
Complexity Theory 1

Complexity Theory

Lectures 1–6

Lecturer: Dr. Timothy G. Griffin

Slides by Anuj Dawar

Computer Laboratory

University of Cambridge

Easter Term 2009

http://www.cl.cam.ac.uk/teaching/0809/Complexity/

Cambridge Easter 2009



Complexity Theory 2

Texts

The main texts for the course are:

Computational Complexity.

Christos H. Papadimitriou.

Introduction to the Theory of Computation.

Michael Sipser.

Other useful references include:

Computers and Intractability: A guide to the theory of

NP-completeness.

Michael R. Garey and David S. Johnson.

Structural Complexity. Vols I and II.

J.L. Balcázar, J. Dı́az and J. Gabarró.

Computability and Complexity from a Programming Perspective.

Neil Jones.

Cambridge Easter 2009



Complexity Theory 3

Outline

A rough lecture-by-lecture guide, with relevant sections from the

text by Papadimitriou (or Sipser, where marked with an S).

• Algorithms and problems. 1.1–1.3.

• Time and space. 2.1–2.5, 2.7.

• Time Complexity classes. 7.1, S7.2.

• Nondeterminism. 2.7, 9.1, S7.3.

• NP-completeness. 8.1–8.2, 9.2.

• Graph-theoretic problems. 9.3

Cambridge Easter 2009



Complexity Theory 4

Outline - contd.

• Sets, numbers and scheduling. 9.4

• coNP. 10.1–10.2.

• Cryptographic complexity. 12.1–12.2.

• Space Complexity 7.1, 7.3, S8.1.

• Hierarchy 7.2, S9.1.

• Descriptive Complexity 5.6, 5.7.

Cambridge Easter 2009



Complexity Theory 5

Complexity Theory

Complexity Theory seeks to understand what makes certain

problems algorithmically difficult to solve.

In Data Structures and Algorithms, we saw how to measure the

complexity of specific algorithms, by asymptotic measures of

number of steps.

In Computation Theory, we saw that certain problems were not

solvable at all, algorithmically.

Both of these are prerequisites for the present course.

Cambridge Easter 2009



Complexity Theory 6

Algorithms and Problems

Insertion Sort runs in time O(n2), while Merge Sort is an

O(n logn) algorithm.

The first half of this statement is short for:

If we count the number of steps performed by the Insertion

Sort algorithm on an input of size n, taking the largest

such number, from among all inputs of that size, then the

function of n so defined is eventually bounded by a

constant multiple of n2.

It makes sense to compare the two algorithms, because they seek to

solve the same problem.

But, what is the complexity of the sorting problem?

Cambridge Easter 2009



Complexity Theory 7

Lower and Upper Bounds

What is the running time complexity of the fastest algorithm that

sorts a list?

By the analysis of the Merge Sort algorithm, we know that this is

no worse than O(n logn).

The complexity of a particular algorithm establishes an upper

bound on the complexity of the problem.

To establish a lower bound, we need to show that no possible

algorithm, including those as yet undreamed of, can do better.

In the case of sorting, we can establish a lower bound of Ω(n log n),

showing that Merge Sort is asymptotically optimal.

Sorting is a rare example where known upper and lower bounds

match.

Cambridge Easter 2009



Complexity Theory 8

Review

The complexity of an algorithm (whether measuring number of

steps, or amount of memory) is usually described asymptotically:

Definition

For functions f : IN→ IN and g : IN→ IN, we say that:

• f = O(g), if there is an n0 ∈ IN and a constant c such that for

all n > n0, f(n) ≤ cg(n);

• f = Ω(g), if there is an n0 ∈ IN and a constant c such that for

all n > n0, f(n) ≥ cg(n).

• f = θ(g) if f = O(g) and f = Ω(g).

Usually, O is used for upper bounds and Ω for lower bounds.

Cambridge Easter 2009



Complexity Theory 9

Lower Bound on Sorting

An algorithm A sorting a list of n distinct numbers a1, . . . , an.

done done done done done

ai < aj?

ak < al?
ap < aq?

ar < as?.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

To work for all permutations of the input list, the tree must have at

least n! leaves and therefore height at least log2(n!) = θ(n logn).

