
UNIVERSITY OF

CAMBRIDGE

Compiler Construction
(final version)

A 16-lecture course

Alan Mycroft

Computer Laboratory, Cambridge University

http://www.cl.cam.ac.uk/users/am/

2008–2009: Lent Term

Compiler Construction 1 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Course Plan

Part A : intro/background

Part B : a simple compiler for a simple language

Part C : implementing harder things, selected additional detail

Compiler Construction 2 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

A compiler

A compiler is a program which translates the source form of a

program into a semantically equivalent target form.

• Traditionally this was machine code or relocatable binary form,

but nowadays the target form may be a virtual machine (e.g.

JVM) or indeed another language such as C.

• Can appear a very hard program to write.

• How can one even start?

• It’s just like juggling too many balls (picking instructions while

determining whether this ‘+’ is part of ‘++’ or whether its right

operand is just a variable or an expression . . .).

Compiler Construction 3 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

How to even start?

“When finding it hard to juggle 4 balls at once, juggle them each in

turn instead . . . ”

�
�

�
�

character
stream

-

lex

�
�

�
�

token
stream

-
syn

�
�

�
�

parse

tree
-

trans

�
�

�
�

intermediate
code

-
cg

�
�

�
�

target

code

A multi-pass compiler does one ‘simple’ thing at once and passes its

output to the next stage.

These are pretty standard stages, and indeed language and (e.g.

JVM) system design has co-evolved around them.

Compiler Construction 4 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Compilers can be big and hard to understand

Compilers can be very large. In 2004 the Gnu Compiler Collection

(GCC) was noted to “[consist] of about 2.1 million lines of code and

has been in development for over 15 years”.

But, if we choose a simple language to compile (we’ll use the

‘intersection’ of C, Java and ML) and don’t seek perfect code and

perfect error messages then a couple thousand lines will suffice.

Compiler Construction 5 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Overviews

lex (lexical analysis) Converts a stream of characters into a

stream of tokens

syn (syntax analysis) Converts a stream of tokens into a parse

tree—a.k.a. (abstract) syntax tree.

trans (translation/linearisation) Converts a tree into simple

(linear) intermediate code—we’ll use JVM code for this.

cg (target code generation) Translates intermediate code into

target machine code— often as (text form) assembly code.

Compiler Construction 6 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

But text form does not run

• use an assembler to convert text form instructions into binary

instructions (Linux: .s to .o file format; Windows: .asm to .obj

file format).

• use a linker (‘ld’ on linux) to make an executable (.exe on

Windows) including both users compiled code and necessary

libraries (e.g. println).

And that’s all there is to do!

Compiler Construction 7 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Overview of ‘lex’

Converts a stream of characters into a stream of tokens.

From (e.g.)

{ let x = 1;

x := x + y;

}

to

LBRACE LET ID/x EQ NUM/1 SEMIC ID/x ASS ID/x PLUS ID/y

SEMIC RBRACE

Compiler Construction 8 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Overview of ‘syn’

Converts the stream of tokens into a parse tree.

id exp exp exp exp

definition exp

declaration command

block

LBRACE LET ID/x EQ NUM/1 SEMIC ID/x ASS ID/x PLUS ID/y SEMIC RBRACE

Compiler Construction 9 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Overview of ‘syn’ (2)

Want an an abstract syntax tree, not just concrete structure above:

{ let x = 1;

x := x + y;

}

might produce (repeated tree notes are shown shared)

LET EQDEF

ASS

NUMB

ID

PLUS

ID

1

x

y

Compiler Construction 10 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Overview of ‘trans’

Converts a tree into simple (linear) intermediate code. Thus

y := x<=3 ? -x : x

might produce (using JVM as our intermediate code):

iload 4 load x (4th local variable, say)

iconst 3 load 3

if_icmpgt L36 if greater (i.e. condition false) then jump to L36

iload 4 load x

ineg negate it

goto L37 jump to L37

label L36

iload 4 load x

label L37

istore 7 store y (7th local variable, say)

Compiler Construction 11 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Overview of ‘cg’

Translates intermediate code into target machine code.

y := x<=3 ? -x : x

can produce (simple if inefficient ‘blow-by-blow’) MIPS code:

lw $a0,-4-16($fp) load x (4th local variable)

ori $a1,$zero,3 load 3

slt $t0,$a1,$a0 swap args for <= instead of <

bne $t0,$zero,L36 if greater then jump to L36

lw $a0,-4-16($fp) load x

sub $a0,$zero,$a0 negate it

addi $sp,$sp,-4 first part of PUSH...

sw $a0,0($sp) ... PUSH r0 (to local stack)

B L37 jump to L37

L36: lw $a0,-4-16($fp) load x

addi $sp,$sp,-4 first part of PUSH...

sw $a0,0($sp) ... PUSH r0 (to local stack)

L37: lw $a0,0($sp) i.e. POP r0 (from local stack)...

addi $sp,$sp,4 ... 2nd part of POP

sw $a0,-4-28($sp) store y (7th local variable)

Compiler Construction 12 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Commercial justification for multi-pass compiler

Write n front-ends (lex/syn) and m back-ends (cg) and you get

n × m compilers (lots of cash!) for compilers translating any of n

languages into any of m target architectures.

Also, separate teams can work on separate passes. (‘passes’ are also

called ‘phases’).

Compiler Construction 13 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Machine Code

• Compilers typically translate a high-level language (e.g. Java)

into machine instructions for some machine.

• This course doesn’t care what machine we use, but examples will

mainly use MIPS or x86 code.

• We only use the most common instructions so you don’t need to

be an expert on Part Ib “Computer Design”.

• So here’s a very minimal subset we need to use:

Compiler Construction 14 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

MIPS Machine Code (1)

Instructions to:

• load a constant into a register, e.g. 0x12345678 by

movhi $a0,0x1234

ori $a0,$a0,0x5678

• load/store local variable at offset <nn>

lw $a0,<nn>($fp)

sw $a0,<nn>($fp)

• load/store global variable at address 0x00be3f04

movhi $a3,0x00be

lw $a0,0x3f04($a3)

sw $a0,0x3f04($a3)

Compiler Construction 15 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

MIPS Machine Code (2)

Instructions to:

• do basic arithmetic/logic/comparison

add $a2,$a0,$a1

xor $a2,$a0,$a1

slt $a2,$a0,$a1 ; comparison

• function calling: complicated (and we’re cheating a bit): caller

pushes the arguments to a function on the stack ($sp) then uses

jal; callee then makes a new stack frame by pushing the old

value of $fp (and the return address—pc following caller) then

sets $fp to $sp to form the new stack frame.

• function return is largely the opposite of function call; on the

MIPS put result in $v0 then return using jr.

Compiler Construction 16 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

JVM code subset (1)

We need only a small subset.

Arithmetic:

iconst 〈n〉 push integer n onto the stack.

iload 〈k〉 push the kth local variable onto the stack.

istore 〈k〉 pop the stack into the kth local variable.

getstatic 〈class:field〉 push a static field (logically a global

variable) onto the stack.

putstatic 〈class:field〉 pop the stack into a static field (logically a

global variable).

iadd, isub, ineg etc. arithmetic on top of stack.

Compiler Construction 17 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

JVM code subset (2)

Branching:

invokestatic f call a function.

ireturn return (from a function) with value at top of stack

if icmpeq ℓ, also if icmpgt, etc. pop two stack items, compare

them and perform a conditional branch on the result.

goto ℓ unconditional branch.

label ℓ not an instruction: just declares a label.

NB: apart from MIPS using registers and JVM using a stack the two

subsets provided give very similar functionality.

Compiler Construction 18 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

How do I see these in use?

Reading assembly-level output is often really useful to aid

understanding of how language features are implemented.

gcc -S foo.c # option -O2 is often clearer

will write a file foo.s containing assembly instructions for your

current architecture

Otherwise, use a disassembler to convert the object file back into

assembler level form, e.g. in Java

javac foo.java

javap -c foo

Compiler Construction 19 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Lecture 2

Stacks, Stack Frames, and the like . . .

Compiler Construction 20 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Stacks and Stack Frames

• Static/Global variables: allocated to a fixed location in memory.

• Local variables: need multiple copies for recursion etc.—use a

stack.

• A stack is a block of memory in which stack frames are allocated.

Function call allocates a new stack frame; function return

de-allocates it.

• MIPS register $fp points to stack frame of the currently active

function. When a function returns, its stack frame is deallocated

and $fp restored to point to the stack frame of the caller.

• Local variables: allocated to a fixed offset from $fp; 5th local

variable typically at -20($fp)

Compiler Construction 21 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Stacks and Stack Frames (2)

A “downward-growing stack” exemplified for main() which calls f()

which calls f():

stack

frame for mainframe for fframe for f

$fp

6

� direction of growth

〈unused〉

Compiler Construction 22 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Stacks and Stack Frames (3)

Stack frame needs to save pointer to previous stack frame (FP′) and

also return address (RA):

local vars

FP

6

FP′ RA

Compiler Construction 23 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Stacks and Stack Frames (4)

A stack now looks like:

stack

frame for mainframe for fframe for f

$fp

6

FPRA FPRA FPRAlocals locals locals

HHH 6HHH 6
$sp

6

〈unused〉

$sp points to the lowest used location in:

1. the stack as a whole; and

2. the currently active stack frame.

So, memory below $sp can be used for temporary work space

(evaluation stack) and for preparing parameters for a callee.

Compiler Construction 24 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Stacks and Stack Frames (5): parameter passing

We’re cheating: the MIPS procedure standard uses registers

($a0–$a3) to communicate the first 4 arguments, and the stack for

the rest (efficiency). We’ll use the stack for all of them!

Treaty:

• the caller and callee agree that the parameters are left in memory

cells at $sp, $sp+4, etc. at the instant of call.

Compiler Construction 25 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Stacks and Stack Frames (6): parameter passing

Done by:

• the caller evaluates each argument in turn pushing it onto $sp.

I.e. *--SP = arg; in C.

• the callee first stores the linkage information (contiguous with

the received parameters) and so parameters can be addressed as

$fp+8, $fp+12, etc. (assuming 2-word linkage information

pointed at by $fp).

So, the callee sees its parameters at positive offsets from $fp and its

local variables at negative offsets from $fp with linkage info in

between.

Compiler Construction 26 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Stacks and Stack Frames (7): parameter passing

Better view of a stack frame:

local vars

SP

6

FP+8

6

FP

6

FP′ RA parameters

Space below (to the left of) the stack frame is used to construct the

argument list (possibly empty) of any called routines—the called

routine then turns this into a ‘proper’ stack frame.

Compiler Construction 27 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Typical code for procedure entry/return

Caller to foo does:

addi $sp,$sp,-4 ; make space for (single) argument

sw $a0,0($sp) ; push argument

jal foo ; do the call (puts r37 into $ra)

r37:

At entry to callee:

foo: sw $ra,-4($sp) ; save $ra in new stack location

sw $fp,-8($sp) ; save $fp in new stack location

addi $sp,$sp,-8 ; make space for what we stored above

addi $fp,$sp,0 ; $fp points to this new frame

On return from callee (result in $v0):

fooxit: addi $sp,$fp,8 ; restore $sp at time of call

lw $ra,-4($sp) ; load return address

lw $fp,-8($sp) ; restore $fp to be caller’s stack frame

jr $ra ; branch back to caller

Compiler Construction 28 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Who removes the arguments to a call?

One subtlety (below the level of examination) which I’ve omitted is:

Who removes the arguments to a call? Caller or callee?

• On the MIPS, the caller does it (and doesn’t happen very often

on the real MIPS procedure calling standard because of the “first

4 arguments in registers” rule).

• On the JVM, the callee does it (see two slides on).

• On the x86 there are two standards—one of each.

Why? C, but not Java, offers support for ‘vararg’ functions which

take variable numbers of arguments.

Compiler Construction 29 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Sample Java procedure calling code

Simpler—as expected—real machines have other trade-offs than
“simple representation of Java” in the JVM design.

class fntest {

public static void main(String args[]) {

System.out.println("Hello World!" + f(f(1,2),f(3,4)));

}

static int f(int a, int b) { int y = a+b; return y*a; }

}

The JVM code generated for the function f might be:

f: ; <say meta data here: 2 args, 1 local>

iload 0 ; load a

iload 1 ; load b

iadd

istore 2 ; store result to y

iload 2 ; re-load y

iload 0 ; re-load a

imul

ireturn ; return from fn with top-of-stack value as result

Compiler Construction 30 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Sample Java procedure calling code (2)

Given

public static void main(String args[]) {

System.out.println("Hello World!" + f(f(1,2),f(3,4)));

}

the series of calls in the println would be

iconst 1

iconst 2

invokestatic f

iconst 3

iconst 4

invokestatic f

invokestatic f

Note how in the JVM a two-argument procedure call looks just like a

binary operator (iadd etc.).

Compiler Construction 31 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Address space map

0x00000000 0xffffffff

. . . code . . . static data . . . stack . . . heap . . .

The items listed above are often called segments: thus the code

segment or the stack segment. We will only discuss the heap segment

in Part C of this course.

Compiler Construction 32 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

What is “just in time compilation” (JIT)?

�
�

�
�

character
stream

-

lex

�
�

�
�

token
stream

-
syn

�
�

�
�

parse

tree
-

trans

�
�

�
�

intermediate
code

-
cg

�
�

�
�

target

code

A classical compiler does all these on one machine. To distribute a

system for multiple architectures we compile it once per architecture.

When running Java in a Browser, the JVM file is transported after

the first 3 stages of compilation. The recipient browser may:

• Interpret the JVM code (see later).

