— e.g. limiting the IP addresses to which it can connect or
whether it is permitted to write to your files

if using network sockets directly then make the program
robust to unexpected input

— less of a concern in Java than in C...

A security manager provides a mechanism for enforcing simple
controls

A security manager is implemented by
java.lang.SecurityManager (or a sub-class)

An instance of this is installed using
System.setSecurityManager(...) (itself an
operation under the control of the current security manager)

Distributed Systems and Transactions Slide 4-18



Security (3)

Most checks are made by delegating to a
checkPermission method, e.g. for dynamically loading
a native library

checkPermission(
new RuntimePermission(
"loadLibrary."+1ib));

Decisions made by checkPermission are relative to a
particular security context. The current context can be
obtained by invoking getSecurityContext and checks
then made on behalf of another context

Permissions can be granted in a policy definition file, passed
to the JVM on the command line with
—Djava.security.policy=filename

grant {
permission java.net.SocketPermission
"x:1024-65535", "connect,accept";
I

http://java.sun.com/products/javase/6/docs/
technotes/guides/security/guide/security/
index.html

Distributed Systems and Transactions Slide 4-19



Exercises

4-1

If you have access both to a big-endian (e.g. SPARC) and a
little-endian machine (e.g. Intel) then test whether an
object serialized to disk on one is able to be recreated
successfully on the other. Examine what happens if the
object refers to facilities intrinsic to the originating machine
— e.g. if it contains an open FileOutputStream or a
reference to System. out.

Suppose that two people are communicating by sending and
receiving mobile-phone text messages. Messages are delayed
by varying amounts. Some messages are lost entirely.
Design a way to get reliable communication (so far as is
possible). You may need to add information to each
message sent, and possibly create further messages in
addition to those sent ordinarily.

Convert the POS module definition from OMG IDL into a
Java interface that provides similar RMI functionality.

Suppose that frequent updates are made to part of a
hierarchical namespace, while other parts are rarely
updated. Lookups are made across the entire namespace.
Discuss the use of replication, distribution, caching or other
techniques as ways of providing an effective name service.

Distributed Systems and Transactions Slide 4-20



Lecture 5: Network sockets (TCP & UDP)

Previous lecture

Distributed systems
Interface definitions

Naming

Overview of this lecture

Communication using network sockets
UDP
TCP

Distributed Systems and Transactions Slide 5-1



Provisions of POSIX 1003.1-2001 (1)

The ‘socket’ system call:
int socket(int domain, int type, int protocol);

where domain is one of...

PF_UNIX, PF_LOCAL Local communication

PF INET IPv4 Internet protocols
PF INETG6 IPv6 Internet protocols
PF IPX IPX - Novell protocols
PF_NETLINK Kernel user interface device
PF_X25 ITU-T X.25 / IS0-8208 protocol
PEF_ AX25 Amateur radio AX.25 protocol
PEF_ATMPVC Access to raw ATM PVCs
PF_APPLETALK Appletalk
PEF_PACKET Low level packet interface

and type is ...

Distributed Systems and Transactions Slide 5-2



Provisions of POSIX 1003.1-2001 (2)

SOCK_STREAM
Provides sequenced, reliable, two-way, connection
based byte streams. An out-of-band data

transmission mechanism may be supported.

SOCK_DGRAM
Supports datagrams (connectionless, unreliable
messages of a fixed maximum length).

SOCK_SEQPACKET
Provides a sequenced, reliable, two-way
connection-based data transmission path for
datagrams of fixed maximum length; a consumer
1s required to read an entire packet with each
read system call.

SOCK_RAW
Provides raw network protocol access.

SOCK_RDM
Provides a reliable datagram layer that does

not guarantee ordering.

SOCK_PACKET
Obsolete and should not be used in new programs.

Distributed Systems and Transactions Slide 5-3



Low-level communication

Two basic network protocols are available in Java:
datagram-based UDP and stream-based TCP

UDP sockets provide unreliable datagram-based
communication that is subject to:

Loss: datagrams that are sent may never be received,
Duplication: the same datagram is received several times,

re-ordering: datagrams are forwarded separately within the
network and may arrive out of order

What is provided:

A checksum is used to guard against corruption (corrupt
data is discarded by the protocol implementation and the
application perceives it as loss)

The framing within datagrams is preserved — a UDP
datagram may be fragmented into separate packets within
the network, but these are reassembled by the receiver

Distributed Systems and Transactions Slide 5-4



Low-level communication (2)

Communication occurs between UDP sockets which are
addressed by giving an appropriate IP address and a UDP port
number (0..65535, although 0 not accessible through common
APIs, 1..1023 reserved for privileged use)

penny.chu.cam.ac.uk
131.111.202.88

elite.cl.cam.ac.uk

128.232.8.50

Naming is handled by

Using the DNS to map textual names into IP addresses,
InetAddress.getByName("elite.cl.cam.ac.uk")

Using ‘well-known’ port numbers for particular UDP
services which wish to be accessible to clients (See the
/etc/services file on a UNIX system)

As far as we're concerned here, the network acts as a ‘magic
cloud’ that conveys datagrams — see Digital Communication I
for layering in general and examples of how UDP is
implemented over IP and TP over (e.g.) ethernet

Distributed Systems and Transactions Slide 5-5



UDP in Java

UDP sockets are represented by instances of
java.net.DatagramSocket. The 0-argument
constructor creates a new socket that is bound to an
available port on the local host machine. This identifies the
local endpoint for the communication

Datagrams are represented in Java as instances of
java.net.DatagramPacket. The most elaborate
constructor:

DatagramPacket (byte buf[], int length,
InetAddress address, int port)

specifies the data to send (length bytes from within buf)
and the destination address and port

MulticastSocket defines a UDP socket capable of
receiving multicast packets. The constructor specifies the
port number and then methods

joinGroup (InetAddress g);
leaveGroup (InetAddress qg);

join and leave a specified group operating on that port

Multicast group addresses are a designated subset of the
IPv4 address space. Allocation policies are still in flux =
check the local policy before using

Distributed Systems and Transactions Slide 5-6



UDP example

import java.net.x;

public class Send {

public static void main (String args[]) {
try {

DatagramSocket s = new DatagramSocket ();

bytel ] b = new byte[1024];

int ij;

for (1 = 0; 1 < args.length - 2; i ++)
b[i1i] = Byte.parseByte (args[2 + 11]);