Cambridge Easter 2009



Complexity Theory 10

Travelling Salesman

Given

• V — a set of nodes.

• c : V × V → IN — a cost matrix.

Find an ordering v1, . . . , vn of V for which the total cost:

c(vn, v1) +
n−1
∑

i=1

c(vi, vi+1)

is the smallest possible.

Cambridge Easter 2009



Complexity Theory 11

Complexity of TSP

Obvious algorithm: Try all possible orderings of V and find the

one with lowest cost.

The worst case running time is θ(n!).

Lower bound: An analysis like that for sorting shows a lower

bound of Ω(n logn).

Upper bound: The currently fastest known algorithm has a

running time of O(n22n).

Between these two is the chasm of our ignorance.

Cambridge Easter 2009



Complexity Theory 12

Formalising Algorithms

To prove a lower bound on the complexity of a problem, rather

than a specific algorithm, we need to prove a statement about all

algorithms for solving it.

In order to prove facts about all algorithms, we need a

mathematically precise definition of algorithm.

We will use the Turing machine.

The simplicity of the Turing machine means it’s not useful

for actually expressing algorithms, but very well suited for

proofs about all algorithms.

Cambridge Easter 2009



Complexity Theory 13

Turing Machines

For our purposes, a Turing Machine consists of:

• K — a finite set of states;

• Σ — a finite set of symbols, including ⊔.

• s ∈ K — an initial state;

• δ : (K × Σ)→ (K ∪ {a, r})× Σ× {L,R, S}
A transition function that specifies, for each state and symbol a

next state (or accept acc or reject rej), a symbol to overwrite

the current symbol, and a direction for the tape head to move

(L – left, R – right, or S - stationary)

Cambridge Easter 2009



Complexity Theory 14

Configurations

A complete description of the configuration of a machine can be

given if we know what state it is in, what are the contents of its

tape, and what is the position of its head. This can be summed up

in a simple triple:

Definition

A configuration is a triple (q, w, u), where q ∈ K and w, u ∈ Σ⋆

The intuition is that (q, w, u) represents a machine in state q with

the string wu on its tape, and the head pointing at the last symbol

in w.

The configuration of a machine completely determines the future

behaviour of the machine.

Cambridge Easter 2009



Complexity Theory 15

Computations

Given a machine M = (K,Σ, s, δ) we say that a configuration

(q, w, u) yields in one step (q′, w′, u′), written

(q, w, u)→M (q′, w′, u′)

if

• w = va ;

• δ(q, a) = (q′, b,D); and

• either D = L and w′ = v u′ = bu

or D = S and w′ = vb and u′ = u

or D = R and w′ = vbc and u′ = x, where u = cx. If u is

empty, then w′ = vb⊔ and u′ is empty.

Cambridge Easter 2009



Complexity Theory 16

Computations

The relation →⋆
M is the reflexive and transitive closure of →M .

A sequence of configurations c1, . . . , cn, where for each i,

ci →M ci+1, is called a computation of M .

The language L(M) ⊆ Σ⋆ accepted by the machine M is the set of

strings

{x | (s, ⊲, x)→⋆
M (acc, w, u) for some w and u}

A machine M is said to halt on input x if for some w and u, either

(s, ⊲, x)→⋆
M (acc, w, u) or (s, ⊲, x)→⋆

M (rej, w, u)

Cambridge Easter 2009



Complexity Theory 17

Decidability

A language L ⊆ Σ⋆ is recursively enumerable if it is L(M) for some

M .

A language L is decidable if it is L(M) for some machine M which

halts on every input.

A language L is semi-decidable if it is recursively enumerable.

A function f : Σ⋆ → Σ⋆ is computable, if there is a machine M ,

such that for all x, (s, ⊲, x)→⋆
M (acc, f(x), ε)

Cambridge Easter 2009



Complexity Theory 18

Example

Consider the machine with δ given by:

⊲ 0 1 ⊔

s s, ⊲, R s, 0, R s, 1, R q,⊔, L

q acc, ⊲, R q,⊔, L rej,⊔, R q,⊔, L

This machine will accept any string that contains only 0s before

the first blank (but only after replacing them all by blanks).