• Do the last stage of compilation (CG) now the host architecture

is known (this is called “just in time” compilation).

Compiler Construction 33 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Our simple language

Use a language of your choice to implement the compiler.

The source language we use is in the ‘intersection’ of C/Java/ML!

• only 32-bit integer variables (declared with int), constants and

operators;

• no nested function definitions, but recursion is allowed.

• no classes, objects etc.

Compiler Construction 34 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Language syntax

<expr> ::= <number>

| <var>

| <expr> <binop> <expr> ;; e.g. + - * / & | ^ &&

| <monop> <expr> ;; unary operators: - ~ !

| <fnname>(<expr>*)

| <expr> ? <expr> : <expr>

<cmd> ::= <var> = <expr>;

| if (<expr>) <cmd> else <cmd>

| while (<expr>) <cmd>

| return <expr>;

| { <decl>* <cmd>* }

<decl> ::= int <var> = <expr>;

| int <fnname>(int <var> ... int <var>) <cmd>

<program> ::= <decl>*

Plus various other restrictions (see notes).

Compiler Construction 35 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Forms of Interpreter

character-stream form while early Basic interpreters would have

happily re-lexed and re-parsed a statement in Basic whenever it

was encountered, the complexity of doing so (even for our

minimal language) makes this no longer sensible;

token-stream form again this no longer makes sense, parsing is

now so cheap that it can be done when a program is read;

historically BBC Basic stored programs in tokenised form and

re-parsed them on execution (probably for space reasons—only

one form of the program was stored);

Compiler Construction 36 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Forms of Interpreter

syntax-tree form this is a natural and simple form to interpret

(also link to “operational semantics”). Syntax tree interpreters

are commonly used for PHP or Python.

intermediate-code form the suitability of this for interpretation

depends on the choice of intermediate language; in this course we

have chosen JVM as the intermediate code—and historically

JVM code was downloaded and interpreted.

target-code form if the target code is identical to our hardware

then (in principle) we just load it and branch to it! Otherwise we

can write an interpreter (normally interpreters for another

physical machine are called emulators) in the same manner as we

might write a JVM interpreter.

Compiler Construction 37 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Lecture 3

Interpreters

Compiler Construction 38 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Interpreters

In general doing it makes sense to do as much work as possible before

interpreting (or direct execution): “Never put off till run-time what

you can do at compile-time.” [Gries].

Done once versus potentially done many times.

This particularly makes sense for statically typed languages.

BTW, not said in notes: systems people tend to call ‘invented’

machines “virtual machines”; theorists tend to call them “abstract

machines”, but same concept.

Compiler Construction 39 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

How to write a JVM interpreter

• read in a .class file

• put code into a byte array imem[] “byte code instructions”.

make PC point to entry to main

• allocate a word array dmem[] “we only support integers”. Put

static data at base of this; make SP and FP index top of it.

• (mumble about relocation/use of library routines)

• simulate the fetch/execute cycle until we hit a ‘halt’ instruction.

Compiler Construction 40 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

How to write a JVM interpreter (2)

void interpret()

{ byte [] imem; // instruction memory

int [] dmem; // data memory

int PC, SP, FP; // JVM registers

int T; // a temporary

...

for (;;) switch (imem[PC++])

{

/* special case opcodes for small values (smaller .class files): */

case OP_iconst_0: dmem[--SP] = 0; break;

case OP_iconst_1: dmem[--SP] = 1; break;

case OP_iconst_B: dmem[--SP] = imem[PC++]; break;

case OP_iconst_W: T = imem[PC++]; dmem[--SP] = T<<8 | imem[PC++]; break;

/* Note use of FP-k in the following -- downwards growing stack */

case OP_iload_0: dmem[--SP] = dmem[FP]; break;

case OP_iload_1: dmem[--SP] = dmem[FP-1]; break;

case OP_iload_B: dmem[--SP] = dmem[FP-imem[PC++]]; break;

Compiler Construction 41 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

How to write a JVM interpreter (3)

case OP_iadd: dmem[SP+1] = dmem[SP+1]+dmem[SP]; SP++; break;

case OP_istore_0: dmem[FP] = dmem[SP++]; break;

case OP_istore_1: dmem[FP-1] = dmem[SP++]; break;

case OP_istore_B: dmem[FP-imem[PC++]] = dmem[SP++]; break;

case OP_goto_B: PC += imem[PC++]; break;

/* etc etc etc */

}

}

}

Compiler Construction 42 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

How to write a JVM interpreter (4)

There’s a worry here: the JVM opcodes just use contiguous offsets

(to iload and istore) for arguments and locals—whereas previously

we required a 2-word gap between them for linkage information.

• when interpreting it’s simpler to have a (yet another) stack (or

indeed two separate stacks) which just holds “return addresses”

and “previous frame pointers”

• when compiling to a single-stack-segment solution (more flexible)

such as MIPS, it’s easy to insert a gap:

0 7→ +12; 1 7→ +8; 2 7→ −4; 3 7→ −8; . . .

Compiler Construction 43 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

How to write a JVM interpreter (5)

case OP_invokestatic:

T = <get callee start address from PC>

linkagestack[--LSP] = PC;

linkagestack[--LSP] = FP;

PC = T

FP = SP + <n_p>;

SP = SP - <n_v>; /////////// FIX

case OP_ireturn: ...

/* etc etc etc */

}

}

}

And that really is all—it’s just coding.

Compiler Construction 44 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

How to write an emulator for another machine

Suppose we want to execute the output from a compiler which

produces code for a machine we don’t have (e.g. obsolete, or not yet

manufactured).

Just write a JVM-style interpreter for its code.

This is traditionally called an emulator or simulator. If you’re a

hardware person you might want a cycle-accurate emulator which

also tells you exactly how long the program would take to run on the

real architecture.

If you’re trying to sell your customers a new architecture and want to

tell them their existing binary programs will still run you might want

a “dynamic binary translator” (JIT translator looking like a fast

emulator).

Compiler Construction 45 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Syntax tree interpreter

We’re going to cheat. The Expr/Cmd/Decl language is still a bit too

big for lectures, so I’m going to ban Cmds:

• require function bodies to be of the form { return e; }

• re-allow limited local Decls by adding let x=e in e′

Compiler Construction 46 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Syntax tree interpreter (2)

So get language (this is a subset of ML, but can be seen as Java or C

too):

datatype Expr = Num of int

| Var of string

| Add of Expr * Expr

| Times of Expr * Expr

| Apply of string * (Expr list)

| Cond of Expr * Expr * Expr

| Let of string * Expr * Expr;

Interpreters for expression-based languages are traditionally named

eval...

Compiler Construction 47 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Syntax tree interpreter (3)

To evaluate an expression we need to be able to get the values of

variables it uses (its environment). We will simply use a list of

(name,value) pairs. Because our language only has integer values, it

suffices to use the ML type env with interpreter function lookup:

type env = (string * int) list

fun lookup(s:string, []) = raise UseOfUndeclaredVar

| lookup(s, (t,v)::rest) =

if s=t then v else lookup(s,rest);

The evaluator takes an expression and an environment and returns

its value.

Compiler Construction 48 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Syntax tree interpreter (4)

(* eval : Expr * env -> int *)

fun eval(Num(n), r) = n

| eval(Var(s), r) = lookup(s,r)

| eval(Add(e,e’), r) = eval(e,r) + eval(e’,r)

| eval(Times(e,e’), r) = eval(e,r) * eval(e’,r)

| eval(Cond(e,e’,e’’), r) = if eval(e,r)=0 then eval(e’’,r)

else eval(e’,r)

| eval(Let(s,e,e’), r) = let val v = eval(e,r) in

eval(e’, (s,v)::r)

end

| eval(Apply(s,el) r) = ...

Compiler Construction 49 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Syntax tree interpreter (5)

We’ve not done ‘Apply’. That’s because it’s harder (at least at first)!

When we apply a function we get a new lot of local variables (new

environment) but keep the same set of global variables.

There’s more sophistication later (Part C). But let’s be naive for now.

Instead of one environment have two: rl (local) and rg global. Look

a variable up locally and if that fails then look it up globally.

Compiler Construction 50 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Syntax tree interpreter (6)

(* eval : Expr * env * env -> int *)

fun eval(Num(n), rg,rl) = n

| eval(Var(s), rg,rl) = if member(s,rl) then lookup(s,rl)

else lookup(s,rg)

| ...

| eval(Apply(s,el), rg,rl) =

let val vl = <evaluate all members of el> (* e.g. using ’map’ *)

val (params,body) = lookupfun(s)

val rlnew = zip(params,vl)

in eval(body, rg,rlnew)

end

(zip converts a pair of lists into a list of pairs.)

Compiler Construction 51 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Syntax tree interpreter (7)

Writing an interpreter really focuses your mind on what a language

does/means.

That’s why theorists like ‘semantics’ (operational semantics are

essentially an interpreter written in maths)—semantics give precise

meanings to programs. From the interpreter you can see (e.g.)

• How one variable shadows the scope of another (assuming

lookup is coded correctly).

• The difference between updating an existing variable (look it up

with lookup and replace the value stored in the environment)

and using let to create a new variable.

• How let x=e in e′ is very similar to f(e) where f(x)=e′ (inline

expansion/beta-reduction).

Compiler Construction 52 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Lecture 4

Lexical Analysis or Tokenisation.

Compiler Construction 53 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Lexical Analysis

• Converts a character stream to a token stream (a.k.a.

tokenisation).

• Tokens are things like “left shift symbol”, “integer constant” or

“string”, or even “plus symbol” formed of a single character.

• Typically removes whitespace (including comments!) –

whitespace might be needed to separate tokens but is not a token

itself.

• Most common interface is procedural: TokType lex();.

Compare the corresponding int getchar(); in C which gives a

character stream. Note lex() will probably need a 1-place buffer

to tokenise things like “abc+1” as we only know the abc is

complete after reading the ‘+’.

Compiler Construction 54 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Lexical Analysis (2)

Question: does one regard System.out.println as one token or five?

Answer: it depends on the language, but in Java it’s most

appropriate to think of it as five (and that’s what the language

definition says). A good reason is that the language requires things

like println or even x.println for a suitable variable x to refer to

the same name. (We don’t want to be matching substrings during

later phases, only subtrees.)

Compiler Construction 55 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Lexical Analysis (3)

Languages have evolved to use regular expressions (over the alphabet

of characters and possibly EOF, end-of-file) for tokens. First noted in

Algol60 by Backus and Naur.

Recall “Regular Languages and Finite Automata”:

Regular Expression ⇔ regular language ⇔ Finite Automaton;

(warning: the notes tend to write “Finite State Automaton”).

We’ll come back to whether this is deterministic or not, but in the

meantime also recall the “subset construction” which, given a NDFA,

gives a DFA.

Compiler Construction 56 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Lexical Analysis (4)

So, lexical analysis is easy:

• Write or download a regular expression description of the tokens

of your language;

• Create a DFA which accepts this language, and turn it into

C/Java/ML code which (beware see next slide) emits a token

every time it hits an accepting state.

• Job done.

There are even automatic tools which read in the regular expression

description, construct the DFA and write the code for you (see Lex

and Yacc later in the course).

Now we look at the details.

Compiler Construction 57 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Lexical Analysis – Details

There’s an implicit additional understanding in tokenisation beyond

“accepting state” in DFAs. Consider input “abc+1” and the

‘identifier’ token being defined by regular expression

(a | · · · | z)(a | · · · | z)∗

We don’t want to accept a, then b, then c as three separate identifier

tokens, even though ‘a’, ab and abc all leave the DFA in an accepting

state.

We want to accept the longest such string which remains in an

accepting state, only emitting a token (for abc) when we see the ‘+’.

Hence tokenisers generally have to read the character after the token

and buffer it (or unread it), between calls.

Compiler Construction 58 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Informal Example

: =

letter

digit

letter

digit digit

COLON

ID
etc

yes
ASS

NUMB

yes

no

no

no

no

no
yes

yes

no

no

Beware: while this picture is intuitive, the boxes represent transitions

and the states are implicit; ‘yes’ consumes input and ‘no’ does not.

Compiler Construction 59 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Example – floating point number syntax

Writing a pure regular expression for floating point numbers is hard

in that it tends to be very large. Hence most formal notations for

regular expressions have shortcuts, such as named intermediate

definitions – just say d (digit) instead of writing out 0 | · · · | 9 lots of

times.

So, let’s define shorthand:

s = + | − sign

e = E exponent symbol

p = . decimal point

d = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 digit

Compiler Construction 60 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Example – floating point number syntax (2)

Now let’s define a floating point number F step by step:

J = d d∗ unsigned integer

I = s J | J signed integer

H = J | p J | J p J digits maybe with ‘.’

G = H | e I | H e I H maybe with exponent

F = G | s G G optionally signed

Note that some of the complexity is due to expressing things

precisely, e.g. H allows three cases: an digit string, a digit string

preceded a point, or a point with digits either side, but disallows

things like “3.”. [You might pick a better/prettier definition.]

Compiler Construction 61 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Example – floating point number syntax (3)

Can get the following DFA – but getting something so small requires

careful state minimisation (RLFA or Hardware courses) possibly by a

tool:

1 2 3 87654

p p

d

d

d

e s

dd

d ee e

dd ps

with states S3, S5 and S8 being accepting states (but see proviso

earlier).

Compiler Construction 62 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Mapping the DFA to code

One could represent the above DFA with lots of C labels and gotos,

but it’s simpler to represent it as a table—note that this also encodes

“only accept at the first invalid character”:

s d p e other

S1 S2 S3 S4 S6 .

