Glossary of mathematical notation and terminology

Set membership $x \in X$ means x is an element of the set X. (Non-membership is written $x \notin X$.)

Set inclusion $X \subseteq Y$ means every element of X is an element of $Y ; X$ is a subset of Y.
Set equality $X=Y$ means every element of X is an element of Y and every element of Y is an element of X.

Set comprehension $\{x \in X \mid$ 'statement about x ' $\}$ denotes the subset of X whose elements satisfy 'statement about x '.

Listed sets $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ denotes the set whose elements are $x_{1}, x_{2}, \ldots, x_{n}(n \geq 1)$; in the case $n=1$ we get the singleton set $\{x\}$, whose unique element is x.

Empty set \emptyset denotes the set containing no elements; it is sometimes written as $\}$.
The set of natural numbers \mathbb{N} has elements $0,1,2,3, \ldots$
Intersection $X \cap Y$ is defi ned by: $x \in X \cap Y$ if and only if $x \in X$ and $x \in Y$.
Union $X \cup Y$ is defi ned by: $x \in X \cup Y$ if and only if $x \in X$ or $x \in Y$.
(Relative) Complement $X \backslash Y$ is defi ned by: $x \in X \backslash Y$ if and only if $x \in X$ and $x \notin Y$.
Cartesian product $X \times Y$ denotes the set of all ordered pairs (x, y), with $x \in X$ and $y \in Y$. (By defi nition, two such ordered pairs, (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ are equal if and only if $x=x^{\prime}$ and $y=y^{\prime}$.) More generally the cartesian product $X_{1} \times \cdots \times X_{n}$ of sets X_{1}, \ldots, X_{n}, consists of all ordered n-tuples $\left(x_{1}, \ldots, x_{n}\right)$, where $x_{i} \in X_{i}$ for each $i=1, \ldots, n$. When $X_{1}=\cdots=X_{n}=X$, we write X^{n} for the n-fold cartesian product of a set X.

Finite lists X^{*} denotes the set of all lists of elements of X of any fi nite length $n=$ $0,1,2, \ldots$. A list $\left(x_{1}, \ldots, x_{n}\right)$ of length $n \geq 1$ is just an element of the n-fold cartesian product X^{n}. The unique list of length 0 is written nil.

Partial functions $\operatorname{Pfn}(X, Y)$ denotes the set of all partial functions from X to Y and consists of all subsets f of the cartesian product $X \times Y$ that satisfy
f is single-valued: for all $x \in X$ and $y \in Y$, if $(x, y) \in f$ and $\left(x, y^{\prime}\right) \in f$, then $y=y^{\prime}$.

We will use the following notation for partial functions:
' $f(x)=y$ ' means ' $(x, y) \in f$ '
' $f(x) \downarrow$ ' means 'for some $y \in Y,(x, y) \in f^{\prime}$ ' (and is read ' $f(x)$ is defined')
' $f(x) \uparrow$ ' means 'there is no $y \in Y$ with $(x, y) \in f$ ' (and is read ' $f(x)$ is undefined')
An n-ary partial function from X to Y is just a partial function from the n-fold cartesian product X^{n} to Y. Stretching the English language to breaking point, one sometimes says of such an $f \in \operatorname{Pfn}\left(X^{n}, Y\right)$ that it is a partial function of arity n. In this context, unary means 1 -ary, binary means 2 -ary, ternary means 3 -ary, etc (?).
(Total) Functions $\operatorname{Fun}(X, Y)$ denotes the set of all functions from X to Y and consists of all partial functions f from X to Y that satisfy
f is total: for all $x \in X, f(x) \downarrow$.
In this case, for each $x \in X$ we write $f(x)$ for the unique $y \in Y$ such that $(x, y) \in f$. A function $f \in \operatorname{Fun}(X, Y)$ is
injective (or one-to-one) if and only if $f(x)=f\left(x^{\prime}\right)$ implies $x=x^{\prime}$, for all $x, x^{\prime} \in X ;$
surjective (or onto) if and only if for all $y \in Y$, there is some $x \in X$ with $f(x)=y$;
a bijection (or a one-to-one correspondence) if and only if it is both injective and surjective.

Mathematical Induction To prove that a property $P(x)$ holds for all natural numbers $x=0,1,2,3, \ldots$, it suffi ces to prove the following two statements:

Base case: $P(0)$ is true;
Induction step: for an arbitrary number x, if $P(x)$ is true then so is $P(x+1)$.