Cambridge Easter 2009



Complexity Theory 19

Multi-Tape Machines

The formalisation of Turing machines extends in a natural way to

multi-tape machines. For instance a machine with k tapes is

specified by:

• K, Σ, s; and

• δ : (K × Σk)→ K ∪ {a, r} × (Σ× {L,R, S})k

Similarly, a configuration is of the form:

(q, w1, u1, . . . , wk, uk)

Cambridge Easter 2009



Complexity Theory 20

Complexity

For any function f : IN→ IN, we say that a language L is in

TIME(f(n)) if there is a machine M = (K,Σ, s, δ), such that:

• L = L(M); and

• The running time of M is O(f(n)).

Similarly, we define SPACE(f(n)) to be the languages accepted by a

machine which uses O(f(n)) tape cells on inputs of length n.

In defining space complexity, we assume a machine M , which has a

read-only input tape, and a separate work tape. We only count

cells on the work tape towards the complexity.

Cambridge Easter 2009



Complexity Theory 21

Nondeterminism

If, in the definition of a Turing machine, we relax the condition on

δ being a function and instead allow an arbitrary relation, we

obtain a nondeterministic Turing machine.

δ ⊆ (K × Σ)× (K ∪ {a, r} × Σ× {R,L, S}).

The yields relation →M is also no longer functional.

We still define the language accepted by M by:

{x | (s, ⊲, x)→⋆
M (acc, w, u) for some w and u}

though, for some x, there may be computations leading to

accepting as well as rejecting states.

Cambridge Easter 2009



Complexity Theory 22

Computation Trees

With a nondeterministic machine, each configuration gives rise to a

tree of successive configurations.

(s, ⊲, x)

(q0, u0, w0)(q1, u1, w1)(q2, u2, w2)

(q00, u00, w00)

(q11, u11, w11)
.
.
.

.

.

.

(rej, u2, w2)

(acc, . . .)

(q10, u10, w10)

Cambridge Easter 2009



Complexity Theory 23

Decidability and Complexity

For every decidable language L, there is a computable function f

such that

L ∈ TIME(f(n))

If L is a semi-decidable (but not decidable) language accepted by

M , then there is no computable function f such that every

accepting computation of M , on input of length n is of length at

most f(n).

Cambridge Easter 2009



Complexity Theory 24

Complexity Classes

A complexity class is a collection of languages determined by three

things:

• A model of computation (such as a deterministic Turing

machine, or a nondeterministic TM, or a parallel Random

Access Machine).

• A resource (such as time, space or number of processors).

• A set of bounds. This is a set of functions that are used to

bound the amount of resource we can use.

Cambridge Easter 2009



Complexity Theory 25

Polynomial Bounds

By making the bounds broad enough, we can make our definitions

fairly independent of the model of computation.

The collection of languages recognised in polynomial time is

the same whether we consider Turing machines, register

machines, or any other deterministic model of computation.

The collection of languages recognised in linear time, on

the other hand, is different on a one-tape and a two-tape

Turing machine.

We can say that being recognisable in polynomial time is a

property of the language, while being recognisable in linear time is

sensitive to the model of computation.

Cambridge Easter 2009



Complexity Theory 26

Polynomial Time

P =

∞
⋃

k=1

TIME(nk)

The class of languages decidable in polynomial time.

The complexity class P plays an important role in our theory.

• It is robust, as explained.

• It serves as our formal definition of what is feasibly computable

One could argue whether an algorithm running in time θ(n100) is

feasible, but it will eventually run faster than one that takes time

θ(2n).

Making the distinction between polynomial and exponential results

in a useful and elegant theory.

Cambridge Easter 2009



Complexity Theory 27

Example: Reachability

The Reachability decision problem is, given a directed graph

G = (V,E) and two nodes a, b ∈ V , to determine whether there is a

path from a to b in G.

A simple search algorithm as follows solves it:

1. mark node a, leaving other nodes unmarked, and initialise set

S to {a};

2. while S is not empty, choose node i in S: remove i from S and

for all j such that there is an edge (i, j) and j is unmarked,

mark j and add j to S;

3. if b is marked, accept else reject.