S2 . S3 S4 S6 .

S3 . S3 S4 S6 acc

S4 . S5 . . .

S5 . S5 . S6 acc

S6 S7 S8 . . .

S7 . S8 . . .

S8 . S8 . . acc

Efficiency hack: I’ve also indexed by s, d etc. instead of characters!

Compiler Construction 63 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

One final problem with regular expressions

Suppose I say “int is a keyword, but identifiers are [a− z]∗” then

these regular expressions overlap. It’s really hard to write “sequences

of a to z not including int” as a regular expression (try it!),

so many notations and tools allow “first one (left-right) wins in case

of a tie”.

Moral: although tokens are just regular expressions, in practice these

have lots of mathematical/programming short-hand to keep their size

low and their expressivity high.

Compiler Construction 64 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Lecture 41

2

Syntax Analysis or Parsing.

Compiler Construction 65 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Parsing – big picture

• Regular Expressions/Finite Automata are too weak for this – e.g.

they can’t match brackets.

• We use the next strongest bit of theory “Context-free grammars”.

• The syntax of programming languages is traditionally expressed

using such grammars, often referred to as BNF, Backus-Naur

Form.

• Logically we just repeat the progression of the previous lecture,

but everything is much richer now, particularly we need typically

to return a tree for a whole program, not just the next token.

• Need to learn a bit of theory before we can program a parser.

Compiler Construction 66 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Grammars

A context-free grammar is a 4-tuple (T, N, S, R)

• T set of terminal symbols (things which occur in the source)

• N set of non-terminal symbols (names for syntactic elements)

• R set of (production) rules: U −→ B1 B2 · · · Bn

• S ∈ N is the start symbol

A symbol is either a T or an N .

We use U , V to range over N , and A, B to range over N ∪ T

Compiler Construction 67 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Sentences

Given a grammar (T, N, S, R)

• A sentential form is any sequence of symbols (in N ∪ T) which

can be produced from S by using a sequence of rules in R.

• A sentence is just a sentential form with all its symbols in T .

(E.g. 1+2 but not 1+<expr>).

Compiler Construction 68 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Common notation (1)

Because context-free grammars typically have several productions

having the same terminal on the left-hand side, the notation

U −→ A1 A2 · · · Ak | · · · | B1 B2 · · · Bℓ

is used to abbreviate

U −→ A1 A2 · · · Ak

· · ·

U −→ B1 B2 · · · Bℓ.

But beware when counting: there are still multiple productions for

U , not one.

There is various other shorthand, such as ‘∗’ for repetition, EBNF.

Compiler Construction 69 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Common notation (2)

Alternatives:

• lower case for non-terminals, upper case for terminals (toy

examples)

• <expr> etc for non-terminals, ordinary text for terminals

(standards documents)

• ordinary identifiers for non-terminals, quoted text for terminals

(input to yacc etc.)

Note that ‘−→’ is often written ‘::=’

Compiler Construction 70 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Lecture 5

Syntax Analysis (continued)

Compiler Construction 71 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Grammar Engineering

A grammar is ambiguous if a sentence can be produced in two

different ways (using two different derivations—see later).

a) S −→ A B

A −→ a | a c

B −→ b | c b

{ a b, a c b, a c c b }

b) C −→ if E then C else C | if E then C

if E then if E then C else C

c) <sheepnoise> −→ "baa" | <sheepnoise> <sheepnoise>

baa baa baa

This is a more serious version of the “overlapping token description”

problem from last lecture.

Compiler Construction 72 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Getting rid of ambiguity

Re-write grammar—usually to keep the same set of sentences, but

where each sentence has a unique derivation. E.g.

(before) E ::= Num | E+E | (E)

(after: option 1) E ::= E + T | T (left-associative)

T ::= Num | (E)

(after: option 2) E ::= T + E | T (right-associative)

T ::= Num | (E)

(after: option 3) E ::= T + T | T (non-associative)

T ::= Num | (E)

‘Non-associative’ disallows (say) 1+2+3—forcing the user to

parenthesise (and here we fortunately remembered to include

parentheses in the syntax!).

Compiler Construction 73 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Precedence

The grammar

E ::= E + T | E - T | E * T | E / T | E ^ T | T

T ::= Num | (E)

may be unambiguous, but it’s probably not what you want—consider

2*3+4^5*6+7. Want operators to have varying precedence (a.k.a.

priority or binding power). E.g.

E ::= E + T | E - T | T lowest prio, l-assoc

T ::= T * F | T / F | F medium prio, l-assoc

F ::= P ^ F | P highest prio, r-assoc

P ::= Num | (E)

Compiler Construction 74 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Null productions

Note that we usually allow (e.g.)

E ::= X; E

E ::=

This encodes zero or more occurrences of “X;”. The second rule is an

empty production also written “E −→ ǫ”.

However, apart from particular uses such as the one above, empty

productions can be hard to deal with when parsing (“there’s an

string of zero characters wherever one looks...”), and are often best

avoided when possible.

Compiler Construction 75 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Leftmost and Rightmost Derivations

I’ll not make any real use of this, but it occurs in past exam

questions.

A leftmost derivation (of a sentence from the start symbol) is when

the sentence is generated by always taking the leftmost non-terminal

and choosing a rule with which to re-write it. (The sequence of rules

then exactly determines the string, at least for context free

grammars). Given rules S ::= A+A and A ::= 1 we might have

S −→ A+A −→ 1+A −→ 1+1

A rightmost derivation is when the sentence is generated by always

taking the rightmost non-terminal

Compiler Construction 76 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Dual uses for grammars

• Describing languages—we’ve now just about done this.

• Parsing languages—how do I write a parser from a grammar?

Two answers to this question:

1. Just write it—i.e. encode the grammar as code.

2. Use a tool—this encodes the grammar as a table (data) along

with a pre-implemented table interpreter.

We’ll start with 1 and leave 2 to lecture 14.

Compiler Construction 77 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Parsing by Recursive Descent

Easy in principle. For each non-terminal, E say, write a function

rdE() which reads an E. We start by making rdE() return void—so

this is a syntax checker—it says “OK” or “syntax error”.

So, given

F ::= P ^ F | P highest prio, r-assoc

P ::= Num | (E)

Just write

int token; // holds ‘current token’’ from lexing

void rdF() { rdP();

if (token==’^’) { token=lex(); rdF(); }

}

Compiler Construction 78 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Parsing by Recursive Descent (2)

Similarly

P ::= Num | (E)

gives

void rdP() { if (token==Num) { token=lex(); }

else if (token==’(’)

{ token=lex(); rdE();

if (token==’)’) token=lex();

else die("no ’)’);

}

else die("unexpected token");

}

Compiler Construction 79 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Parsing by Recursive Descent (3)

But what about:

E ::= E + T | E - T | T lowest prio, l-assoc

How do we know whether we are reading an E or a T first?

And do we really want to write the following?:

void rdE() { rdE(); }

Answer: re-write to avoid left recursion in the grammar.

Compiler Construction 80 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Lecture 61

2

Recursive Descent Continued; abstract syntax trees

Compiler Construction 81 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Parsing by Recursive Descent (4)

What about:

E ::= E + T | E - T | T

How do we know whether we are reading an E or a T first?

Solution: find another (similar grammar) for the same language

which (a) which only uses terminals to choose which way to parse

and (b) has no left-recursion.

Note there’s no general algorithm to do do this (indeed not always

even possible), but humans can often do it (especially for common

language cases).

Compiler Construction 82 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Parsing by Recursive Descent (5)

Easy in this case

E ::= E + T | E - T | T

just means “any number of T’s separated by ‘+’ or ‘-’ ”; so re-write to

E′ ::= T + E′ | T - E′ | T Cf. rule for F

Bug: it associates wrongly—but this is not a problem for parse

checking and we can fix the bug up later:

void rdE’() { rdT();

if (token==’+’) { token=lex(); rdE’(); }

if (token==’-’) { token=lex(); rdE’(); }

}

Compiler Construction 83 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Parsing by Recursive Descent (6)

A start on fixing the bug—rewrite

void rdE’() { rdT();

if (token==’+’) { token=lex(); rdE’(); }

if (token==’-’) { token=lex(); rdE’(); }

}

as

void rdE’() { rdT();

while (token==’+’ || token==’-’)

{ token=lex(); rdT(); }

}

Compiler Construction 84 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Abstract Syntax Trees

It’s not much use just reporting yes/no whether a program matches a

grammar—we want the derivation tree (which productions were used

(backwards) to convert the string of terminals into the

(non-terminal) sentence symbol.

If we’ve got an unambiguous grammar this is unique (unless the

input is not a valid sentence).

The trouble is that we don’t want all the incidental clutter of this—

we don’t want to know that the number 42 in a program is “a Num

which is a P which is an F which is a T which is an E”

We want a tree showing the parsed expression’s abstract syntax.

Compiler Construction 85 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Abstract Syntax

Grammar for concrete syntax:

E ::= E + T | E - T | T

T ::= T * F | T / F | F

F ::= P ^ F | P

P ::= Num | (E)

Abstract syntax:

E ::= E + E | E - E | E * E | E / E | E ^ E | Num

NB probably not (E)

Isn’t this ambiguous? Yes—if we see it as a grammar on strings, but

not if we see it as a specification of a datatype (“a tree grammar”).

[That’s why (for most languages) we can leave out (E).]

Compiler Construction 86 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Abstract Syntax (2)

What data structure represents such trees?

E ::= E + E | E - E | E * E | E / E | E ^ E | Num

In ML:

datatype E = Add of E * E | Sub of E * E |

Mul of E * E | Div of E * E |

Pow of E * E | Paren of E | Num of int;

In C: (over)

Compiler Construction 87 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Abstract Syntax (3)

E ::= E + E | E - E | E * E | E / E | E ^ E | Num

In C:

typedef struct E E; // In C allows to use E as a type name.

struct E {

enum { E_Add, E_Sub, E_Mult, E_Div, E_Pow, E_Paren, E_Numb } flavour;

union { struct { struct E *left, *right; } diad;

// selected by E_Add, E_Sub, E_Mult, E_Div.

struct { struct E *child; } monad;

// selected by E_Paren.

int num;

// selected by E_Numb.

} u;

};

Compiler Construction 88 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Abstract Syntax (4)

E ::= E + E | E - E | E * E | E / E | E ^ E | Num

In Java, you can either simulate the C (considered bad O-O style) or

write:

class E {}

class E_num extends E { int num; }

class E_paren extends E { E child; }

class E_add extends E { E left, right; }

class E_sub extends E { E left, right; }

Compiler Construction 89 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Abstract Syntax Constructors

These are free in ML, but in C (or Java) we’d have to write them

explicitly:

E *mkE_Mult(E *a, E *b)

{ E *result = malloc(sizeof (E));

result->flavour = E_Mult;

result->u.diad.left = a;

result->u.diad.right = b;

return result;

}

Compiler Construction 90 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Reprise: Parsing by Recursive Descent (2)

For syntax checking we had

void rdP() { if (token==Num) { token=lex(); }

else if (token==’(’)

{ token=lex(); rdE();

if (token==’)’) token=lex();

else die("no ’)’);

}

else die("unexpected token");

}

Compiler Construction 91 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

A practical parser

For ease of reading/size I have cheated slightly by assuming the lexer

returns single characters encoding the token it has just read

(including ’n’ as a hack for Num):

E *RdP()

{ E *a;

switch (token)

{ case ’(’: lex(); a = RdT();

if (token != ’)’) error("expected ’)’");

lex(); return a;

case ’n’: a = mkE_Numb(lex_aux_int); lex(); return a;

case ’i’: a = mkE_Name(lex_aux_string); lex(); return a;

default: error("unexpected token");

}

}

Note the common hack whereby lex aux ... returns additional

details for a token with sub-structure.

Compiler Construction 92 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Reprise: Parsing by Recursive Descent

void rdF() { rdP();

if (token==’^’) { token=lex(); rdF(); }

}

and, mutatis mutandis, rdT() (was rdE’()):

void rdT() { rdF();

while (token==’*’ || token==’/’)

{ token=lex(); rdF(); }

}

Compiler Construction 93 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

A practical parser (2)

E *RdF() r-assoc

{ E *a = RdP();

switch (token)

{ case ’^’: lex(); a = mkE_Pow(a, RdF()); return a;

default: return a;

} }

E *RdT() l-assoc

{ E *a = RdF();

for (;;) switch (token)

{ case ’*’: lex(); a = mkE_Mult(a, RdF()); continue;

case ’/’: lex(); a = mkE_Div(a, RdF()); continue;

default: return a;

} }

Compiler Construction 94 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Remarks

• Recursive Descent performs leftmost derivations and so recursive

descent parsers are often called LL-parsers (details not on course,

see Wikipedia).

• Grammars in a form suitable for LL parsing are called LL(k)

grammars.

• The tool antlr can automatically generates LL(k) parsers from a

grammar.

Also, note that we would not have just one type for an abstract

syntax tree in a real languages—we might only have one for

expressions, but others for (say) declarations, commands etc. See

Expr, Cmd, Decl in the introduction.

Compiler Construction 95 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Lecture 7

Type Checking and Translating a parse tree into stack-based

intermediate code.

Compiler Construction 96 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Type Checking

Our language requires no type checking; all variables and expressions

are of type int and variable name <var> and function names

<fnname> are syntactically distinguished.

