Glossary of mathematical notation and terminology

- Set membership $x \in X$ means x is an element of the set X. (Non-membership is written $x \notin X$.)
- **Set inclusion** $|X \subseteq Y|$ means every element of X is an element of Y; X is a **subset** of Y.
- Set equality X = Y means every element of X is an element of Y and every element of Y is an element of X.
- Set comprehension $[x \in X | \text{ 'statement about } x']$ denotes the subset of X whose elements satisfy 'statement about x'.
- Listed sets $[x_1, x_2, ..., x_n]$ denotes the set whose elements are $x_1, x_2, ..., x_n$ $(n \ge 1)$; in the case n = 1 we get the singleton set $\{x\}$, whose unique element is x.
- **Empty set** $|\emptyset|$ denotes the set containing no elements; it is sometimes written as {}.
- **The set of natural numbers** \mathbb{N} has elements $0, 1, 2, 3, \ldots$
- **Intersection** $X \cap Y$ is defined by: $x \in X \cap Y$ if and only if $x \in X$ and $x \in Y$.
- **Union** $|X \cup Y|$ is defined by: $x \in X \cup Y$ if and only if $x \in X$ or $x \in Y$.
- (**Relative**) Complement $X \setminus Y$ is defined by: $x \in X \setminus Y$ if and only if $x \in X$ and $x \notin Y$.
- **Cartesian product** $X \times Y$ denotes the set of all **ordered pairs** (x, y), with $x \in X$ and $y \in Y$. (By definition, two such ordered pairs, (x, y) and (x', y') are equal if and only if x = x' and y = y'.) More generally the cartesian product $X_1 \times \cdots \times X_n$ of sets X_1, \ldots, X_n , consists of all **ordered** *n*-tuples (x_1, \ldots, x_n) , where $x_i \in X_i$ for each $i = 1, \ldots, n$. When $X_1 = \cdots = X_n = X$, we write X^n for the *n*-fold cartesian product of a set X.
- **Finite lists** X^* denotes the set of all **lists** of elements of X of any finite length n = 0, 1, 2, ... A list $(x_1, ..., x_n)$ of length $n \ge 1$ is just an element of the *n*-fold cartesian product X^n . The unique **list of length** 0 is written nil.
- **Partial functions** Pfn(X, Y) denotes the set of all **partial functions from** X **to** Y and consists of all subsets f of the cartesian product $X \times Y$ that satisfy
 - f is single-valued: for all $x \in X$ and $y \in Y$, if $(x, y) \in f$ and $(x, y') \in f$, then y = y'.

We will use the following notation for partial functions:

'f(x) = y' means ' $(x, y) \in f$ '

- ' $f(x)\downarrow$ ' means 'for some $y \in Y$, $(x, y) \in f$ ' (and is read 'f(x) is defined')
- ' $f(x)\uparrow$ ' means 'there is no $y \in Y$ with $(x, y) \in f$ ' (and is read 'f(x) is undefined')

An *n*-ary partial function from X to Y is just a partial function from the *n*-fold cartesian product X^n to Y. Stretching the English language to breaking point, one sometimes says of such an $f \in Pfn(X^n, Y)$ that it is a partial function of arity n. In this context, unary means 1-ary, binary means 2-ary, ternary means 3-ary, etc (?).

- (Total) Functions Fun(X, Y) denotes the set of all functions from X to Y and consists of all partial functions f from X to Y that satisfy
 - f is total: for all $x \in X$, $f(x) \downarrow$.

In this case, for each $x \in X$ we write f(x) for the unique $y \in Y$ such that $(x, y) \in f$. A function $f \in Fun(X, Y)$ is

- **injective** (or **one-to-one**) if and only if f(x) = f(x') implies x = x', for all $x, x' \in X$;
- surjective (or onto) if and only if for all $y \in Y$, there is some $x \in X$ with f(x) = y;
- **a bijection** (or **a one-to-one correspondence**) if and only if it is both injective and surjective.
- **Mathematical Induction** To prove that a property P(x) holds for all natural numbers $x = 0, 1, 2, 3, \ldots$, it suffices to prove the following two statements:

Base case: P(0) is true;

Induction step: for an arbitrary number x, if P(x) is true then so is P(x + 1).