Cambridge Easter 2009



Complexity Theory 28

Analysis

This algorithm requires O(n2) time and O(n) space.

The description of the algorithm would have to be refined for an

implementation on a Turing machine, but it is easy enough to show

that:

Reachability ∈ P

To formally define Reachability as a language, we would have to also

choose a way of representing the input (V,E, a, b) as a string.

Cambridge Easter 2009



Complexity Theory 29

Example: Euclid’s Algorithm

Consider the decision problem (or language) RelPrime defined by:

{(x, y) | gcd(x, y) = 1}

The standard algorithm for solving it is due to Euclid:

1. Input (x, y).

2. Repeat until y = 0: x← x mod y; Swap x and y

3. If x = 1 then accept else reject.

Cambridge Easter 2009



Complexity Theory 30

Analysis

The number of repetitions at step 2 of the algorithm is at most

O(log x).

why?

This implies that RelPrime is in P.

If the algorithm took θ(x) steps to terminate, it would not be a

polynomial time algorithm, as x is not polynomial in the length of

the input.

Cambridge Easter 2009



Complexity Theory 31

Primality

Consider the decision problem (or language) Prime defined by:

{x | x is prime}

The obvious algorithm:

For all y with 1 < y ≤ √x check whether y|x.

requires Ω(
√
x) steps and is therefore not polynomial in the length

of the input.

Is Prime ∈ P?

Cambridge Easter 2009



Complexity Theory 32

Boolean Expressions

Boolean expressions are built up from an infinite set of variables

X = {x1, x2, . . .}

and the two constants true and false by the rules:

• a constant or variable by itself is an expression;

• if φ is a Boolean expression, then so is (¬φ);

• if φ and ψ are both Boolean expressions, then so are (φ ∧ ψ)

and (φ ∨ ψ).

Cambridge Easter 2009



Complexity Theory 33

Evaluation

If an expression contains no variables, then it can be evaluated to

either true or false.

Otherwise, it can be evaluated, given a truth assignment to its

variables.

Examples:

(true ∨ false) ∧ (¬false)
(x1 ∨ false) ∧ ((¬x1) ∨ x2)

(x1 ∨ false) ∧ (¬x1)

(x1 ∨ (¬x1)) ∧ true

Cambridge Easter 2009



Complexity Theory 34

Boolean Evaluation

There is a deterministic Turing machine, which given a Boolean

expression without variables of length n will determine, in time

O(n2) whether the expression evaluates to true.

The algorithm works by scanning the input, rewriting formulas

according to the following rules:

Cambridge Easter 2009



Complexity Theory 35

Rules

• (true ∨ φ)⇒ true

• (φ ∨ true)⇒ true

• (false ∨ φ)⇒ φ

• (false ∧ φ)⇒ false

• (φ ∧ false)⇒ false

• (true ∧ φ)⇒ φ

• (¬true)⇒ false

• (¬false)⇒ true

Cambridge Easter 2009



Complexity Theory 36

Analysis

Each scan of the input (O(n) steps) must find at least one

subexpression matching one of the rule patterns.

Applying a rule always eliminates at least one symbol from the

formula.

Thus, there are at most O(n) scans required.

The algorithm works in O(n2) steps.

Cambridge Easter 2009



Complexity Theory 37

Satisfiability

For Boolean expressions φ that contain variables, we can ask

Is there an assignment of truth values to the variables

which would make the formula evaluate to true?

The set of Boolean expressions for which this is true is the language

SAT of satisfiable expressions.

This can be decided by a deterministic Turing machine in time

O(n22n).

An expression of length n can contain at most n variables.

For each of the 2n possible truth assignments to these variables, we

check whether it results in a Boolean expression that evaluates to

true.

Is SAT ∈ P?

Cambridge Easter 2009



Complexity Theory 38

Circuits

A circuit is a directed graph G = (V,E), with V = {1, . . . , n}
together with a labeling: l : V → {true, false,∧,∨,¬}, satisfying:

• If there is an edge (i, j), then i < j;

• Every node in V has indegree at most 2.