Real compilers (e.g. ML, Java) need type-checking generally to

happen after syntax analysis. JVM code has separate fadd and iadd

operations, so type information has to be resolved before or during

translation to intermediate code. Java code like

float g(int i, float f) { return (i+1)*(f+2); }

must be compiled as if it were:

float g(int i, float f) { return ((float)(i+1))*(f+2); }

Compiler Construction 97 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Type Checking

�
�

�
�

character
stream

-

lex

�
�

�
�

token
stream

-
syn

�
�

�
�

parse

tree
-

trans

�
�

�
�

intermediate
code

-
cg

�
�

�
�

target

code

Type checking often not mentioned explicitly. Here you can think of

it as being an arrow from parse tree to parse tree which checks types

(rejecting ill-typed programs) and fixes up the parse tree.

We’ll cheat and do it ‘on-the-fly’ during trans. . .

Compiler Construction 98 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Trans: what do we have to do?

Convert the abstract syntax tree representation of a program into

intermediate object code (here JVM code).

�
�

�
�

character
stream

-

lex

�
�

�
�

token
stream

-
syn

�
�

�
�

parse

tree
-

trans

�
�

�
�

intermediate
code

-
cg

�
�

�
�

target

code

Compiler Construction 99 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

What do we have to do (2)?

The translation phase deals with

• the scope and allocation of variables,

• determining the type of all expressions,

• the selection of overloaded operators (type-based!), and

• generating the intermediate code.

Compiler Construction 100 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

What we want to happen:

Given, for example,

static int f(int a, int b) { int y = a+b; ... }

we want the translation phase to issue a series of calls of the

following form for the declaration and initialisation of y:

gen2(OP_iload, 0);

gen2(OP_iload, 1);

gen1(OP_iadd);

gen2(OP_istore, 2);

We’ll assume (1) OP xxx above are enumeration constants

representing opcodes and (2) gen1() and gen2() write the

intermediate code instructions to a file or append them to some other

data structure.

Compiler Construction 101 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Reminder—flattening a tree in ML

datatype tree = Leaf of int | Branch of tree*tree;

fun flatten(Leaf n) = [n]

| flatten(Branch(t,t’)) = flatten t @ flatten t’;

val test = Branch(Branch(Leaf 1, Leaf 2),

Branch(Leaf 3, Leaf 4));

flatten(test);

gives:

val it = [1,2,3,4] : int list

Compiler Construction 102 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Reminder—flattening a tree (alternative)

datatype tree = Leaf of int | Branch of tree*tree;

fun walk(Leaf n) = (print (Int.toString n);

print ";")

| walk(Branch(t,t’)) = (walk t;

walk t’);

val test = Branch(Branch(Leaf 1, Leaf 2),

Branch(Leaf 3, Leaf 4));

walk(test);

instead of making a list, this just prints the values in the leaves of the

tree:

1;2;3;4;

Compiler Construction 103 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Adjusting things a bit

datatype sourceop = Add | Mul;

datatype tree = Num of int | Diad of sourceop * tree * tree;

datatype jvmop = Iconst of int | Iadd | Imul;

fun trnop(Add) = Iadd

| trnop(Mul) = Imul;

fun flatten(Num n) = [Iconst n]

| flatten(Diad(binop,t,t’)) = flatten t @ flatten t’ @ [trnop binop];

val test = Diad(Add, Diad(Mul, Num 1, Num 2),

Diad(Mul, Num 3, Num 4));

flatten(test);

gives:

val it = [Iconst 1,Iconst 2,Imul,Iconst 3,Iconst 4,Imul,Iadd] : jvmop list

A postorder tree walk is pretty exactly a compiler from syntax trees

to JVM code!

Compiler Construction 104 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Tree walking

Essentially need one tree-walker for each type in the abstract syntax

tree:

void trexp(Expr e) translate an expression

void trcmd(Cmd c) translate a command

void trdecl(Decl d) translate a declaration

Here we’ll mainly consider trexp() but the others are similar.

Compiler Construction 105 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Dealing with names (and hence scoping)

class A {

static int g;

int n,m; /* non-static members just for illustration */

static int f(int x) { int y = x+1; return foo(g,n,m,x,y); }

}

Use a compile-time data structure to remember the names in

scope—the symbol table. At the return this might be:

"g" static variable

"n" class variable 0

"m" class variable 1

"f" method

"x" local variable 0

"y" local variable 1

Compiler Construction 106 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Symbol table

Symbol table is just an abstract data type.

Decl’s and scope exit call methords to add/remove items from the

symbol table, and we’ll assume trname() looks up things in the table:

void trname(int op, String s)

Rather sloppily for this year I’ll assume it not only looks up the offset

of name s but also emits it along with op using gen2().

Compiler Construction 107 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Translation of Expressions

fun trexp(Num(k)) = gen2(OP_iconst, k);

| trexp(Id(s)) = trname(OP_iload,s);

| trexp(Add(x,y)) = (trexp(x); trexp(y); gen1(OP_iadd))

| trexp(Sub(x,y)) = (trexp(x); trexp(y); gen1(OP_isub))

| trexp(Mul(x,y)) = (trexp(x); trexp(y); gen1(OP_imul))

| trexp(Div(x,y)) = (trexp(x); trexp(y); gen1(OP_idiv))

| trexp(Neg(x)) = (trexp(x); gen1(OP_ineg))

| trexp(Apply(f, el)) =

(trexplist(el); // translate args

trname(OP_invokestatic, f)) // Compile call to f

| ...

fun trexplist[] = ()

| trexplist(e::es) = (trexp(e); trexplist(es));

Compiler Construction 108 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Translation of Expressions (2)

Note the invariant: a call to trexp() emits code which when

executed has the net result of pushing one item to the stack.

(Prove by induction assuming the result for sub-expressions.)

Compiler Construction 109 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Lecture 7

Type Checking and Translating a parse tree into stack-based

intermediate code (continued)

Compiler Construction 110 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Translation of Conditional Expressions

fun trexp(Num(k)) = gen2(OP_iconst, k);

| trexp(Cond(b,x,y)) =

let val p = ++label; // Allocate two labels

val q = ++label in

trexp(b); // eval the test

gen2(OP_iconst, 0); // put zero on stack...

gen2(OP_if_icmpeq, p); // ... branch if b false

trexp(x); // code to put x on stack

gen2(OP_goto,q); // jump to common point

gen2(OP_Lab,p);

trexp(y); // code to put y on stack

gen2(OP_Lab,q) // common point; result on stack

end;

| ...

Compiler Construction 111 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Short-circuit boolean operations

Can’t translate Java && and || in the way we translate + etc. E.g.

this is bad:

| trexp(Or(x,y)) = (trexp(x); trexp(y); gen1(...))

| trexp(And(x,y)) = (trexp(x); trexp(y); gen1(...))

Must treat e||e′ as e?1:(e′?1:0) and e&&e′ as e?(e′?1:0):0.

One lazy way to do this is just to call trexp recursively with the

equivalent code above (which does not use And and Or):

| trexp(Or(x,y)) = trexp(Cond(x, Num(1),

Cond(y,Num(1),Num(0))))

| trexp(And(x,y))= trexp(Cond(x, Cond(y,Num(1),Num(0)),

Num(0)))

Compiler Construction 112 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Relational Operators

Logically, code for Java relational operators (Eq, Ne, Lt, Gt, Le, Ge) is

simply done by (e.g.):

| trexp(Eq(x,y)) = (trexp(x); trexp(y); gen1(OP_EQ))

and this is OK for exams. Sadly in reality JVM does not have such

operations which push a boolean onto the stack, so we instead

generate a branch around code which puts zero/one on the stack

(just like && and ||):

// note the mapping for branch-false: Eq -> CmpNe etc.

| trexp(Eq(x,y)) = trboolop(OP_if_icmpne, x, y)

| ...

| trexp(Gt(x,y)) = trboolop(OP_if_icmple, x, y);

Compiler Construction 113 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Relational Operators (2)

fun trboolop(brop,x,y) =

let val p = ++label; val q = ++label in

trexp(x); // load operand 1

trexp(y); // load operand 2

gen2(brop, p); // do conditional branch

trexp(Num(1)); // code to put true on stack

gen2(OP_goto,q); // jump to common point

gen2(OP_Lab,p);

trexp(Num(0)); // code to put false on stack

gen2(OP_Lab,q) // common point; result on stack

end;

This gives ugly code for a>b?a:b (first we branch to make 0/1 then

we compare it with zero and branch again), but hey, it works.

(It’s the JVM’s fault, and we could fix it up with a bit more work.)

Compiler Construction 114 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Translation of declarations and commands

Rather left as an exercise, but one which you are encouraged to

sketch out, as it uses simple variants of ideas occurring in trexp and

is therefore not necessarily beyond the scope of examinations.

Hint: start with

fun trcmd(Assign(s,e)) = (trexp(e); trname(OP_istore,s))

| trcmd(Return e) = (trexp(e); gen1(OP_ireturn))

| trcmd(Seq(c,c’)) = (trcmd(c); trcmd(c’))

| trcmd(If3(e,c,c’’)) = ...

Think also how variable declarations call methods to add names to

the symbol table and also increment the compiler’s knowledge of the

offset from FP of where to allocate the next local variable . . .

Compiler Construction 115 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Labels vs addresses – the assembler

In the above explanation, given a Java procedure

static int f(int x, int y) { return x<y ? 1:0; }

I have happily generated ‘JVM’ code like

iload 0

iload 1

if_icmpge label6

iconst 1

goto label7

label6: // written "Lab 6" earlier

iconst 0

label7: // written "Lab 7" earlier

ireturn

Compiler Construction 116 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Labels vs addresses – the assembler (2)

But, given

static int f(int x, int y) { return x<y ? 1:0; }

and looking at the JVM code using javap -c, I get

0: iload_0

1: iload_1

2: if_icmpge 9

5: iconst_1

6: goto 10

9: iconst_0

10: ireturn

Did I cheat? Only a little...

Compiler Construction 117 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Labels vs addresses – the assembler (3)

The actual JVM binary code has numeric addresses for instructions

(printed to the left by javap -c) and if icmpge and goto use the

address of destination instructions as their operands instead of a

label.

A separate pass of the compiler determines the size of each JVM

instruction—to calculate the address of each instruction (relative to

the start of the procedure) which then determines the numeric

address for each of the labels. Each use of a label in a if icmpge and

goto instruction can now be substituted by a numeric offset and the

labels deleted.

This process (of converting symbolic JVM [or other] code to binary

JVM [or other] code) is called assembly and the program which does

it an assembler.

Compiler Construction 118 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Labels vs addresses – the assembler (4)

While being a vital system component (and additional pass in

compilation), assemblers are often disregarded in a simple

explanation because they merely map text-form instructions to

binary-form in a 1–1 manner.

One final remark: this assembly process is only done at the end of

compilation—if we are intending to use the JVM code to generate

further code then we will want to keep the symbolic ‘label nnn’ form.

Indeed, if we download a Java .class file which contains binary

JVM code with the intention of JIT’ing it (compiling it to native

binary code), the first thing we need to do is to identify all binary

branch offsets and turn them to symbolic labels (disassemble it).

Compiler Construction 119 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Type Checking

We’ve used int for everything so far. While types are better treated

in part C of this course. What would happen if we also had type

float (Java/C-style in which every variable is given a type when

declared)?

We have additional JVM ops fload, fstore fadd etc.

So: put the type in the symbol table (along with global/local etc).

But how does e + e′ work? E.g. Java says that e + e′ has type float

if e has type int and e′ has type float.

Compiler Construction 120 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Type Checking (2)

Have a data type representing language types with at least: T float

and T int. Then write:

fun typeof(Num(k)) = T_int

| typeof(Float(f)) = T_float

| typeof(Var(s)) = lookuptype(s) // looks in symbol table

| typeof(Add(x,y)) = arith(typeof(x), typeof(y));

| typeof(Sub(x,y)) = arith(typeof(x), typeof(y));

...

fun arith(T_int, T_int) = T_int

| arith(T_int, T_float) = T_float

| arith(T_float, T_int) = T_float

| arith(T_float, T_float) = T_float

| arith(t, t’) = raise type_error("invalid types for arithmetic");

Compiler Construction 121 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Type Checking (3)

When the type of an operand does not match the type required, then

we insert a coercion: e.g. given int x; float y; then treat x+y as

((float)x)+y. There is a JVM instruction i2f.

So float f(int x, float y) { return x+y; } generates

iload 0

i2f

fload 1

fadd

freturn

Compiler Construction 122 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Type Checking (4)

Can either see type-checking as part of the translation phase, or as a

separate phase which turns an abstract syntax tree (AST) into a

type-decorated AST.

Note however, type-checking has to be done after

scope-determination of variables, and the two phases would be

• scope resolution + type checking + coercion insertion

• translate typed (and scope-resolved) tree to intermediate code.

Compiler Construction 123 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Lecture 8

Code Generation for target machine.

Compiler Construction 124 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Code Generation for Target Machine

We’ll do a cheap and cheerful blow-by-blow translation (see next

year’s course on how to do it better). First recall:

y := x<=3 ? -x : x

gives JVM code

iload 4 load x (4th load variable)

iconst 3 load 3

if_icmpgt L36 if greater then jump to L36

iload 4 load x

ineg negate it

goto L37 jump to L37

label L36

iload 4 load x

label L37

istore 7 store y (7th local variable)

Now can translate one at a time...

Compiler Construction 125 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Code Generation for Target Machine (2)

movl %eax,-4-16(%ebp) ; iload 4

pushl %eax ; 〈ditto〉

movl %eax,#3 ; iconst 3

pushl %eax ; 〈ditto〉

popl %ebx ; if icmpgt

popl %eax ; 〈ditto〉

cmpl %eax,%ebx ; 〈ditto〉

bgt L36 ; 〈ditto〉

movl %eax,-4-16(%ebp) ; iload 4

...