DatagramPacket p = new DatagramPacket (

b, 1,

InetAddress.getByName (args[0]),
Integer.parselnt (args[1l]));

s.send(p);

} catch (Exception e) {
System.out.println("Caught " + e);

Distributed Systems and Transactions Slide 5-7



UDP example (2)

import java.net.x;

public class Recv {

public static void main (String args[]) {
try {
DatagramSocket s = new DatagramSocket ();
bytel ] b = new byte[1024];

DatagramPacket p =
new DatagramPacket (b, 1024);

System.out.println("Port: " +
s.getLocalPort());

s.receive(p);

for (int i = 0; 1 < p.getLength (); 1 ++)

System.out.print ("" + b[i] + " ");
System.out.println ("\nFrom: " +
p.getAddress () + ":" + p.getPort ());

} catch (Exception e) {
System.out.println("Caught " + e);

Distributed Systems and Transactions Slide 5-8



Problems using UDP

Many facilities must be implemented manually by the
application programmer:

Detection and recovery from loss

Flow control (preventing the receiver from being swamped
with too much data)

Congestion control (preventing the network from being
overwhelmed)

Conversion between application data structures and arrays
of bytes (marshalling )

Of course, there are situations where UDP is directly useful

Communication with existing UDP services (e.g. some DNS
name servers)

Broadcast and multicast are possible (e.g. address
255.255.255.255 = all machines on the local network — but
note problems of port assignment and more generally of
multicast group naming)

Distributed Systems and Transactions Slide 5-9



TCP sockets

The second basic form of inter-process communication is
provided by TCP sockets

Naming is again handled using the DNS and well-known
port numbers as before. There is no relationship between
UDP and TCP ports having the same number

TCP provides a reliable bi-directional connection-based
byte-stream with flow control and congestion control

What doesn’t it do?

Unlike UDP the interface exposed to the programmer is not
datagram based: framing must be provided explicitly

Marshalling must still be done explicitly — but serialization
may help here

Communication is always one-to-one

In practice TCP forms the basis for many internet protocols —
e.g. FTP and HTTP are both currently deployed over it

Distributed Systems and Transactions Slide 5-10



TCP sockets (2)

Two principal classes are involved in exposing TCP sockets in
Java:

java.net.Socket represents a connection over which
data can be sent and received. Instantiating it directly
initiates a connection from the current process to a specified
address and port. The constructor blocks until the
connection is established (or fails with an exception)

java.net.ServerSocket represents a socket awaiting
incoming connections. Instantiating it starts the local
machine listening for connections on a particular port.
ServerSocket provides an accept operation that
blocks the caller until an incoming connection is received. It
then returns an instance of Socket representing that
connection

The system will usually buffer only a small (5) number of
incoming connections if accept is not called

Typically programs that expect multiple clients will have one
thread making calls to accept and starting further threads
for each connection

Distributed Systems and Transactions Slide 5-11



TCP example

import java.net.x;

import java.io.x;

public class TCPSend {

public static void main (String args[]) {
try A
Socket s = new Socket (

InetAddress.getByName (args[0]),
Integer.parselInt (args([1l]));

OutputStream os = s.getOutputStream ();
while (true) {

int 1 = System.in.read();

os.write(i);

} catch (Exception e) {
System.out.println("Caught " + e);

Distributed Systems and Transactions Slide 5-12



TCP example (2)

import java.net.x;

import java.io.x;

public class TCPRecv {

public static void main (String argsl[]) {
try A
ServerSocket serv = new ServerSocket (0);
System.out.println ("Port: " +
serv.getLocalPort ());
Socket s = serv.accept ();
System.out.println ("Remote addr: " +

s.getInetAddress());
System.out.println ("Remote port: " +
s.getPort());
InputStream is = s.getInputStream ();
while (true) {
int 1 = is.read ();
if (i == -1) break;
System.out.write (1);
}
} catch (Exception e) {
System.out.println("Caught " + e);

Distributed Systems and Transactions Slide 5-13



Server design

The examples have only illustrated the basic use of the

operations on DatagramSocket, ServerSocket and
Socket:

Typically a server would be expected to manage multiple
clients

Doing so efficiently can be a problem if there are lots of clients:

Could have one thread per client:

Can exploit multi-processor hardware
Many active clients = frequent context switches

The JVM (+ usually the OS) must maintain state for all
clients, whether active or not

Could have a single thread which services each client in
turn:

Simple, avoids context switching

No ‘wait for any input stream’ operation in java (cf

select in UNIX): must poll each client whether
needed or not

The javo.nio package now supports asynchronous I/0O

Distributed Systems and Transactions Slide 5-14



Exercises

5-1 Write a class UDPSender which sends a series of UDP

o

packets to a specified address and port at regular 15 second
intervals. Write a corresponding UDPReceiver which
receives such packets and records the inter-arrival time.
How does the performance differ if (i) both programs run
on the same computer, (ii) both run on computers on the
University network or (iii) one runs on the University
network and another on a home or college WiF'i internet
connection. Do you see packets that are lost, duplicated or
re-ordered? Do the packets arrive regularly spaced?

Write similar classes TCPSender and TCPReceiver
which establish a TCP connection over which single bytes
are sent at 15 second intervals. How does the performance
compare with the UDP implementation. Is it necessary to
call f1ush on the OutputStream after sending each
byte?

Consider a server for a noughts-and-crosses game. The two
players communicate with it over UDP. Describe a possible
structure for the server — in terms of the major data
structures, the threads used, the format of the datagrams
sent and the concurrency-control techniques.

Distributed Systems and Transactions Slide 5-15



Lecture 6: RPC & RMI

Previous lecture

UDP: connectionless, unreliable

TCP: connection-oriented, reliable

Overview of this lecture

Java Remote Method Invocation (RMI)

Distributed Systems and Transactions

Slide 6-1



Remote method invocation

Using UDP or TCP it was necessary to

Decide how to represent data being sent over the network —
either packing it into arrays of bytes (in a
DatagramPacket) or writing it into an OutputStream
(using a Socket)

Use a rather inflexible naming system to identify servers —
updates to the DNS may be difficult, access to a specific
port number may not always be possible

Distribute the code to all of the systems involved and
ensure that it remains consistent

Deal with failures (e.g. the remote machine crashing —
something a ‘reliable’ protocol like TCP cannot mask)

Java RMI presents a higher level interface that addresses some
of these concerns.