• A node v has

indegree 0 iff l(v) ∈ {true, false};
indegree 1 iff l(v) = ¬;

indegree 2 iff l(v) ∈ {∨,∧}

The value of the expression is given by the value at node n.

Cambridge Easter 2009



Complexity Theory 39

CVP

A circuit is a more compact way of representing a Boolean

expression.

Identical subexpressions need not be repeated.

CVP - the circuit value problem is, given a circuit, determine the

value of the result node n.

CVP is solvable in polynomial time, by the algorithm which

examines the nodes in increasing order, assigning a value true or

false to each node.

Cambridge Easter 2009



Complexity Theory 40

Composites

Consider the decision problem (or language) Composite defined by:

{x | x is not prime}

This is the complement of the language Prime.

Is Composite ∈ P?

Clearly, the answer is yes if, and only if, Prime ∈ P.

Cambridge Easter 2009



Complexity Theory 41

Hamiltonian Graphs

Given a graph G = (V,E), a Hamiltonian cycle in G is a path in

the graph, starting and ending at the same node, such that every

node in V appears on the cycle exactly once.

A graph is called Hamiltonian if it contains a Hamiltonian cycle.

The language HAM is the set of encodings of Hamiltonian graphs.

Is HAM ∈ P?

Cambridge Easter 2009



Complexity Theory 42

Examples

The first of these graphs is not Hamiltonian, but the second one is.

Cambridge Easter 2009



Complexity Theory 43

Polynomial Verification

The problems Composite, SAT and HAM have something in

common.

In each case, there is a search space of possible solutions.

the factors of x; a truth assignment to the variables of φ; a

list of the vertices of G.

The number of possible solutions is exponential in the length of the

input.

Given a potential solution, it is easy to check whether or not it is a

solution.

Cambridge Easter 2009



Complexity Theory 44

Verifiers

A verifier V for a language L is an algorithm such that

L = {x | (x, c) is accepted by V for some c}

If V runs in time polynomial in the length of x, then we say that

L is polynomially verifiable.

Many natural examples arise, whenever we have to construct a

solution to some design constraints or specifications.

Cambridge Easter 2009



Complexity Theory 45

Nondeterministic Complexity Classes

We have already defined TIME(f(n)) and SPACE(f(n)).

NTIME(f(n)) is defined as the class of those languages L which are

accepted by a nondeterministic Turing machine M , such that for

every x ∈ L, there is an accepting computation of M on x of

length at most f(n).

NP =
∞
⋃

k=1

NTIME(nk)

Cambridge Easter 2009



Complexity Theory 46

Nondeterminism

(s, ⊲, x)

(q0, u0, w0)(q1, u1, w1)(q2, u2, w2)

(q00, u00, w00)

(q11, u11, w11)
.
.
.

.

.

.

(rej, u2, w2)

(acc, . . .)

(q10, u10, w10)

For a language in NTIME(f(n)), the height of the tree is bounded

by f(n) when the input is of length n.

Cambridge Easter 2009



Complexity Theory 47

NP

A language L is polynomially verifiable if, and only if, it is in NP.

To prove this, suppose L is a language, which has a verifier V ,

which runs in time p(n).

The following describes a nondeterministic algorithm that accepts

L

1. input x of length n

2. nondeterministically guess c of length ≤ p(n)

3. run V on (x, c)

Cambridge Easter 2009



Complexity Theory 48

NP

In the other direction, suppose M is a nondeterministic machine

that accepts a language L in time nk.

We define the deterministic algorithm V which on input (x, c)

simulates M on input x.

At the ith nondeterministic choice point, V looks at the ith

character in c to decide which branch to follow.

If M accepts then V accepts, otherwise it rejects.

V is a polynomial verifier for L.

Cambridge Easter 2009



Complexity Theory 49

Generate and Test

We can think of nondeterministic algorithms in the generate-and

test paradigm:

yes

no
generatex Vx verify

Where the generate component is nondeterministic and the verify

component is deterministic.