Oh yuk! (But it works.)

Compiler Construction 126 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Code Generation for Target Machine (3)

What’s wrong? We first load things into registers (OK), then push

them (OFTEN WASTE), pop them back (OFTEN WASTE), and

then operate on the registers (OK).

So use a compile-time data structure stackcache holding registers

which should have been pushed but haven’t . . .

[This can alternatively be seen as form of peephole optimisation: emit

target machine instructions one-by-one but watch over finite-size

window in the target-code replacing short sequences of instructions

with simpler ones.]

Compiler Construction 127 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Code Generation for Target Machine (4)

generated code JVM op scache

movl %eax,-4-16(%ebp) iload 4 [%eax]

movl %ebx,#3 iconst 3 [%eax,%ebx]

cmpl %eax,%ebx if icmpgt []

bgt L36 〈ditto〉 []

movl %eax,-4-16(%ebp) iload 4 [%eax]

negl %eax ineg [%eax]

pushl %eax (flush/goto) []

b L37 goto []

L36:

movl %eax,-4-16(%ebp) iload 4 [%eax]

pushl %eax (flush/label) []

L37:

popl %eax istore 7 []

movl -4-28(%ebp),%eax 〈ditto〉 []

Compiler Construction 128 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Code Generation for Target Machine (5)

What else could we do?

1. Allowing stackcache[] to remember integers as well as registers

(quite easy)

2. Arrange that local variables are not repeatedly loaded by

remembering (regmem[]) when they are in a register (quite easy)

3. Doing 2. over branches and labels (significantly harder)

Compiler Construction 129 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Code Generation for Target Machine (6)

generated code JVM op scache regmem

movl %eax,-4-16(%ebp) iload 4 [%eax] []

iconst 3 [%eax,3] [%eax=local4]

cmpl %eax,#3 if icmpgt [] [%eax=local4]

bgt L36 if icmpgt [] [%eax=local4]

negl %eax ineg [%eax] []

b L37 goto [%eax] []

L36: (label) [] [%eax=local4]

iload 4 [%eax] [%eax=local4]

L37: (label) [%eax] [] (NB here)

movl -4-28(%ebp),%eax istore 7 [] [%eax=local7]

Compiler Construction 130 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

A table-driven code-generator?

If we can generate parsers automatically from grammars, can’t get

generate code-generators directly from an instruction-set

specification?

Harder.

• We don’t worry about efficiency in parsing, but we do care about

bad instruction sequences.

• Peephole optimisation harder to specify.

• Lots of special case tricks, e.g. (x<=0) can be generated into

(x>>>31).

Compiler Construction 131 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Lecture 9

Object modules, linking etc.

Compiler Construction 132 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Why do we need a linker?

When we compile e.g. C program

extern int printf(char *format, ...);

int main() { printf("Hello world\n"); return 0; }

We can generate code for everything except the call to printf. We

can even generate the call (x86), or jal (MIPS) instruction but not

the address to be branched to because we don’t know it yet!

So, we generate an instruction like

jal 0

or

jal .

and ask someone else (the linker) to finish off the job . . .

Compiler Construction 133 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

What is the role of object files (.o/.obj)?

• Holds binary output from compiler

• ELF is typical – and easy to understand in principle.

• A compiler or assembler can easily produce ELF as output.

• ELF is input to linker, along with libraries of object libraries.

• Output from linker is (usually) an executable file (.EXE on

Microsoft Windows)

• ELF is sufficiently general that executables can also be

represented, so an ELF linker takes ELF as user-inputs and

library format – and also produces ELF as executable output

(only one format to learn).

Compiler Construction 134 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

What makes an executable?

In ELF, to first approximation, an executable file is just one which

has no remaining “undefined” symbols in its .symtab.

Yes, one of the object files has provided a “start address”, often offset

zero in the .text segment.

So, to run an executable, the operating system just reads in .text

and .data (or maps the file via virtual memory) and branches to its

start address.

Compiler Construction 135 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

ELF details

Header information; positions and sizes of sections

.text segment (code segment): binary data

.data segment: binary data

.rela.text code segment relocation table: list of

(offset,symbol) pairs giving:

(i) offset within .text to be relocated; and

(ii i) by which symbol

.rela.data data segment relocation table: list of

(offset,symbol) pairs giving:

(i) offset within .data to be relocated; and

(ii i) by which symbol

. . .

Compiler Construction 136 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

But how is a ‘symbol’ specified?

• A string? Too clumsy – multiple references to the same symbol?

• And how do we say a symbol is defined here as opposed to

missing and defined elsewhere?

Answer:

• Use indexes into .symtab – a list of external symbols each

specified as “undefined”, “defined as a code segment symbol” or

“defined as a data segment symbol”.

• But, to keep these table entries of the same size we’ll store the

strings in yet another table .strtab

The fine details of symtab/strtab are not examinable, but the

principle of a symbol being defined here or referenced and defined

elsewhere is!

Compiler Construction 137 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

ELF details (2)

. . .

.symtab symbol table:

List of external symbols (as triples) used by the module.

Each is (attribute, offset, symname) with attribute:

1. undef: externally defined, offset is ignored;

2. defined in code segment (with offset of definition);

3. defined in data segment (with offset of definition).

Symbol names are given as offsets within .strtab

to keep table entries of the same size.

.strtab string table:

the string form of all external names used in the module

Phew!

Compiler Construction 138 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

The linker

What does a linker do?

• takes some object files as input, noting all undefined symbols.

• recursively searches libraries adding ELF files which define such

symbols until all names defined (“library search”).

• whinges if any symbol is undefined or multiply defined.

Then what?

• concatenates all code segments (forming the output code

segment).

• concatenates all data segments.

• performs relocations (updates code/data segments at specified

offsets) now all symbols are known.

Compiler Construction 139 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Static versus Dynamic Linking

There are two approaches to linking:

Static linking (already done). Problem: a simple “hello world”

program may give a 10MB executable if it refers to a big

graphics or other library.

Dynamic linking Don’t incorporate big libraries as part of the

executable, but load them into memory on demand. Such

libraries are held as “.DLL” (Windows) or ”.so” (Linux) files.

Compiler Construction 140 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Static versus Dynamic Linking

Pros and Cons of dynamic linking:

• Executables are smaller (and your disc doesn’t have 100 copies of

a graphics library, one in each executable).

• Bug fixes to a library don’t require re-linking as the new version

is automatically demand-loaded every time the program is run.

• Non-compatible changes to a library wreck previously working

programs “DLL hell”.

Compiler Construction 141 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Dynamic Linking (mechanism)

Here’s one mechanism, not quite what’s used, but gives the idea:

suppose “sin()” is to be dynamically loaded. Instead of linking in

sin() we link in a ‘stub’ of the form:

static double (*realsin)(double) = 0; /* pointer to fn */

double sin(double x)

{ if (realsin == 0)

{ FILE *f = fopen("SIN.DLL"); /* find object file */

int n = readword(f); /* size of code to load */

char *p = malloc(n); /* get new program space */

fread(p, n, 1, f); /* read code */

realsin = (double (*)(double))p; /* remember code addr */

}

return (*realsin)(x);

}

Compiler Construction 142 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Part C—how to compile other things

• Rvalues, Lvalues, aliasing

• Non-local non-global variables

• Binding/Scoping models (λ/OO); dynamic binding

• Exceptions

• Storage allocation, new, garbage collection

• OO inheritance (class members and methods)

• various type models

• misc, e.g. debugging tables.

Compiler Construction 143 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Rvalues, Lvalues, aliasing

[Material taken from the notes.]

Copying (taking a snapshot) versus using the original variable.

Compiler Construction 144 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

An example: Java inner classes

class A {

void f(int x) {

class B {

int get() { return x; }

// void inc() { x++; } // allowed? or not?

}

B p = new(B);

x++;

B q = new(B);

if (p.get() != q.get()) println("x != x??");

};

Is ‘x’ copied or accessed in place? Language choice!

Compiler Construction 145 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Lecture 10

A lambda-calculus evaluator

Compiler Construction 146 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

The power of Lambda

Lambda subsumes ML let, function definitions and even recursion:

let f x = e ⇒ let f = λx.e

let y = e in e′ ⇒ (λy.e′) e

So, for example,

let f(y) = y*2

in let x = 3

in f(x+1)

can be simplified to

(λf. (λx. f(x+1)) (3)) (λy. y*2)

Compiler Construction 147 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

The power of Lambda (2)

This translation cannot immediately do ‘rec’:

let f(n) = n=0 ? 1 : n*f(n-1) in f(4)

translates to

(λf. f(4)) (λn. n=0 ? 1 : n*f(n-1))

in which the right-most use of f is unbound rather than recursive.

Compiler Construction 148 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

The power of Lambda (3)

One might think that recursion must inevitably require an additional

keyword, but note that it is possible to call a function recursively

without defining it recursively:

let f(g,n) = ... g(g,n-1) ... // NB: no f in body

in f(f, 5)

Here the call g(g,n-1) makes a recursive call of (non-recursive) f . . .

And this trick can be extended – giving the fixed point combinator Y .

Compiler Construction 149 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

The power of Lambda (4)

By generalising this idea it is possible to represent a recursive

definition let rec f = e as the non-recursive form

let f = Y (λf.e)

(NB: this at least binds all the variables to the right places.)

Surprisingly at first, this Y can even be expressed directly in the

lambda-calculus.

Y = λf. (λg. (f(λa. (gg)a)))(λg. (f(λa. (gg)a))).

(Experts beware: this is the form for the call-by-value lambda

calculus as befits the following interpreter.)

Compiler Construction 150 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

A lambda-calculus evaluator

Why do this? (In 2008–09 it is also be covered in “Foundations of

functional programming” for different purposes.)

It is a simple language which directly models:

• nested function definitions e.g. λx.λy.x + y and the nature of

function values.

• dynamic types (the identity function can first be applied to an

integer and then to another function).

It extends the simple interpreter in Part A of the notes.

Compiler Construction 151 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

A lambda-interpreter in ML

Syntax of the λ-calculus with constants in ML as

datatype Expr = Name of string |

Numb of int |

Plus of Expr * Expr |

Fn of string * Expr |

Apply of Expr * Expr;

Values are of either integers or functions (closures):

datatype Val = IntVal of int |

FnVal of string * Expr * Env;

Compiler Construction 152 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

A lambda-interpreter in ML (2)

Environments are just a list of (name,value) pairs as before:

datatype Env = Empty | Defn of string * Val * Env;

and name lookup is natural:

fun lookup(n, Defn(s, v, r)) =

if s=n then v else lookup(n, r);

| lookup(n, Empty) = raise oddity("unbound name");

Compiler Construction 153 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

A lambda-interpreter in ML (3)

The main code of the interpreter is as follows:

fun eval(Name(s), r) = lookup(s, r)

| eval(Numb(n), r) = IntVal(n)

| eval(Plus(e, e’), r) =

let val v = eval(e,r);

val v’ = eval(e’,r)

in case (v,v’) of (IntVal(i), IntVal(i’)) => IntVal(i+i’)

| (v, v’) => raise oddity("plus of non-number") end

| eval(Fn(s, e), r) = FnVal(s, e, r)

| eval(Apply(e, e’), r) =

case eval(e, r)

of IntVal(i) => raise oddity("apply of non-function")

| FnVal(bv, body, r_fromdef) =>

let val arg = eval(e’, r)

in eval(body, Defn(bv, arg, r_fromdef)) end;

Compiler Construction 154 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

A lambda-interpreter in ML (4)

Note particularly the way in which dynamic typing is handled (Plus

and Apply have to check the type of arguments and make

appropriate results). Also note the two different environments (r,

r fromdef) being used when a function is being called.

A fuller version of this code (with test examples and with the “tying

the knot” version of Y) appears on the course web page.

Compiler Construction 155 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Static Scoping and Dynamic Scoping

Modern programming languages normally look up free variables in

the environment where the function was defined rather than when it

is called (static scoping or static binding or even lexical scoping).

The alternative of using the calling environment is called dynamic

binding (or dynamic scoping) and was used in many dialects of Lisp.

The difference is most easily seen in the following example:

let a = 1;

let f() = a;

let g(a) = f();

print g(2);

Replacing r_fromdef with r in the interpreter moves from static to

dynamic scoping!

Compiler Construction 156 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Implementing the environment

Searching lookup() for names of variables is inefficient.

Before running the program we know, given a particular variable

access, how many iterations lookup lookup() will take.

It’s the number of variables declared (and still in scope) between the

variable being looked up and where we are now. So we could use

‘(de Bruijn) indices’ instead (translating with an additional compiler

phase).

Lam("x",Name("x")) becomes Lam("x",NameIndex(1))

And we don’t even need the names anymore:

Lam("x",Name("x")) −→ Lam(NameIndex(1))

Lam("x",Lam("y",Name("x"))) −→ Lam(Lam(NameIndex(2)))

Compiler Construction 157 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Implementing the environment (2)

This is still inefficient.

Accessing the nth element of a list by index is O(n) – just like

searching for the nth element by name!

What about using an array for the environment to get O(1) access?

Yes, but scope entry and scope exit then costs O(n) with n variables

in scope.

Practical idea: group variables in a single function scope putting

their values in an array(*), and use a list of arrays for the

environment. Scope entry and exit is just a cons or tl.

Lookup costs O(k) where k is the maximum procedure nesting.