Although it is remote method invocation, the principles are
the same as for remote procedure call (RPC) systems

Distributed Systems and Transactions Slide 6-2



Remote method invocation (2)

registry

2

4
m server

shared classes

A server registers a reference to a remote object with the
registry (a basic name service) and deposits associated
.class files in a shared location, the RMI codebase

A client queries the registry to obtain a reference to a
remote object

If they are not directly available, the client obtains the
.class files needed to access the remote object

The client makes an RMI call to the remote object

The registries act as a name service, with names of the form

rmi://linux2.pwf.cl.cam.ac.uk/smh22/myexample

Distributed Systems and Transactions Slide 6-3



Remote method invocation (3)

Parameters and results are generally passed by making deep
copies when passed or returned over RMI

i.e. copying proceeds recursively on the object passed,
objects reachable from that etc (= take care to reduce
parameter sizes)

The structure of object graphs is preserved — e.g. data
structures may be cyclic

Remote objects are passed by reference and so both caller
and callee will interact with the same remote object if a
reference to it is passed or returned

Note that Java only supports remote method invocation —
changes to fields must be made using get/set methods

Other RPC systems make different choices:

Perform a shallow copy and treat other objects reachable
from that as remote data (as above, would be hard to
implement in Java) or copy them incrementally

Emulate ‘pass by reference’ by passing back any changes
with the method results (what about concurrent updates?)

Distributed Systems and Transactions Slide 6-4



RMI—HOWTO

Write an interface to define the operations to be exposed by
the RMI server.

- This interface must extend a special interface called
java.rmi.Remote.

- All remote methods must throw RemoteException.

- It is common to add a static final field to the
interface, declaring the String name we intend to use
with the RMI Registry: putting the name in the shared
interface ensures that the client and the server use the
same name.

The .class file generated by compiling the interface
should be placed in the RMI codebase so it is available to
the server and to the client applications.

Write the server program, which will contain a class
implementing the interface. This implementation class will
exist only at the server end. The RMI mechanism will allow
client applications to send requests to objects in our server.

The server’s main routine should instantiate the
implementation class, register it with the RMI Registry
using the String name from the interface.

- The server should enter an endless loop, periodically
re-registering with the RMI Registry.

Write the client. . .

Distributed Systems and Transactions Slide 6-5



RMI—Client

Instead of calling new to get an instance of the class which
implements our interface, call Naming.lookup to get a
“stub class” from the RMI Registry.

The stub is a class generated at runtime by “reflection”; an
instance of java.lang.reflect.Proxy is instantiated
which implements our interface, but in which every method
body merely serialises the arguments and sends them over
the network to our RMI Server.

The code requires an exception handler to deal with:

- NotBoundException—no remote object has been
associated with the name we tried to look up in the
registry

- RemoteException—if the RMI registry could not be
contacted (Naming.lookup) or if there was a problem
with a request to invoke a method).

- AccessException—if the operation has not been
permitted by the installed security manager.

Distributed Systems and Transactions Slide 6-6



RMI—Defining an Interface

Suppose we wish to have a simple “service” which can perform
some basic arithmetic:

import java.rmi.x;

public interface Calculator extends Remote {
public static final String NAME

= "rmi://tempest.cl.cam.ac.uk/smh22/calc";

public long add(long a, long b)
throws RemoteException;
public long sub(long a, long b)
throws RemoteException;
public long mul(long a, long b)
throws RemoteException;
public long div(long a, long b)
throws RemoteException;

All RMI invocations are made across remote interfaces
extending java.rmi.Remote

The field NAME says which RMI registry will be used (the
one on tempest.cl.cam.ac.uk) and the name to
register the service as (smh22/calc)

All remote methods must throw RemoteException

Distributed Systems and Transactions Slide 6-7



1
2
3

RMI—Implementing the Interface

Next write some code which implements the interface; must

extend java.rmi.server.UnicastRemoteObject.

import java.rmi.x;

public class CalculatorImpl

extends java.rmi.server.UnicastRemoteObject

implements Calculator ({

public CalculatorImpl() throws RemoteException {

super () ;

}

public long add(long a, long b)
throws RemoteException {
return a + b;

}

public long sub(long a, long b)
throws RemoteException {
return a - b;

}

public long mul(long a, long b)
throws RemoteException ({
return a * b;

}

public long div(long a, long b)
throws RemoteException {
return a / b;

}

Lines 7-9 are an explicit constructor which we need in order

to declare the RemoteException exception.

Distributed Systems and Transactions

Slide 6-8



1
2
3
4
3
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

RMI—Writing the Server

The “server” class just creates a new instance of the
implementation class and registers the service with the registry:

import java.rmi.Naming;
public class CalculatorServer {
public CalculatorServer () {
try |

// Instantiate server
Calculator ¢ = new CalculatorImpl();

// Bind name in the registry
Naming.rebind(Calculator.NAME, c);

System.out.println(Calculator.NAME +
" server now available");

} catch (Exception e) {
System.out.println("Trouble: " + e);
}
}
public static void main(String args[]) {

}
}

new CalculatorServer();

Better in practice to (re)bind the name in the registry

periodically (e.g. in case the registry goes away for a while)

Usually also want a security manager to limit the actions

that can be performed.

Distributed Systems and Transactions Slide 6-9



RMI—Enhancing the Server

1 import java.rmi.Naming;
2 1mport java.lang.Thread;
3
public class CalculatorServer ({

4
)
6 public CalculatorServer() {
7
8

try A

// Instantiate server
9 Calculator ¢ = new CalculatorImpl();
10
11 // Install a security manager
12 System.setSecurityManager (
13 new java.rmi.RMISecurityManager());
14
15 while(true) {
16 // Bind name in the registry
17 Naming.rebind(Calculator.NAME, c);
18 System.out.println(Calculator.NAME +
19 " server now available");
20
21 // Repeat every 5 seconds
22 Thread.currentThread().sleep(5000L);
23 }
24
25 } catch (Exception e) {
26 System.out.println("Trouble: " + e);
27 }
28 }
29
30 public static void main(String args[]) {
31 new CalculatorServer();
32 }
33 }

Lines 11-13 install a security manager = we now require a
suitable security policy or the server won’t work. ..