Cambridge Easter 2009



Complexity Theory 50

Reductions

Given two languages L1 ⊆ Σ⋆
1, and L2 ⊆ Σ⋆

2,

A reduction of L1 to L2 is a computable function

f : Σ⋆
1 → Σ⋆

2

such that for every string x ∈ Σ⋆
1,

f(x) ∈ L2 if, and only if, x ∈ L1

Cambridge Easter 2009



Complexity Theory 51

Resource Bounded Reductions

If f is computable by a polynomial time algorithm, we say that L1

is polynomial time reducible to L2.

L1 ≤P L2

If f is also computable in SPACE(logn), we write

L1 ≤L L2

Cambridge Easter 2009



Complexity Theory 52

Reductions 2

If L1 ≤P L2 we understand that L1 is no more difficult to solve

than L2, at least as far as polynomial time computation is

concerned.

That is to say,

If L1 ≤P L2 and L2 ∈ P, then L1 ∈ P

We can get an algorithm to decide L1 by first computing f , and

then using the polynomial time algorithm for L2.

Cambridge Easter 2009



Complexity Theory 53

Completeness

The usefulness of reductions is that they allow us to establish the

relative complexity of problems, even when we cannot prove

absolute lower bounds.

Cook (1972) first showed that there are problems in NP that are

maximally difficult.

A language L is said to be NP-hard if for every language A ∈ NP,

A ≤P L.

A language L is NP-complete if it is in NP and it is NP-hard.

Cambridge Easter 2009



Complexity Theory 54

SAT is NP-complete

Cook showed that the language SAT of satisfiable Boolean

expressions is NP-complete.

To establish this, we need to show that for every language L in NP,

there is a polynomial time reduction from L to SAT.

Since L is in NP, there is a nondeterministic Turing machine

M = (K,Σ, s, δ)

and a bound nk such that a string x is in L if, and only if, it is

accepted by M within nk steps.

Cambridge Easter 2009



Complexity Theory 55

Boolean Formula

We need to give, for each x ∈ Σ⋆, a Boolean expression f(x) which

is satisfiable if, and only if, there is an accepting computation of M

on input x.

f(x) has the following variables:

Si,q for each i ≤ nk and q ∈ K
Ti,j,σ for each i, j ≤ nk and σ ∈ Σ

Hi,j for each i, j ≤ nk

Cambridge Easter 2009



Complexity Theory 56

Intuitively, these variables are intended to mean:

• Si,q – the state of the machine at time i is q.

• Ti,j,σ – at time i, the symbol at position j of the tape is σ.

• Hi,j – at time i, the tape head is pointing at tape cell j.

We now have to see how to write the formula f(x), so that it

enforces these meanings.

Cambridge Easter 2009



Complexity Theory 57

Initial state is s and the head is initially at the beginning of the

tape.

S1,s ∧H1,1

The head is never in two places at once
∧

i

∧

j

(Hi,j →
∧

j′ 6=j

(¬Hi,j′))

The machine is never in two states at once
∧

q

∧

i

(Si,q →
∧

q′ 6=q

(¬Si,q′))

Each tape cell contains only one symbol
∧

i

∧

j

∧

σ

(Ti,j,σ →
∧

σ′ 6=σ

(¬Ti,j,σ′))

Cambridge Easter 2009



Complexity Theory 58

The initial tape contents are x
∧

j≤n

T1,j,xj
∧

∧

n<j

T1,j,⊔

The tape does not change except under the head
∧

i

∧

j

∧

j′ 6=j

∧

σ

(Hi,j ∧ Ti,j′,σ)→ Ti+1,j′,σ

Each step is according to δ.

∧

i

∧

j

∧

σ

∧

q

(Hi,j ∧ Si,q ∧ Ti,j,σ)

→
∨

∆

(Hi+1,j′ ∧ Si+1,q′ ∧ Ti+1,j,σ′)

Cambridge Easter 2009



Complexity Theory 59

where ∆ is the set of all triples (q′, σ′, D) such that

((q, σ), (q′, σ′, D)) ∈ δ and

j′ =















j if D = S

j − 1 if D = L

j + 1 if D = R

Finally, some accepting state is reached
∨

i

Si,acc

Cambridge Easter 2009



Complexity Theory 60

CNF

A Boolean expression is in conjunctive normal form if it is the

conjunction of a set of clauses, each of which is the disjunction of a

set of literals, each of these being either a variable or the negation

of a variable.