(*) think of this array as a stack frame.

Compiler Construction 158 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Implementing the environment (3)

BEWARE: this list of arrays/stack frames is not the same as the

stack frames encountered by following the “Old FP” stored in the

linkage information – it’s the static nesting structure.

Another point: De Bruijn indices become not a single integer but a

pair (i, j) – meaning access the jth variable in the ith array.

Compiler Construction 159 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Implementing the environment (4)

let f(a,b,c) =

(let g(x,y,z) = (let h(t) = E in ...)

in g((let k(u,v) = E′ in ...), 12, 63)

)

in f(1,6,3)

Using ρ1, ρ2, ρ3, ρ4 for environments at the start of f, g, h, k (and

ignoring function names themselves) gives scopes:

ρ1 a:(1,1) b:(1,2) c:(1,3) level 1

ρ2 x:(2,1) y:(2,2) z:(2,3) level 2

ρ3 t:(3,1) level 3

ρ4 u:(2,1) v:(2,2) also level 2

Compiler Construction 160 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Implementing the environment (5)

We put these entries in the symbol table.

Now, given an access to a variable x (with 2D address (i, j) from a

point at function nesting level d, instead of accessing x by name we

can instead use 2D index (relative address) of (d − i, j). For example,

access to c (whose 2D address (1, 3)) is (2, 3) in E (in environment ρ3

of depth 3) is (2, 3), whereas access to the same variable in E′ (in ρ4

of depth 2) is (1, 3).

Compiler Construction 161 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Lecture 11

Static link method, ML free variables, etc.

Compiler Construction 162 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Static Link

Add a pointer to stack of caller to linkage information:

local vars

SP

6

FP

6

FP+12

6

FP′ RA SL parameters

SL is the ‘static link’—a pointer to the frame of the definer

Note that FP′ is a pointer to the frame of the caller.

Talk in lectures about how these may not coincide.

Compiler Construction 163 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

But the static link does not always work

• It works provided that no function value is ever returned from a

function (either explicitly or implicitly by being stored in a more

global variable). This is enforced in many languages (particularly

the Algol family—e.g. functions can be arguments but not result

values).

• Remember function values need to be pairs (a closure) of

function text (here a pointer to code), and some representation of

the definer’s environment (here its stack frame).

• So by returning a function we might be returning a pointer to a

deallocated stack frame.

Compiler Construction 164 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Why the static link method can fail

Consider a C stupidity:

int *nu(int x) { int a = x

return &a;

}

int main() { int *p = nu(1);

int *q = nu(2);

foo(p,q);

}

Why does this fail: because we return a pointer &a to a variable

allocated in a stack which is deallocated on return from nu().

Probably p and q will point to the same location (which can’t be

both 1 and 2!). This location is also likely to be allocated for some

other purpose in main().

Compiler Construction 165 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Why the static link method can fail (2)

Now consider a variant of this:

let f(x) = { let g(t) = x+t // i.e. f(x) = λt.x+t

in g }

let add1 = f(1)

let add2 = f(2)

...

Here the (presumed outer) main() calls f which has local variable x

and creates function g—but the value of g is a closure which contains

a pointer to the stack frame for f.

So, when f returns, its returned closure becomes invalid (dangling

pointer to de-allocated frame containing x).

Again, add1 and add2 are likely to be identical values (BUG!).

Compiler Construction 166 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Why the static link method can fail (3)

The core problem in both the above examples is that we want an

allocation (either &a or a stack frame in a closure) to live longer than

the call-return stack allows it too.

Solution: allocate such values in a separate area called a heap and use

a separate de-allocation strategy on this—typically garbage

collection. (Note that allowing functions to return functions therefore

has hidden costs.)

It’s possible (but rather drastic) to avoid deallocating stack frames on

function exit, and allow a garbage collector to reclaim unused frames,

in which the static link solution works fine again (“spaghetti stack”).

Compiler Construction 167 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

An alternative solution (Strachey)

So, if we want to keep a stack for function call/return we need to do

better than storing pointers to stack frames in closures when we have

function results.

One way to implement ML free variables to have an extra register FV

(in addition to SP and FP) which points to the a heap-allocated

vector of values of variables free to the current function:

val a = 1;

fun g(b) = (let fun f(x) = x + a + b in f end);

val p = g 2;

val q = g 3;

Gives (inside f):

- a
b

FV

Compiler Construction 168 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

An alternative solution for ML

For reasons to do with polymorphism, ML likes all values to be (say)

32 bits wide.

A neat trick is to make a closure value not to be a pair of pointers (to

code and to such a Free Variable List), but to be simply a pointer to

the Free Variable List. We then store a pointer to the function code

in offset 0 of the free variable list as if it were the first free variable.

NB. Note that this solution copies free variable values (and thus

incorporate them as their current rvalues rather than their lvalues).

We need to work harder if we want to update free variables by

assignment (in ML the language helps us because no variable is every

updated—only ref cells which are separately heap-allocated).

Compiler Construction 169 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Parameter passing mechanisms

In C/Java/ML arguments are passed by value—i.e. they are copied

(rvalue is transferred). (Mumble Java class values have an implicit

pointer compared to C.)

But many languages (e.g. Pascal, Ada) allow the user to specify

which is to be used. For example:

let f(VALUE x) = ...

might declare a function whose argument is an Rvalue. The

parameter is said to be called by value. Alternatively, the declaration:

let f(REF x) = ...

could pass an lvalue, thereby creating an alias rather than a copy.

Compiler Construction 170 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Lecture 12

Parameter passing by source-to-source translation; Exceptions;

Object-Orientation.

Compiler Construction 171 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Implementing parameter passing

Instead of giving an explanation at the machine-code level, it’s often

simple (as here) to explain it in terms of ‘source-to-source’

translation (although this is in practice implemented as a tree-to-tree

translation).

For example, we can explain C++ call-by-reference in terms of

simple call-by-value in C:

int f(int &x) { ... x ... x ... }

main() { ... f(e) ... }

maps to

int f’(int *x) { ... *x ... *x ... }

main() { ... f’(&e) ... }

Compiler Construction 172 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Implementing parameter passing (2)

void f1(REF int x) { ... x ... }

void f2(IN OUT int x) { ... x ... } // Ada-style

void f3(OUT int x) { ... x ... } // Ada-style

void f4(NAME int x) { ... x ... }

... f1(e) ...

... f2(e) ...

... f3(e) ...

... f4(e) ...

implement as (all using C-style call-by-value):

void f1’(int *xp) { ... *xp ... }

void f2’(int *xp) { int x = *xp; { ... x ... } *xp = x; }

void f3’(int *xp) { int x; { ... x ... } *xp = x; }

void f4’(int xf()) { ... xf() ... }

... f1’(&e) ...

... f2’(&e) ...

... f3’(&e) ...

... f4’(fn () => e) ...

Compiler Construction 173 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Labels and Jumps

Many languages provide goto or equivalent forms (break, continue

etc.).

These generally implement as the goto instruction in JVM or

unconditional branches in assembly code—as we saw:

y := x<=3 ? -x : x

gave

iload 4 load x (4th local variable, say)

iconst 3 load 3

if_icmpgt L36 if greater (i.e. condition false) then jump to L36

iload 4 load x

ineg negate it

goto L37 jump to L37

label L36

iload 4 load x

label L37

istore 7 store y (7th local variable, say)

Compiler Construction 174 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Labels and Jumps (2)

But what about:

{ let r(lab) = { ...; goto lab; ... }

...

r(M);

...

M: ...

}

If permitted, such jumps may exit a procedure, and so cannot just be

implemented as an unconditional branch. They need to reset FP too

(so that at the destination accesses to local variables access the

correct frame).

Solution: implement such label values as a pair of pointers—one the

code address of the destination label and the other the frame pointer

of the destination— a label closure.

Compiler Construction 175 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Labels and Jumps (3)

Such a goto is implemented as:

1. load the label value

2. load FP from the frame part of the label value

3. transfer control (load PC from the code pointer part of the label

value)

Note: as in accessing variables via static link, we can’t use this

method to jump back into procedures which have previously been

exited (because the stack pointer part of the label value will have

become invalid).

Why such esoteric stuff...?

Compiler Construction 176 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Exceptions

For example given exception foo; we could implement

try C1 except foo => C2 end; C3

as (using H as a stack of active exception labels)

push(H, L2);

C1

pop(H);

goto L3:

L2: if (raised_exc != foo) doraise(raised_exc);

C2;

L3: C3;

and the doraise() function looks like

void doraise(exc)

{ raised_exc = exc;

goto pop(H);

}

Compiler Construction 177 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Arrays

C-like arrays are typically allocated within a stack frame (array of 10

ints is just like 10 int variables allocated contiguously within a stack

frame). [Java arrays are defined to be objects, and hence heap

allocated—see later.]

{ int x=1, y=2;

int v[n]; // an array from 0 to n-1

int a=3, b=4;

...

}

6 6

FPRA
??

elements of v

y x

0 1 n-1

b a
4 3 2 1

subscripts
SP FP

Compiler Construction 178 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Lecture 13

Objects, methods, inheritance.

Compiler Construction 179 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Class variables and access via ‘this’

A program such as

class C {

int a;

static int b;

int f(int x) { return a+b+x;}

};

C exampl;

main() { ... exampl.f(3) ... }

can be mapped to:

int unique_name_for_b_of_C;

class C {

int a;

};

int unique_name_for_f_of_C(C hidden, int x)

{ return hidden.a // fixed offset within ‘hidden‘

+ unique_name_for_b_of_C // global variable

+ x; // argument

};

main() { ... unique_name_for_f_of_C(exampl,3); ... }

Compiler Construction 180 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Class variables and access via ‘this’ (2)

Using this (a pointer—provides lvalue of class instance):

class C {

int a;

static int b;

int f(int x) { return a+b+x;}

};

C exampl;

main() { ... exampl.f(3) ... }

is mapped to:

int unique_name_for_b_of_C;

class C {

int a;

};

int unique_name_for_f_of_C(C *this, int x)

{ return this->a // fixed offset within ‘this‘

+ unique_name_for_b_of_C // global variable

+ x; // argument

};

main() { ... unique_name_for_f_of_C(&exampl,3); ... }

Compiler Construction 181 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

But how does method inheritance work?

class A { void f() { printf("I am an A"); }};

class B:A { void f() { printf("I am a B"); }};

A x;

B y;

void g(A p) { p.f(); }

main() { x.f(); // gives: I am an A

y.f(); // gives: I am a B

g(x); // gives I am an A

g(y); // gives what?

}

Java says ‘B’, but C (and our translation) says ‘A’ !

To get the Java behaviour in C we must write virtual, i.e.

class A { virtual void f() { printf("I am an A"); }};

class B:A { virtual void f() { printf("I am a B"); }};

Compiler Construction 182 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

But how does method inheritance work? (2)

So, how do we implement virtual methods?

We need to use the run-time type of the argument of g() rather than

the compiler-time type. So, values of type A and B must now contain

some indication of what type they are (previously unnecessary). E.g.

by translating to C of the form:

void f_A(struct A *this) { printf("I am an A"); }

void f_B(struct A *this) { printf("I am a B"); }

struct A { void (*f)(struct A *); } x = { f_A };

struct B { void (*f)(struct A *); } y = { f_B };

void g(A p) { p.f(&p); }

The use of a function pointer g() invokes the version of f()

determined by the value of ‘p’ rather than its type.

Compiler Construction 183 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Downcasts and upcasts

Consider Java-ish

class A { ...};

class B extends A { ... };

main()

{ A x = ...;

B y = ...;

x = (A)y; // upcasting is always OK

y = (B)x; // only safe if x’s value is an instance of B.

}

If you want downcasting (from a base class to a derived class) to be

safe, then it needs to compile code which looks at the type of the

value stored in x and raise an exception if this is not an instance of B.

This means that Java class values must hold some indication of the

type given to new() when they were created.

Compiler Construction 184 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Practical twist: virtual function tables

Aside: in practice, since there may be many virtual functions, in

practice a virtual function table is often used whereby a class which

has one or more virtual functions has a single additional cell which

points to a table of functions to be called when methods of this

object are invoked. This can be shared among all objects declared at

that type, although each type inheriting the given type will in

general need its own table. (This cuts the per-instance storage

overhead required for a class with 40 virtual methods from 160 bytes

to 4 bytes at a cost of slower virtual method call.)

Virtual method tables can also have a special element holding the

type of the value of instances; this means that Java-style

safe-downcasts do not require additional per-instance storage.

Compiler Construction 185 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

C++ multiple inheritance

Looks attractive, but troublesome in practice...

Multiple inheritance (as in C++) so allows one to inherit the

members and methods from two or more classes and write:

class A { int a1, a2; };

class B : A { int b; };

class C : A { int c; };

class D : B,C { int d; };

(Example, a car and a boat both inherit from class vehicle, so think

about an amphibious craft.)

Sounds neat, but...

Compiler Construction 186 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

C++ multiple inheritance (2)

Issues:

• How to pass a pointer to a D to a routine expecting a C? A D

can’t contain both a B and a C at offset zero. Run-time cost is an

addition (guarded by a non-NULL test).

• Worse: what are D’s elements? We all agree with b, c or d. But

are their one or two a1 and a2 fields? Amphibious craft: has only

one weight, but maybe two number-plates!

Compiler Construction 187 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

C++ multiple inheritance (3)

C++ provides virtual keyword for bases. Non-virtual mean

duplicate; virtual means share.

class B : virtual A { int b; };

class C : virtual A { int c; };

class D : B,C { int d; };

Compiler Construction 188 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

C++ multiple inheritance (4)

But this sharing is also expensive (additional pointers)—as C:

struct D { A *__p; int b; // object of class B

A *__q; int c; // object of class C

int d; // missing from notes!