Distributed Systems and Transactions Slide 6-10



RMI—5ecurity Managers and Security Policies

By default, applications run without a security manager =~
no restrictions are in place

(Applets, on the other hand, always run with the security
manager provided by the web brower)
To add a security manager to your code, two main options:
Write your own from scratch, or
Use the built-in java.rmi.RMISecurityManager
Option 2 is considerably easier:
Default is no access
Explicitly grant permissions using a “security policy” file

E.g. a very permissive security.policy file:

grant {
permission java.security.AllPermission;

Y
Or a more restrictive one. ..
grant {

permission java.net.SocketPermission
"x:1024-65535", "connect,accept";

permission java.util.PropertyPermission
"java.rmi.server.codebase", "read";

permission java.util.PropertyPermission
"user.name", "read,write";

b

Distributed Systems and Transactions Slide 6-11



RMI—Implementing a Client

1 import java.rmi.Naming;

2 import java.net.MalformedURLException;

3 import java.rmi.RemoteException;

4 import java.rmi.NotBoundException;

)

6 public class CalculatorClient {

7

8 public static void main(String[] args) {

9 try |

10 Calculator ¢ = (Calculator)

11 Naming.lookup(Calculator.NAME) ;

12 System.out.println( c.sub(4, 3) );

13 System.out.println( c.add(4, 5) );

14 System.out.println( c.mul(3, 6) );

15 System.out.println( c.div (9, 3) );

16 }

17 catch (MalformedURLException murle) {

18 System.out.println("MalformedURLException");
19 }

20 catch (RemoteException re) {

21 System.out.println("RemoteException");
22 }

23 catch (NotBoundException nbe) {

24 System.out.println("NotBoundException");
25 }

26 catch (java.lang.ArithmeticException ae) {
27 System.out.println("ArithmeticException");
28 }

29 }

30 }

Key thing is lines 9-10: these get you an instance of the
stub class implementing the Calculator interface.

Invocations on this interface (lines 11-14) are forwarded to
the remote object registered as Calculator.NAME

Distributed Systems and Transactions Slide 6-12



Putting it all together

Select the machine to run the registry and update
Calculator. NAME in Calculator. java

- simplest to use same machine for registry & the server
Compile the interface, implementation, server & client:
$ javac Calculator=*. java
Generate stub classes for the implementation:

$ rmic CalculatorImpl

This produces CalculatorImpl_Stub.class and
CalculatorImpl_Skel.class.

|[Re-|Start the registry:

$ rmiregistry &

If you're using the “secure” version of the server:
- create a calc.policy file (see earlier slides)
- start the server: s java
-Djava.security.policy=calc.policy CalculatorServer
Else just start the server:

$ java CalculatorServer
rmi://tempest.cl.cam.ac.uk/smh22/calc server now..

And finally, start the client:

S java CalculatorClient
1

9

18

3

Distributed Systems and Transactions Slide 6-13



RMI implementation

CalculatorClient

Calculator_Impl I

_______________________________________ A____________.
Calculator_Impl_Stub I Method I
A

UnicastServerRef I

UnicastRef I
A
TCPTransport I

TCPConnection

The _Stub class is the one mentioned earlier — it transforms
invocations on the Calculator interface into generic
invocations of an invoke method on UnicastRef
- the class may not have quite as human readable a name
in modern (1.54) versions of java

UnicastRef is responsible for selecting a suitable network
transport for accessing the remote object — in this case TCP

UnicastServerRef uses the ordinary reflection
interface to dispatch calls to remote objects

Distributed Systems and Transactions Slide 6-14



RMI implementation (2)

With the TCP transport RMI creates a new thread on the
server for each incoming connection that is received

A remote object should be prepared to accept concurrent
invocations of its methods

This concurrency avoids deadlock if remote method A.m1
invokes an operation on remote method B.m2 which in turn
invokes an operation A.m3

The application programmer must be aware of how many
threads might be created and the impact that they may
have on the system

Remember: the synchronized modifier applies to a
method’s implementation. It must be applied to the
definition in the server class, not the interface

Distributed Systems and Transactions Slide 6-15



RMI implementation (3)

Client Server
A A
4 N\ 4 I
Caller RMI Service RMI Service Called
method

1. Marshal

2. Generate ID

3. Settimer - - f4------ - 4. Unmarshal 4
5. Record ID
6. Marshal

8. Unmarshal <« g - -——--—— —1 - 7. Set timer \I

" 9. Acknowledge

What could be done without TCP?

We need to manually implement:

Reliable delivery of messages subject to loss in the network

Association between invocations and responses — shown
here using a per-call RPC identifier with which all messages
are tagged

Distributed Systems and Transactions Slide 6-16



RMI implementation (4)

Even this simple protocol requires multiple threads: e.g. to
re-send lost acknowledgements after the client-side RMI service
has returned to the caller

What happens if a timeout occurs at 37 Either the message
sent to the server was lost, or the server failed before replying

At-most-once semantics = return failure indication to the
application

‘Exactly’-once semantics = retry a few times with the
same RPC id (so server can detect retries)

What happens if a timeout occurs at 77 Either the message
sent to the client was lost, or the client failed

No matter what is done, the client cannot distinguish, on the
basis of these messages, server failures before / after making
some change to persistent storage

Distributed Systems and Transactions Slide 6-17



Exercises

6-1
6-2

6-4

Compile and execute the RMI example yourself.

Modify the UDPSender and UDPReceiver example so
the sender initiates an RMI call to the receiver at regular 15

second intervals. How does the performance compare now
to the UDP and TCP examples?

To what extent can the fact that a method invocation is
remote be made transparent to the programmer? In what
ways is complete transparency not possible?

A client and a server are in frequent communication using
the RPC protocol described in the slides and implemented
over UDP. Design and outline an alternative protocol that
sends fewer datagrams when loss is rare.

* All remote method invocations in Java may throw

RemoteException because of the failure modes
introduced by distribution. Do you agree that
RemoteException should be a checked exception rather
than an unchecked exception (such as
NullPointerException) which is usually fatal?