For any Boolean expression φ, there is an equivalent expression ψ

in conjunctive normal form.

ψ can be exponentially longer than φ.

However, CNF-SAT, the collection of satisfiable CNF expressions, is

NP-complete.

Cambridge Easter 2009



Complexity Theory 61

3SAT

A Boolean expression is in 3CNF if it is in conjunctive normal form

and each clause contains at most 3 literals.

3SAT is defined as the language consisting of those expressions in

3CNF that are satisfiable.

3SAT is NP-complete, as there is a polynomial time reduction from

CNF-SAT to 3SAT.

Cambridge Easter 2009



Complexity Theory 62

Composing Reductions

Polynomial time reductions are clearly closed under composition.

So, if L1 ≤P L2 and L2 ≤P L3, then we also have L1 ≤P L3.

Note, this is also true of ≤L, though less obvious.

If we show, for some problem A in NP that

SAT ≤P A

or

3SAT ≤P A

it follows that A is also NP-complete.

Cambridge Easter 2009



Complexity Theory 63

Independent Set

Given a graph G = (V,E), a subset X ⊆ V of the vertices is said to

be an independent set, if there are no edges (u, v) for u, v ∈ X .

The natural algorithmic problem is, given a graph, find the largest

independent set.

To turn this optimisation problem into a decision problem, we

define IND as:

The set of pairs (G,K), where G is a graph, and K is an

integer, such that G contains an independent set with K or

more vertices.

IND is clearly in NP. We now show it is NP-complete.

Cambridge Easter 2009



Complexity Theory 64

Reduction

We can construct a reduction from 3SAT to IND.

A Boolean expression φ in 3CNF with m clauses is mapped by the

reduction to the pair (G,m), where G is the graph obtained from φ

as follows:

G contains m triangles, one for each clause of φ, with each

node representing one of the literals in the clause.

Additionally, there is an edge between two nodes in

different triangles if they represent literals where one is the

negation of the other.

Cambridge Easter 2009



Complexity Theory 65

Example

(x1 ∨ x2 ∨ ¬x3) ∧ (x3 ∨ ¬x2 ∨ ¬x1)

x1

x2
¬x3

¬x1

¬x2x3

Cambridge Easter 2009



Complexity Theory 66

Clique

Given a graph G = (V,E), a subset X ⊆ V of the vertices is called

a clique, if for every u, v ∈ X , (u, v) is an edge.

As with IND, we can define a decision problem version:

CLIQUE is defined as:

The set of pairs (G,K), where G is a graph, and K is an

integer, such that G contains a clique with K or more

vertices.

Cambridge Easter 2009



Complexity Theory 67

Clique 2

CLIQUE is in NP by the algorithm which guesses a clique and then

verifies it.

CLIQUE is NP-complete, since

IND ≤P CLIQUE

by the reduction that maps the pair (G,K) to (Ḡ,K), where Ḡ is

the complement graph of G.

Cambridge Easter 2009



Complexity Theory 68

k-Colourability

A graph G = (V,E) is k-colourable, if there is a function

χ : V → {1, . . . , k}

such that, for each u, v ∈ V , if (u, v) ∈ E,

χ(u) 6= χ(v)

This gives rise to a decision problem for each k.

2-colourability is in P.

For all k > 2, k-colourability is NP-complete.

Cambridge Easter 2009



Complexity Theory 69

3-Colourability

3-Colourability is in NP , as we can guess a colouring and verify it.

To show NP-completeness, we can construct a reduction from 3SAT

to 3-Colourability.

For each variable x, have two vertices x, x̄ which are connected in a

triangle with the vertex a (common to all variables).

In addition, for each clause containing the literals l1, l2 and l3 we

have a gadget.

Cambridge Easter 2009



Complexity Theory 70

Gadget

l1

l2

l3 b

With a further edge from a to b.

Cambridge Easter 2009