A x; // the shared object in class A

} s =

{ &s.x, 0, // the B object shares a pointer ...

&s.x, 0, // with the C object to the A base object

0, // the d

{ 0, 0 } // initialise A’s fields to zero.

};

I.e. there is a single A object (stored as ‘x’ above) and both the p

field of the logical B object (containing p and b) and the q field of

the logical C object (containing q and c) point to it.

Yuk?

Compiler Construction 189 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Heap allocation and new

The heap is a storage area (separate from code, static data, stack).

Allocations are done by new (C: malloc); deallocations by delete

(C++, C uses free).

In Java deallocations are done implicitly by a garbage collector.

A simple C version of malloc (with various infelicities):

char heap[1000000], *heapptr = &heap[0];

void *malloc(int n)

{ char *r = heapptr;

if (heapptr+n >= &heap{1000000]) return 0;

heapptr += n;

return r;

}

void free(void *p) {}

Better implementations make free maintain a list of unused

locations (a ‘free-list’); malloc tries these first.

Compiler Construction 190 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Garbage collection: implicit free

Simple strategy:

• malloc allocates from within its free-list (now it’s simpler to

initialise the free-list to be the whole heap); when an allocation

fails call the garbage collector.

• the garbage collector first: scans the global variables, the stack

and the heap, marking which allocated storage units are

reachable from any future execution of the program and flagging

the rest as ‘available for allocation’.

• the garbage collector second: (logically) calls the heap

de-allocation function on these before returning. If garbage

collection did not free any storage then you are out of memory!

Compiler Construction 191 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Garbage collection: issues

• stops the system (bad for real-time). There are concurrent

garbage collectors

• as presented this is a conservative garbage collector: nothing is

moved. Therefore memory can be repeatedly allocated with (say)

only every second allocation having a pointer to it. Even after

GC a request for a larger allocation may fail. ‘Fragmentation’.

• conservative garbage collectors don’t need to worry about types

(if you treat an integer as a possible pointer then no harm is

done).

• There are also compacting garbage collectors. E.g. copy all of the

reachable objects from the old heap into a new heap and then

swap the roles. Need to know type information for every object

to know which fields are pointers. (cf. ‘defragmentation’.)

Compiler Construction 192 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Lecture 14

Correctness, Types: static and dynamic checking, type safety.

Compiler Construction 193 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Need for semantics

You can’t compile a language unless you know exactly what it means

(‘semantics’ is a synonym for ‘meaning’).

An example:

class List<Elt>

{ List <Elt> Cons(Elt x) { number_of_conses++; ... }

static int number_of_conses = 0;

}

Should there be one counter for each Elt type, or just one counter of

all conses? Entertainingly the languages Java and C♯ differ on this.

Compiler Construction 194 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Compiler Correctness

Suppose S, T are source and target languages of a compiler f .

See f as a function f : S → T (in practice f is implemented by a

compiler program C written in an implementation language L)

Now we need semantics of S and T , written as [[·]]S : S → M and

[[·]]T : T → M for some set of meanings M .

We can now say that f is a correct compiler provided that

(∀s ∈ S)[[f(s)]]T = [[s]]S .

Compiler Construction 195 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Tombstone diagrams

(Non-examinable in 2008/09.)

As above, let L, S, T, U be languages.

Write f : S → T for a function from S to T .

Similarly write C : S
L
 T for C a compiler from S to T written in

language L.

Functions f : S → T and g : T → U can be composed to give S → U .

So can compilers (output of one as input to the other):

(S
L
 T) × (T

L
 U) → (S

L
 U).

Compiler Construction 196 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Tombstone diagrams (2)

A semantics for L now turns a program in L into a function, in

particular it now also has type [[·]]L : (S
L
 T) → (S → T).

Let H be our host architecture.

Then [[·]]H means “execute a program in language H”.

The only useful compilers are ones of type S
H
 H.

Compilation types can also be ‘vertically’ composed: use a L
H
 H

compiler to compile a S
L
 H one to yield a usable compiler S

H
 H.

Compiler Construction 197 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Bootstrapping

We’ve designed a great new language U , and write a compiler C for

U in U , i.e. C : U
U
 H.

How do we make it useful, i.e. U
H
 H?

Write a quick-and-nasty prototype compiler U
H
 H and use that to

compile C to get a better compiler U
H
 H.

This is called bootstrapping (“lift oneself up by one’s own bootlaces”).

Does this always work? Does it terminate? Is it unique?

Compiler Construction 198 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Trojan compilers

It’s not unique. Adjust C to make C ′ such that:

1. it miscompiles (say) the login program

2. it miscompiles the compiler so that when it compiles something

which looks like the compiler then re-introduces bugs 1. and 2. if

they have been removed from the source.

Now C has no visible bugs in the source code, but whenever it is

compiled on a descendent of C ′ then the bug is propagated.

Source code audits don’t find all security bugs (Ken Thompson’s

1984 Turing Award paper)!

Compiler Construction 199 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Type safety

Type safety (sometimes called “strong typing” – but this word has

multiple meanings) means that you can’t cheat on the type system.

This is often, but not always, dangerous.

• E.g. C: float x = 3.14; int y = *(int *)&x;

• E.g. C: union { int i, int *p; } u; u.i=3; *u.p=4;

• E.g. C++ unchecked downcasts

• Java and ML are type-safe.

Can be achieved by run-time or compile-time type checking.

See also: http://en.wikipedia.org/wiki/Type safety and

http://en.wikipedia.org/wiki/Strong typing.

Compiler Construction 200 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Dynamic types, Static types

• Dynamic: check types at run-type — like eval() earlier in the

notes, or Lisp or Python. Get type errors/exceptions at run-time.

Note run-time cost of having a “type tag” as part of every value.

• Static: check types at compile time and eliminate them at

run-time.

E.g. ML model: infer types at compile time, remove them at

run-time and then glue them back on the result for top-level

interaction.

Static types sometimes stop you doing things which would run OK

with dynamic types.

if true then "abc" else 42

Compiler Construction 201 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Untyped language

BCPL (precursor of C) provided an entertaining, maximally unsafe,

type system with the efficiency of static types. There was one type

(say 32-bit) word. A word was interpreted as required by context, e.g.

let f(x) = x&5 -> x(9), x!5

(‘!’ means subscripting or indirection, and e1->e2,e3 is conditional.)

Arrays and structs become conflated too.

Compiler Construction 202 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Static/Dynamic not enough

Static can be very inflexible (e.g. Pascal: have to write separate

length functions for each list type even though they all generate the

same code).

Dynamic gives hard-to-eliminate run-time errors.

Resolve this by polymorphism—either ML-style (‘parametric

polymorphism’) OO-style (‘subtype polymorphism)—this gives more

flexibility while retaining, by-and-large, static type safety.

Compiler Construction 203 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Static/Dynamic not enough (2)

• Parametric polymorphism can be implemented (as in most MLs)

by generating just one version of (say) I = λx.x : α → α even

though its argument type can vary, e.g. ((II)7).

Implementation requirement: all values must occupy the same

space.

• Sub-type polymorphism: e.g. Java

class A { ... } x;

class B extends A { ... } y;

Assigning from a subtype to a supertype (x=y) is OK. Allowing

downcast requires run-time value checking (a limited form of

dynamic typing).

Note that a variable x above is of compile-time type A, but at

run-time can hold a value of type A, B, or any other subtype.

Compiler Construction 204 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Static/Dynamic not enough (3)

Overloading (two or more definitions of a function) is often called

‘ad-hoc’ polymorphism.

With dynamic typing this is a run-time test; with static typing

operations like + can be resolved into iadd or fadd at compile time.

Compiler Construction 205 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Source-to-source translation

(Said earlier this year.)

Many high-level constructs can be explaining in terms of other

high-level (or medium-level) constructs rather than explaining them

directly at machine code level.

E.g. my explanation of C++/Java in terms of C structs.

E.g. the

while e do e′

construct in Standard ML as shorthand (syntactic sugar) for

let fun f() = if e then (e′; f()) else () in f() end

Compiler Construction 206 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Interpreters versus Compilers

Really a spectrum.

If you think that there is a world of difference between emulating

JVM instructions and executing a native translation of them then

consider a simple JIT compiler which replaces each JVM instruction

with a procedure call, so instead of emulating

iload 3

we execute

iload(3);

where the procedure iload() merely performs the code that the

interpreter would have performed.

A language is ‘more compiled’ if less work is done at run-time.

Compiler Construction 207 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

The Debugging Illusion

It’s easy to implement source-level debugging if we have a

source-level interpreter.

It gets harder as we do more work at compile time (and have less

information at run-time).

One solution: debug tables (part of ELF), often in ‘DWARF’ format,

which enables a run-time debugger find out source corresponding to a

code location or a variable.

Compiler Construction 208 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Lecture 14

Parsing Theory and Practice

Compiler Construction 209 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

General Grammars

A grammar is a 4-tuple (T, N, S, R)

• T set of terminal symbols (things which occur in the source)

• N set of non-terminal symbols (names for syntactic elements)

• R set of (production) rules: A1 A2 · · · Am −→ B1 B2 · · · Bn

(there must be at least one N within the Ai)

• S ∈ N is the start symbol

The only change from context-free grammars is the more permissive

format of production rules; all other concepts are unchanged.

Compiler Construction 210 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Chomsky Hierarchy (1)

So far we’ve seen one special case: the so-called “context-free

grammars”, or “type 2 grammars” in the Chomsky Hierarchy.

These have the LHS of every production just being a single

non-terminal.

Compiler Construction 211 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Chomsky Hierarchy (2)

type 0: no restrictions on rules. Turing-powerful.

type 1: (‘context-sensitive grammar’). Rules are of from:

L1 · · ·Ll
︸ ︷︷ ︸

A R1 · · ·Rr
︸ ︷︷ ︸

−→ L1 · · ·Ll
︸ ︷︷ ︸

︷ ︸︸ ︷

B1 · · ·Bn R1 · · ·Rr
︸ ︷︷ ︸

where A is a single non-terminal symbol and n 6= 0.

type 2: (‘context-free grammar’). Most modern languages so

specified (hence context-sensitive things—e.g. in-scope variables,

e.g. C’s typedef—are done separately).

type 3: (‘regular grammar’) Rules of form A −→ a or A −→ aB

where a is a terminal and B a non-terminal.

http://en.wikipedia.org/wiki/Chomsky hierarchy

Compiler Construction 212 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Lecture 15

Parser Generators – table driven parsers

Compiler Construction 213 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Automated tools (here: lex and yacc)

These tools are often known as compiler compilers (i.e. they compile

a textual specification of part of your compiler into regular, if sordid,

source code instead of you having to write it yourself).

Lex and Yacc are programs that run on Unix and provide a

convenient system for constructing lexical and syntax analysers. JLex

and CUP provide similar facilities in a Java environment. There are

also similar tools for ML.

See calc.l and calc.y on course web-site for examples.

Compiler Construction 214 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Lex

Example source calc.l

%%

[\t] /* ignore blanks and tabs */ ;

[0-9]+ { yylval = atoi(yytext); return NUMBER; }

"mod" return MOD;

"div" return DIV;

"sqr" return SQR;

\n|. return yytext[0]; /* return everything else */

These rules become fragments of function lex(). Note how the chars

in the token get assembled into yytext; yylval is what we called

lex aux int earlier.

Compiler Construction 215 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Lex (2)

In more detail, a Lex program consists of three parts separated by

%%s.

declarations

%%

translation rules

%%

auxiliary C code

The declarations allows a fragment of C program to be placed near

the start of the resulting lexical analyser. This is a convenient place

to declare constants and variables used by the lexical analyser.

Compiler Construction 216 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Lex (3)

One may also make regular expression definitions in this section, for

instance:

ws [\t\n]+

letter [A-Za-z]

digit [0-9]

id {letter}({letter}|{digit})*

These named regular expressions may be used by enclosing them in

braces ({ or }) in later definitions or in the translations rules.

Compiler Construction 217 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Yacc

Yacc (yet another compiler compiler) is like Lex in that it takes an

input file (e.g. calc.y) specifying the syntax and translation rule of a

language and it output a C program (usually y.tab.c) to perform

the syntax analysis.

Like Lex, a Yacc program has three parts separated by %%s.

declarations

%%

translation rules

%%

auxiliary C code

Compiler Construction 218 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Yacc input for calculator (1 of 3)

%{

#include <stdio.h>

%}

%token NUMBER

%left ’+’ ’-’

%left ’*’ DIV MOD

/* gives higher precedence to ’*’, DIV and MOD */

%left SQR

%%

Don’t worry about the fine details!

Compiler Construction 219 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Yacc input for calculator (2 of 3)

comm: comm ’\n’

| /* empty */

| comm expr ’\n’ { printf("%d\n", $2); }

| comm error ’\n’ { yyerrok; printf("Try again\n"); }

;

expr: ’(’ expr ’)’ { $$ = $2; }

| expr ’+’ expr { $$ = $1 + $3; }

| expr ’-’ expr { $$ = $1 - $3; }

| expr ’*’ expr { $$ = $1 * $3; }

| expr DIV expr { $$ = $1 / $3; }

| expr MOD expr { $$ = $1 % $3; }

| SQR expr { $$ = $2 * $2; }

| NUMBER

;

%%

Don’t worry about the fine details!