Distributed Systems and Transactions Slide 6-18



Lecture 7: Transactions

Previous section

Communication using UDP or TCP
Remote method invocation

...and before that concurrency control between threads

Overview of this section

Compound operations
Correctness requirements

Implementation

Distributed Systems and Transactions Slide 7-1



Compound operations

We've now seen mechanisms for

Controlling concurrent access to objects

Providing access to remote objects

Using these facilities correctly, and particularly in combination,
is extremely difficult.

Client 1

Server

Client 2

getBalance(account) —> int
credit(account, int)
debit(account, int)

Client 1 tries to get the total amount in two accounts

Client 2 tries to transfer some money between the accounts
using credit then debit

It can all go horribly wrong, even if getBalance,
credit and debit are safe for multi-threaded use

Distributed Systems and Transactions Slide 7-2



Compound operations (2)

What can go wrong?

Client 1 may look at the two accounts after one has been
credited but before the other is debited
= the total will be wrong

Client 2 may crash after doing its credit but before the
matching debit
=> the recipient could be lucky...

The network may fail, even if the clients are well behaved

The server may crash
What can be done about these problems?

Have the server provide lockAccount and
unlockAccount operations

Have the server provide transfer as an atomic operation

Use some kind of ‘downloadable code’ system

Distributed Systems and Transactions Slide 7-3



Transactions

Transactions provide a more general abstraction

Ideally the programmer may wish to write something like

transaction {
if (server.getBalance(src) >= amount) {
server.credit (dest, amount);
server.debit (src, amount);
return true;
} else {

return false;

The intent is that code within a transaction block will
execute without interference from other activities, in particular

other operations on the same objects

system crashes (within reason...)

We say that a transaction either commits atomically (if it
completes successfully) or it aborts (if it fails for some reason).
Aborted transactions leave the state unchanged.

Distributed Systems and Transactions Slide 7-4



Transactions (2)

In more detail we’d like committed transactions to satisfy four
ACID properties:

Atomicity — either all or none of the transaction’s operations are
performed

— programmers do not have to worry about ‘cleaning up’ after
a transaction aborts; the system ensures that it has no visible
effects

Consistency — a transaction transforms the system from one
consistent state to another

— the programmer must design transactions that preserve
desired invariants, e.g. totals across accounts

Isolation — each committed transaction executes isolated from the
concurrent effects of others

— e.g. another transaction shouldn’t read the source and
destination amounts mid-transfer and then commit

Durability — the effects of committed transactions endure
subsequent system failures

— when the system confirms the transaction has committed it
must ensure any changes will survive faults

Distributed Systems and Transactions Slide 7-5



Transactions (3)

These requirements can be grouped into two categories:

Atomicity and durability refer to the persistence of
transactions across system failures.

We want to ensure that no ‘partial’ transactions are
performed (atomicity) and we want to ensure that system
state does not regress by apparently-committed transactions
being lost (durability)

Consistency and isolation concern ensuring correct
behaviour in the presence of concurrent transactions

As we’ll see there are trade-offs between the ease of
programming within a particular transactional framework,
the extent that concurrent execution of transactions is
possible and the isolation that is enforced

In some cases — where data is held entirely in main memory —
we may just be concerned with controlling concurrency

Note the distinction with the concurrency control schemes
based (e.g.) on programmers using mutexes and condition
variables: here the system enforces isolation

Distributed Systems and Transactions Slide 7-6



[solation

Recall our original example:

transaction {
1f (server.getBalance(src) >= amount) {
server.credit (dest, amount);
server.debit (src, amount);
return true;
} else {
return false;

What can the system do in order to enforce isolation between
transactions specified in this manner and initiated
concurrently?

A simple approach: have a single lock that’s held while
executing a transaction, allowing only one to operate at once

Simple, ‘clearly correct’, independent of the operations
performed within the transaction

Does not enable concurrent execution, e.g. two of these
operations on separate sets of accounts

What happens if operations can fail?

Distributed Systems and Transactions Slide 7-7



[solation — serializability

This idea of executing transactions serially provides a useful

correctness criterion for executing transactions in parallel:

A concurrent execution is serializable if there is some serial

execution of the same transactions that gives the same

result — the programmer cannot distinguish between

parallel execution and the simple one-at-a-time scheme

Suppose we have two transactions:

Tl: transaction {
int s = server.getBalance (A);
int t = server.getBalance (B);

return s + t;

T2: transaction {
server.credit (A, 100);
server.debit (B, 100);

If we assume that the individual getBalance, credit and

debit operations are atomic (e.g. synchronized methods

on the server) then an execution without further concurrency

control can proceed in 6 ways

Distributed Systems and Transactions



[solation — serializability (2)

Both of these concurrent executions are OK:

r: — |

T2

T1:

1

r2: [

Neither of these concurrent executions is valid:

T1: A.read B.read

T2: A.credit B.debit

T1: A.read B.read

72: e B.debit

i

In each case some — but not all — of the effects of T2 have been

seen by T1, meaning that we have not achieved isolation

between the transactions

Distributed Systems and Transactions

Slide 7-9



[solation — serializability (3)

We can depict a particular execution of a set of concurrent
transactions by a history graph

Nodes in the graph represent the operations comprising
each transaction, e.g. T1: A.read

A directed edge from node a to node b means that a
happens before b

- Operations within a transaction are totally ordered by
the program order in which they occur

- Conflicting (i.e. non-commutative) operations on the
same object are ordered by the object’s implementation

For clarity we usually omit edges that can be inferred by the
transitivity of happens before

Suppose again that we have two objects A and B associated
with integer values and run transaction T1 that reads values
from both and transaction T2 that adds to A and subtracts

from B

Distributed Systems and Transactions Slide 7-10



[solation — serializability (4)

These histories are OK. Either both the read operations see
the old values of A and B:

T1:

T2:

or both read operations see the new values:

T1:

commit

T2:

commit

Distributed Systems and Transactions Slide 7-11



[solation — serializability (5)

These histories show non-serializable executions in which one
read sees an old value and the other sees a new value:

T1:

T2: .credi commit

T1:

T2: credi commit
In general, cycles are caused by three kinds of problem:

Lost updates (e.g. by another transaction overwriting them
before they are commmitted)

Dirty reads (e.g. of updates before they are committed)

Unrepeatable reads (e.g. before an update by another
transaction overwrites it)

Distributed Systems and Transactions Slide 7-12



[solation & strict isolation

Here we're interested in avoiding all three kinds of problem so
that committed transactions built from simple read and update
operations satisfy serializable execution

We can distinguish between enforcing:

Strict isolation: actually ensure that transactions are
isolated during their execution — prohibit all three problems

Non-strict isolation: ensure that a transaction was isolated
before it’s allowed to commit

Non-strict isolation may permit more concurrency but can lead
to delays on commit (e.g. a transaction that performed a dirty
read cannot commit until the writer has) and cascading aborts
(if the writer actually aborts)

NB: in some situations weaker guarantees are accepted for
higher concurrency

— In systems using locks to enforce isolation: so long
as all transactions avoid lost updates, the decision to
avoid dirty & unrepeatable reads can be made on a
per-transaction bases

Distributed Systems and Transactions Slide 7-13



Exercises

7-1  Define the ACID properties for transactions using a simple
example (such as transfers between a number of bank
accounts) as illustration. For each property, give a possible
(incorrect) execution which violates it.

7-2 Slide 7-8 says that there are 6 ways in which execution can
proceed, but Slide 7-9 depicts only 4. Illustrate the
remaining 2 possible executions and construct history
graphs for them.

If Java were to support a transaction keyword then its
semantics would need to be defined carefully. Describe how
it could behave when the transactional code:

i) accesses local variables

ii) accesses fields

iii) throws exceptions

iv) makes method calls

v) uses mutexes and condition variables

(
(
(
(
(
(

vi) creates threads

You should assume that it is for multi-threaded use on a
single computer, rather than needing to support RMI or
other kinds of external communication.

Distributed Systems and Transactions Slide 7-14



Lecture 8: Enforcing isolation

Previous lecture

Problems of compound operations
ACID properties for transactions

Serializability

Overview of this lecture

Implementing isolation
Two-phase locking
Timestamp ordering

Optimistic concurrency control

Distributed Systems and Transactions Slide 8-1



Isolation — two-phase locking

We’ll now look at some mechanisms for ensuring that
transactions are executed in a serializable manner while
allowing more concurrency than an actual serial execution
would achieve

In two-phase locking (2PL) each transaction is divided into

a phase of acquiring locks

a phase of releasing locks

Locks must exclude other operations that may conflict with
those to be performed by the lock holder.

Operations can be performed during both phases so long as the
appropriate locks are held.

Simple mutual exclusion locks may suffice, but could limit
concurrency. In the example we could use a MRSW lock, held
in read mode for getBalance and write mode for credit
and debit

Distributed Systems and Transactions Slide 8-2



[solation — two-phase locking (2)

How does the system know when (and how) to acquire and
release locks if transactions are defined in the form:

transaction {
if (server.getBalance(src) >= amount) {
server.credit (dest, amount);
server.debit (src, amount);
return true;
} else {

return false;

Could require explicit invocations by the programmer, e.g.
expose 1ock and unlock operations on the server

- acquire a read lock on src before 2, release if the else
clause is taken,

- upgrade to a write lock on src before 3,
- acquire a write lock on dest before 4,

- release the lock on src any time after acquiring both
locks,

- release the lock on dest after 4

Distributed Systems and Transactions Slide 8-3



[solation — two-phase locking (3)

How well would this form of two-phase locking work?

Ensures serializable execution if implemented correctly

Allows arbitrary application-specific knowledge to be
exploited, e.g. using MRSW for increased concurrency over
mutual exclusion locks

Allowing other transactions to access objects as soon as
they have been unlocked increases concurrency

Complexity of programming (e.g. 2PL, = MRSW needs an
upgrade operation here)

Would be nice to provide startTransaction &
endTransaction rather than individual lock operations

Risk of deadlock

If T}y locks an object just released by 7T}, then isolation
requires that

- T} cannot commit until 7}, has

— Ty must abort if Ty, does (‘cascading aborts’)

Some of these problems can be addressed by Strict 2PL in
which all locks are held until commit/abort: transactions never
see partial updates made by others

Distributed Systems and Transactions Slide 8-4



[solation — timestamp ordering

Timestamp ordering (TSO) is another mechanism to enforce
isolation:

Each transaction has a timestamp — e.g. of its start time.
These must be totally ordered

The ordering between these timestamps will give a
serializable order for the transactions

If T, and T} both access some object then they must do so
according to the ordering of their timestamps

Basic implementation:

Augment each object with a field holding the timestamp of

the transaction that most recently invoked an operation on

it

Check the object’s timestamp against the transaction’s each
time an operation is invoked:

The operation is allowed if the transaction’s timestamp
is latest

The operation is rejected as too late if the transaction’s
timestamp is earlier

Distributed Systems and Transactions Slide 8-5



[solation — timestamp ordering (2)

One serializable order is achieved: that of the timestamps of
the transactions, e.g.

Tl,l:startTransaction T2,l:startTransaction
Tl,2:server.getBalance(A) T2,2:server.credit (A, 100)
Tl,3:server.getBalance(B) T2,3:server.debit (B, 100)

T1,1 executes, — timestamp 17

T1, 2 executes, A: 17, read

T2 ,1 executes, — timestamp 42

T2, 2 executes, OK (later) A: 42 credit
T2, 3 executes, B: 42, debit

T1,3 attempted: too late 17 earlier than 42 and read
conflicts with credit

In this case both transactions could have committed if T1, 3
had been executed before T2, 3

Distributed Systems and Transactions Slide 8-6



[solation — timestamp ordering (3)

The decision of whether to admit a particular operation is
based on information local to the object

Simple to implement — e.g. by interposing the checks on
each invocation at the server (contrast with non-strict 2PL)

Avoiding locking may increase concurrency
Deadlock is not possible
Needs a roll-back mechanism

Cascading aborts are possible — e.g. if T1, 2 had updated A
then it would need to be undone and T2 would have to
abort because it may have been influenced by T1

— could delay T2, 2 until T1 either
commits or aborts (still avoiding deadlock)

Serializable executions can be rejected if they do not agree
with the transactions’ timestamps (e.g. executing T2 in its
entirety, then T1)

Generally: the low overheads and simplicity make T'SO good
when conflicts are rare

Distributed Systems and Transactions Slide 8-7



[solation — OCC

Optimistic Concurrency Control (OCC) is the third kind of
mechanism we will look at for enforcing isolation

Optimistic schemes assume that concurrent transactions
rarely conflict

Rather than ensuring isolation during execution a
transaction proceeds directly and serializability is checked
at commit time

Assuming this check usually succeeds (and is itself fast)
then OCC will perform well

...if the check often fails then performance may be poor
because the work done executing the transaction is wasted

For instance consider implementing a shared counter using
atomic compare and swap:

do {
old_val = counter;
new_val = old_wval + 1;

} while (CAS (&counter, old_val —-> new_val));

Distributed Systems and Transactions Slide 8-8



[solation — OCC (2)

More generally, a transaction proceeds by taking shadow copies
of each object it uses (when it accesses it for the first time). It
works on these shadows so changes remain local.