Compiler Construction 220 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Yacc input for calculator (3 of 3)

#include "lex.yy.c" /* lexer code */

void yyerror(s)

char *s;

{ printf("%s\n", s);

}

int main()

{ return yyparse();

}

Don’t worry about the fine details!

This example code is on the course web-site—just download it and

say ”make”.

Compiler Construction 221 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Yacc and parse trees

To get a parse tree change the semantic actions from

expr: ’(’ expr ’)’ { $$ = $2; }

| expr ’+’ expr { $$ = $1 + $3; }

| NUMBER // (implicit) $$ = $1;

;

%%

to

expr: ’(’ expr ’)’ { $$ = $2; }

| expr ’+’ expr { $$ = mk_add($1,$3); }

| NUMBER { $$ = mk_intconst($1); }

;

%%

Need just a little bit more magic to have tree nodes on the stack, but

that’s roughly it.

Compiler Construction 222 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Parsing (info rather than examination)

• Recursive descent parsers are LL parsers (they read the source

left-to-right and perform leftmost-derivations). In this course we

made one by hand, but there are automated tools such as antlr

(these make table-driven parsers for LL grammars which logically

operate identically to recursive descent).

• Another form of grammar is the so-called LR grammars (they

perform rightmost-derivations). These are harder to build by

hand; but historically have been the most common way to make

a parser with an automated tool. In this course we show how LR

parsing is done.

But in principle, you can write both LL and LR parsers either by

hand (encode the grammar as code), or generate them by a tool

(tends to encode the grammar as data for an interpreter).

Compiler Construction 223 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

LR grammars

An LR parser is a parser for context-free grammars that reads input

from Left to right and produces a Rightmost derivation.

The term LR(k) parser is also used; k is the number of unconsumed

“look ahead” input symbols used to make parsing decisions. Usually

k is 1 and is often omitted. A context-free grammar is called LR(k) if

there exists an LR(k) parser for it.

There are several variants (LR, SLR, LALR) which all use the same

driver program; they differ only in the size of the table produced and

the exact grammars accepted. We’ll ignore these differences (for

concreteness we’ll use SLR(k)—Simple LR).

(See also http://en.wikipedia.org/wiki/LR parser and

http://en.wikipedia.org/wiki/Simple LR parser)

Compiler Construction 224 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Table driven parsers

General idea:

�
�

�
�

token
stream

- standard
driver

-
�
�

�
�

parse
tree

?
6�

�
�
�

work
stack

?
6

�
�

�
�

table for
grammar

In LR parsing, the table represents the characteristic finite state

machine (CFSM) for the grammar; the standard driver (grammar

independent) merely interprets this.

Compiler Construction 225 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

SLR parsing

So, we only have to learn:

• how do we construct the CFSM?

• what’s the driver program?

Compiler Construction 226 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

SLR parsing – example grammar

To exemplify this style of syntax analysis, consider the following

grammar (here E, T, P abbreviate ‘expression’, ‘term’ and

‘primary’—a sub-grammar of our previous grammar):

#0 S −→ E eof

#1 E −→ E + T l-assoc +

#2 E −→ T

#3 T −→ P ** T r-assoc **

#4 T −→ P

#5 P −→ i

#6 P −→ (E)

The form of production #0 defining the sentence symbol S is

important. Its RHS is a single non-terminal followed by the special

terminal symbol eof (which occurs nowhere else in the grammar).

Compiler Construction 227 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

SLR parsing – items and states

An item is a production with a position marker (represented by .)

marking some position on its right hand side. There are four possible

items involving production #1:

E −→ .E + T

E −→ E .+ T

E −→ E + .T

E −→ E + T .

So around 20 items altogether (there are 13 symbols on the RHS of

7 productions, and the marker can precede or follow each one).

Think of the marker as a progress indicator.

A state (in the CFSM) is just a set of items (but not just any set ...).

Compiler Construction 228 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

SLR parsing – items and states (2)

• If the marker in an item is at the beginning of the right hand

side then the item is called an initial item.

• If it is at the right hand end then the item is called a completed

item.

• In forming item sets a closure operation must be performed to

ensure that whenever the marker in an item of a set precedes a

non-terminal, E say, then initial items must be included in the set

for all productions with E on the left hand side.

Compiler Construction 229 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

SLR parsing – items and states (3)

The first item set is formed by taking the initial item for the

production defining the sentence symbol (S −→.E eof) and then

performing the closure operation, giving the item set:

1: { S −→ .E eof

E −→ .E + T

E −→ .T

T −→ .P ** T

T −→ .P

P −→ .i

P −→ .(E)

}

(Remember: item sets are the states of the CFSM.)

Compiler Construction 230 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

SLR parsing – items and states (4)

OK, so that’s the first state, what are the rest?

• I tell you the transitions which gives new items; you then turn

these into a state by forming the closure again.

Compiler Construction 231 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

SLR parsing – items and states (5)

States have successor states formed by advancing the marker over the

symbol it precedes. For state 1 there are successor states reached by

advancing the marker over the symbols E, T, P, i or (. Consider,

first, the E successor (state 2), it contains two items derived from

state 1 and the closure operation adds no more (since neither marker

precedes a non terminal). State 2 is thus:

2: { S −→ E . eof

E −→ E .+ T

}

The other successor states are defined similarly, except that the

successor of eof is always the special state accept. If a new item set

is identical to an already existing set then the existing set is used.

Compiler Construction 232 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

SLR parsing – completed items and states

The successor of a completed item is a special state represented by $

and the transition is labelled by the production number (#i) of the

production involved.

The process of forming the complete collection of item sets continues

until all successors of all item sets have been formed. This necessarily

terminates because there are only a finite number of different item

sets.

Compiler Construction 233 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

CFSM for the grammar

5

6

7

10 12

8

1

43$

$

$
#2 #1

#4P

T

T

E

(

T +

2
eof

accept

**

$

$

i
9

#5
$

11
)E #6

#3

Start to think what happens when I feed this 1**2+3**3.

Compiler Construction 234 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

SLR(0) parser

From the CFSM we can construct the two matrices action and goto:

1. If there is a transition from state i to state j under the terminal

symbol k, then set action[i, k] to Sj.

2. If there is a transition under a non-terminal symbol A, say, from

state i to state j, set goto[i, A] to Sj.

3. If state i contains a transition under eof set action[i, eof] to

acc.

4. If there is a reduce transition #p from state i, set action[i, k] to

#p for all terminals k.

If any entry is multiply defined then the grammar is not SLR(0).

Compiler Construction 235 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Is our grammar SLR(0)?

The example grammar gives matrices (using dash (-) to mark blank

entries):

action goto

state eof (i) + ** P T E

S1 - S10 S9 - - - S6 S5 S2

S2 acc - - - S3 - - - -

S3 - S10 S9 - - - S6 S4 -

S4 #1 #1 #1 #1 #1 #1 - - -

S5 #2 #2 #2 #2 #2 #2 - - -

S6 #4 #4 #4 #4 #4 XXX - - -

S7 - S10 S9 - - - S6 S8 -

S8 #3 #3 #3 #3 #3 #3 - - -

S9 #5 #5 #5 #5 #5 #5 - - -

S10 - S10 S9 - - - S6 S5 S11

S11 - - - S12 S3 - - - -

S12 #6 #6 #6 #6 #6 #6 - - -

Compiler Construction 236 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Is our grammar SLR(0)?

No: because (state S6, symbol ‘∗∗’) is marked ‘XXX’ to indicate that

it admits both a shift transition (S7) and a reduce transition (#4) for

the terminal ∗∗. In general right associative operators do not give

SLR(0) grammars.

So: use lookahead—the construction then succeeds, so our grammar

is SLR(1) but not SLR(0).

Compiler Construction 237 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Lecture 16

SLR(1) grammars and LR driver code

Compiler Construction 238 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

LR and look-ahead

Key observation (for this grammar) is: after reading a P, the only

possible sentential forms continue with

• the token ** as part of P ** T (rule #3)

• the token ‘+’ or ‘)’ or ‘ eof ’ as part of a surrounding E or P or S

(respectively).

So a shift (rule #3) transition is always appropriate for lookahead

being **; and a reduce (rule #4) transition is always appropriate for

lookahead being ‘+’ or ‘)’ or ‘ eof ’.

In general: construct sets FOLLOW(U) for all non-terminal symbols U .

To do this it helps to start by constructing Left(U).

Compiler Construction 239 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Left sets

Left(U) is the set of symbols (terminal and non-terminal) which can

appear at the start of a sentential form generated from the

non-terminal symbol U .

Algorithm for Left(U):

1. Initialise all sets Left(U) to empty.

2. For each production U −→ B1 · · ·Bn enter B1 into Left(U).

3. For each production U −→ B1 · · ·Bn where B1 is also a

non-terminal enter all the elements of Left(B1) into Left(U)

4. Repeat 3. until no further change.

Compiler Construction 240 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Left sets continued

For the example grammar the Left sets are as follows:

U Left(U)

S E T P (i

E E T P (i

T P (i

P (i

Compiler Construction 241 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Follow sets

Algorithm for FOLLOW(U):

1. If there is a production of the form X −→ . . . Y Z . . . put Z and

all symbols in Left(Z) into FOLLOW(Y).

2. If there is a production of the form X −→ . . . Y put all symbols

in FOLLOW(X) into FOLLOW(Y).

Compiler Construction 242 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Follow sets continued

For our example grammar, the FOLLOW sets are as follows:

U FOLLOW(U)

E eof +)

T eof +)

P eof +) **

Compiler Construction 243 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

SLR(1) table construction

Form the action and goto matrices are formed from the CFSM as in

the SLR(0) case, but with rule 4 modified:

4’ If there is a reduce transition #p from state i, set action[i, k] to

#p for all terminals k belonging to FOLLOW(U) where U is the

subject of production #p.

If any entry is multiply defined then the grammar is not SLR(1).

Compiler Construction 244 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Is our grammar SLR(1)?

Yes—SLR(1) is sufficient for our example grammar.

action goto

state eof (i) + ** P T E

S1 - S10 S9 - - - S6 S5 S2

S2 acc - - - S3 - - - -

S3 - S10 S9 - - - S6 S4 -

S4 #1 - - #1 #1 - - - -

S5 #2 - - #2 #2 - - - -

S6 #4 - - #4 #4 S7 - - -

S7 - S10 S9 - - - S6 S8 -

S8 #3 - - #3 #3 - - - -

S9 #5 - - #5 #5 #5 - - -

S10 - S10 S9 - - - S6 S5 S11

S11 - - - S12 S3 - - - -

S12 #6 - - #6 #6 #6 - - -

Note now SLR(1) has no clashes (in SLR(0) S6/** clashed).

Compiler Construction 245 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

LR parser runtime code

This is the ‘standard driver’ from last lecture.

We use a stack that contains alternately state numbers and symbols

from the grammar, and a list of input terminal symbols terminated

by eof . A typical situation:

a A b B c C d D e E f | u v w x y z eof

Here a ... f are state numbers, A ... E are grammar symbols

(either terminal or non-terminal) and u ... z are the terminal

symbols of the text still to be parsed. If the original text was

syntactically correct, then

A B C D E u v w x y z

will be a sentential form.

Compiler Construction 246 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

LR parser runtime code (2)

The parsing algorithm starts in state S1 with the whole program, i.e.

configuration

1 | 〈the whole program upto eof 〉

and then repeatedly applies the following rules until either a

syntactic error is found or the parse is complete.

Compiler Construction 247 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

LR parser runtime code (3)

shift transition If action[f, u] = Si, then transform

a A b B c C d D e E f | u v w x y z eof

to

a A b B c C d D e E f u i | v w x y z eof

reduce transition If action[f, u] = #p, and production #p is of

length 3, say, necessarily P −→ C D E where C D E exactly matches

the top three symbols on the stack. Then transform

a A b B c C d D e E f | u v w x y z eof

to (assuming goto[c, P] = g)

a A b B c P g | u v w x y z eof

Compiler Construction 248 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

LR parser runtime code (4)

stop transition If action[f, u] = acc then the situation will be

as follows:

a Q f | eof

and the parse will be complete. (Here Q will necessarily be the

single non-terminal in the start symbol production (#0) and u

will be the symbol eof .)

error transition If action[f, u] = - then the text being parsed

is syntactically incorrect.

Compiler Construction 249 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

LR parser sample execution

Example—parsing i+i:

Stack text production to use

1 i + i eof

1 i 9 + i eof P −→ i

1 P 6 + i eof T −→ P

1 T 5 + i eof E −→ T

1 E 2 + i eof

1 E 2 + 3 i eof

1 E 2 + 3 i 9 eof P −→ i

1 E 2 + 3 P 6 eof T −→ P

1 E 2 + 3 T 4 eof E −→ E + T

1 E 2 eof acc (E is result)

Compiler Construction 250 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

Why is this LR-parsing?

Look at the productions used (backwards, starting at the bottom of

the page since we are parsing, not deriving strings from the start

symbol).

We see

E −→ E+T −→ E+P −→ E+i −→ T+i −→ P+i −→ i+i

i.e. a rightmost derivation.

Compiler Construction 251 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

What about the parse tree?

In practice a tree will be produced and stored attached to terminals

and non-terminals on the stack. Thus the final E will in reality be a

pair of values: the non-terminal E along with a tree representing i+i.

(Exactly what we want!).

Compiler Construction 252 2008–2009: Lent Term

UNIVERSITY OF

CAMBRIDGE

The end

Come along to “Optimising Compilers” in Part II if you want to

know how to do things better.

Compiler Construction 253 2008–2009: Lent Term