Upon commit it must:

Validate that the the shadows were consistent...

...and no other transaction has committed an operation on
an object which conflicts with one intended by this
transaction

If OK then commit the updates to the persistent objects, in
the same transaction-order at every object

If not OK then abort: discard shadows and retry

Until commit, updates are made locally. Abort is easy. No need
for a roll-back mechanism

No cascading aborts or deadlock

But conflicts force transactions to retry

Distributed Systems and Transactions Slide 8-9



[solation — OCC (3)

The first step avoids unrepeatable reads, e.g. T2 has seen
T1’s update to B but not seen T1’s update to A:

Object A Object B

T — | T
Validate -> OK

| |
T2 | T
Validate

The second step avoids lost updates, e.g. T'1 updates A and
B, which T2 would overwrite if it was accepted:

Object A Object B I

T1 L '\'

| | |
Validate -> OK

T2 — |
Validate

Distributed Systems and Transactions Slide 8-10



Implementing validation

Validation is the complex part of OCC. As usual there are
trade-offs between the implementation complexity, generality
and likelihood that a transaction must abort

We’'ll consider a validation scheme using

a single-threaded validator

the usual distinction between conflicting and commutative
operations

Transactions are assigned timestamps when they pass
validation, defining the order in which the transactions have
been serialized. We'll assign timestamps when validation starts
and then either

confirm during validation that this gives a serializable order,
or

discover that it does not and abort the transaction

Elaborate schemes are probably unnecessary: OCC assumes
transactions do not usually conflict

Distributed Systems and Transactions Slide 8-11



[mplementing validation (2)

The validator maintains a list of transactions it has accepted:

Validated Validation | Objects Updates
transaction | timestamp | updated | written back
T1 10 A B, C Yes
T2 11 D Yes
T3 12 A E No

Once a transaction passes validation, it can proceed to write
its updates back to the shared objects

Then the ‘written back’ flag can be set for it

Each object records the timestamp of the most recent
transaction to update it:

Object | Timestamp
A 12
B 10
C 10
D 11
E 9

In this case T'3 is still writing back its updates: it’s done A
but not yet reached E

Distributed Systems and Transactions Slide 8-12



[mplementing validation (3)

Consider T'4 which updates B and E. Before it starts:

Record the timestamp of the most recently validated
fully-written-back transaction — in this case 11. This will be
T'4’s start time

When T'4 accesses any object for the first time:

Take a shadow copy of the object’s current state

Record the timestamp seen (e.g. 10 for B and 9 for E)

Validation phase 1:

Compare each shadow’s timestamp against the start time

Shadow earlier /equal: part of a consistent snapshot at
the start time (B, E both OK here)

Shadow later: it may have seen a subsequent update not

seen by other shadows

Validation phase 2:

Compare the transaction 7'4 against each entry in the list
after its start time:

No problem if they do not conflict

Abort T'4 if a conflict is found (with 7°3 on E in this
case)

Distributed Systems and Transactions Slide 8-13



[solation — recap

We've seen three schemes:

2PL uses explicit locking to prevent concurrent transactions
performing conflicting operations. Strict 2PL enforces strict

isolation and avoids cascading aborts. Both may allow
deadlock

Use when contention is likely and deadlock avoidable.
Use strict 2PL if transactions are short or cascading
aborts problematic

TSO assigns transactions to a serial order at the time they
start. Can be modified to enforce strict isolation. Does not
deadlock but serializable executions may be rejected

Simple and effective when conflicts are rare. Decisions
are made local to each object: well suited for distributed
systems

OCC allows transactions to proceed in parallel on shadow
objects, deferring checks until they try to commit

Good when contention is rare. Validator may allow more
flexibility than T'SO

Distributed Systems and Transactions Slide 8-14



Exercises

8-1 A system is to support abortable transactions that operate
on a data structure held only in main memory.

(a) Define and distinguish the properties of isolation and
strict isolation.

(b) Describe strict two-phase locking (S-2PL) and how it
enforces strict isolation.

(c) What impact would be made by changing from S-2PL to
ordinary 2PL7

You should say what the consequences are (i) during a
transaction’s execution, (ii) when a transaction attempts
to commit and (iii) when a transaction aborts?

Distributed Systems and Transactions Slide 8-15



Exercises (2)

8-2 You discover that a system does not perform as well as
intended using S-2PL (measured in terms of the mean
number of transactions that commit each second). Suggest
why this may be in the following situations and describe an
enhancement or alternative mechanism for concurrency
control for each:

(a) The workload generates frequent contention for locks.
The commit rate sometimes drops to (and then remains
at) zero.

(b) Some transactions update several objects, then perform
private computation for a long period of time before
making one final update.

(¢) Contention is extremely rare.

Distributed Systems and Transactions Slide 8-16



Exercises (3)

8-3% A system is using S-2PL to ensure the serializable execution
of a group of transactions. Suppose that a new kind of
transaction is to be supported which is tolerant to dirty
reads and to unrepeatable reads.

(a) Describe how the new transaction could proceed, in
terms of when it must acquire and release locks on the
objects from which it (i) reads and (ii ) updates.

(b) Does supporting this new kind of transaction have any
impact on the S-2PL algorithm used by the existing
ones?

Past exam questions: 1994 Paper 6 Q7, 2001 Paper 3 Q1

Distributed Systems and Transactions Slide 8-17



Lecture 9: Crash recovery & logging

Previous lecture

Enforcing isolation
Two-phase locking
Timestamp ordering

Optimistic concurrency control

Overview of this lecture

Logging
Crash recovery
Checkpoints

Distributed Systems and Transactions Slide 9-1



Persistent storage

Assume a fail-stop model of crashes in which

the contents of main memory (and above in the memory
hierarchy) is lost

non-volatile storage is preserved (e.g. data written to disk)

If we want the state of an object to be preserved across a
machine crash then we must either

ensure that sufficient replicas exist on different machines
that the risk of losing all is tolerable (Part-11 Distributed
Systems)

ensure that the enough information is written to
non-volatile storage in order to recover the state after a
restart

Can we just write object state to disk before every commit?
(e.g. invoking £1lush () on any kind of Java OutputStream)

Not directly: the failure may occur part-way through the
disk write (particularly for large amounts of data)

Distributed Systems and Transactions Slide 9-2



Persistent storage — logging

We could split the update into stages:

Write details of the proposed update to an write-ahead log
— e.g. in a simple case giving the old and new values of the
data, or giving a list of smaller updates as a set of
(address, old, new) tuples

= - - - = = =

2:6C ->4C
3:6C ->4C
. 4: 6F -> 4F

48 | 65 | 6C| 6C| 6F | 21 | 00 |

N

= - - - - = =

2:6C ->4C
3:6C ->4C
. 4: 6F —> 4F

48 | 45 | 4Cc| 6C| 6F | 21 | 00 5

N

7/

Crash during 1 = no updates performed

Crash during 2 = re-check log, either undo (so no changes) or
redo (so all changes made)

Distributed Systems and Transactions Slide 9-3



Persistent storage — logging (2)

More generally we can record details of multiple transactions in
the log by associating each with a transaction id. Complete
records, held in an append-only log, may be of the form:

(transaction, operation, old, new)

or (transaction, start /abort/commit)

Bo| JamaN

Bo| J19pIO

- Object values Log entries A
2 T2, ABORT |
O x=3 !
@, |
8| -1 T2, y.add(10), 17, 27 |
.\ T1, x.add(1), 2, 3 |
' Object values T2, zadd(2), 40,42
| T2, START |
I X= 2 I
x! T1, START :
8| =" T0, COMMIT |
| 2=42 T0, x.add(1), 1, 2 ;
: T0, START I

Distributed Systems and Transactions Slide 9-4



Persistent storage — logging (3)

We can cache values in memory and use the log for recovery

A portion of the log may also be held in volatile storage,
but records for a transaction must be written to
non-volatile storage before that transaction commits

Values can be written out lazily

This allows a basic recovery scheme by processing log entries in
turn (oldest — youngest)

Note the need for an idempotent record of an update — e.g.
for add we keep the new & old values as well as the
difference

The old value lets us undo a transaction that’s either logged
as aborted...

...or for which the log stops before we know its outcome

The naive recovery algorithm can be inefficient

Distributed Systems and Transactions Slide 9-5



Persistent storage — logging (4)

A checkpoint mechanism can be used, e.g. every x seconds or
every y log records. For each checkpoint:

Force log records out to non-volatile storage
Write a special checkpoint record that identifies the

then-active transactions

Force cached updates out to non-volatile storage

2
'g:;: x=3
@M,
0: y=17

/

/ Object values

Log entries

T2, ABORT

T2, y.add(10), 17, 27
T1, x.add(1), 2, 3

—= Checkpoint:

T1,T2 active ——

T2, z.add(2), 40, 42
T2, START

T1, START <<—

>

Bo| JamaN

i xX=2
L
2: y:17
o,

: Z=42

Distributed Systems and Transactions

/- .
Restart file
N

6ol J19pIO

<

Slide 9-6



Persistent storage — logging (5)

Checkpoint Failure
2 : : time
o P | |
T Q | |
© R | :
(7)) . .
c | |
o | T<—
- | |

P already committed before the checkpoint — any items

cached in volatile storage must have been flushed

(Q active at the checkpoint but subsequently committed — log

entries must have been flushed at commit, REDO
R active but not yet committed - UNDO
S not active but has committed — REDO

~

Distributed Systems and Transactions

not active, not yet committed — UNDO

Slide 9-7



Persistent storage — logging (6)

A general algorithm for recovery:

The recovery manager keeps UNDO and REDO lists

Initialize UNDO with the set of transactions active at the
last checkpoint

REDO is initially empty
Search forward from the checkpoint record:

- Add transactions that start to the UNDO list
- Move transactions that commit from the UNDO list to
the REDO list

Then work backwards through the log from the end to the
checkpoint record:

- UNDOing the effect of transactions on the UNDO list

Then work forwards from the log from the checkpoint
record:

- REDOing the effect of transactions in the REDO list

Distributed Systems and Transactions Slide 9-8



Persistent storage — shadowing

An alternative to logging: create separate old and new versions
of the data structures being changed

0 | 2 3 4 5 6
48 L65 L6C L6C L6F L21 LOO

Old meta-data

An update starts by constructing a new ‘shadow’ version of the
data, possibly sharing unchanged components:

Vs

48 | 65

oc | oc | oF | 2

Old meta—data

e

New meta—data 7 8 9 A

NN

The change is committed by a single in-place update to a
location containing a pointer to the current version. This last
change must be guaranteed atomic by the system

How can this be extended for persistent updates to multiple
objects?

Distributed Systems and Transactions Slide 9-9



Exercises

9-1

9-2

Consider the basic logging algorithm (without
checkpointing). Show how it enforces atomicity and
durability of committed transactions.

While it is not necessary to construct a formal proof, you
should be methodical and consider the different operations
that the system may perform (e.g. updating objects in
memory, starting and concluding transactions, transfers
between disk and the in-memory object cache and writing
of log entries). Consider the effect of failure and recovery
after each one.

Suppose that you wish to augment the Slime Volleyball
game with a high-score table held on disk. Is it necessary to
use any of the schemes presented here for persistent
storage? If so then suggest which would be most
appropriate. If not then say why none is needed.

Past exam questions: 1999 Paper 4 Q2, 1995 Paper 3 Q1, 1997
Paper 4 Q2

Distributed Systems and Transactions Slide 9-10



